Posts Tagged functional recovery

[ARTICLE] Eclectic/mixed model method for upper extremity functional recovery in stroke rehabilitation: A pilot study

Abstract

Background: Eclectic treatment method is a flexible approach that uses techniques drawn from various schools of thought involving several treatment methods and allows the therapist to adapt to each client’s individual needs. Wider application for eclectic approach is however limited in stroke rehabilitation. Aim: The objective is to find out whether eclectic approach improves upper extremity (UE) functional recovery in acute stroke rehabilitation. Methodology: Twenty-five postacute unilateral supratentorial stroke subjects recruited from tertiary care hospitals recovered with Stage 2–5 in Brunnstorm stage of UE motor recovery (BRS-UE) underwent 45 min of eclectic approach for UE every day involving seven different treatment methods (5 min for each method) for 6 days consecutively. The outcome was UE subscale of the Fugl-Meyer Motor test (UE-FM), UE subscale of the Stroke Rehabilitation Assessment of Movement (UE-STREAM), Wolf Motor Function test (WMFT-FAS), and Stroke Impact Scale-16 (SIS-16) was collected at the end of the sixth session. Results: All the participants showed significant improvement in all the outcome measures. The Stage 2 and 3 subjects showed UE-STREAM (P = 0.007) WMFT-FAS (P < 0.001), SIS (P = 0.023) respectively and for Stage 4 and 5 the subjects have shown UE FM (P < 0.001), WMFT-FAS (P < 0.001), SIS (P = 0.004) with large magnitude of treatment effect for all stages of BRS-UE. Conclusion: Our study findings are in favor of integrating eclectic approach than single intervention/approach in clinical practice to improve the UE functional recovery for motor rehabilitation when the stroke occurs.

Introduction

Globally, stroke is the third major cause of mortality and a major health issue in low- and middle-income countries like India.[1]Eighty percent of stroke survivors experience motor impairments (hemiparesis) typically affecting movement of the face, arm, trunk, and leg of one side of the body often persistent and disabling them. These residual impairments limit their functional independence and predisposing them to restrict their participation in community and social roles.[2],[3]

Upper limb hemiparesis is one of the primary impairments following the stroke. It is often reported to be incomplete in functional recovery and to restore the motor skills. The studies on recovery of voluntary arm movements have also shown that 5–20% of stroke survivors achieved complete functional recovery and 30–60% of paretic arm can never have complete recovery during the first 6 months after the stroke.[4],[5] Common upper extremity (UE) impairments after the stroke include paresis, loss of fractionated movement, abnormal muscle tone and/or changes in somatosensation, shoulder pain, and subluxation which prevents the functional use of the arm, bimanual tasks and also for fine motor skills.[6],[7] Post stroke, persistent arm motor impairment (a period of 1 year or above) can be associated with anxiety and poorer perception of health-related quality of life and subjective well-being.[8],[9]

One of the primary aims of the stroke rehabilitation is to improve the arm functions and to regain the gross and fine motor skills. Currently, the existing rehabilitation protocols that are designed to improve UE functions include the various treatment methods/interventions such as Roods, Brunnstorm, proprioceptive neuromuscular facilitation, neuro-developmental therapy techniques, repetitive/task-specific training, strength training, sensorimotor interventions, constraint-induced movement therapy, virtual reality, spasticity treatment, electromyographic/biofeedback, transcutaneous electrical nerve stimulation, neuromuscular electrical stimulation, functional electric stimulation, motor imagery, mirror therapy, and bilateral arm training.[10] However, recent systematic reviews have concluded that there is insufficient evidence observed for any intervention or approach that can currently be used in routine practice to improve the paretic upper limb functions.[11]

An eclectic therapy is a therapeutic approach that incorporates a variety of therapeutic principles and philosophies to create the ideal treatment program to meet the specific needs of the patient or client. The intervention of an eclectic approach is based on the stable principles of the classic traditional methods but is open to refining and can be used in conjunction with the elements of other various new methods, thus providing a framework for designing an optimal neurorehabilitation protocol.[12],[13] The studies have shown that the eclectic approach is suitable for a diverse and complex set of patients.[14],[15],[16] However, wider application of eclectic approach in stroke rehabilitation is limited in literature.

Continue —> Eclectic/mixed model method for upper extremity functional recovery in stroke rehabilitation: A pilot study Kumar K V, Joshua AM, Kedambadi R, Mithra P P – J Nat Sc Biol Med

, , , , , ,

Leave a comment

[ARTICLE] Comparison of Two Post-Stroke Rehabilitation Programs: A Follow-Up Study among Primary versus Specialized Health Care – Full Text HTML

 

Abstract

Objective

To compare home-based rehabilitation (RITH) and standard outpatient rehabilitation in a hospital setting, in terms of improving the functional recovery and quality of life of stroke patients.

Study Design and Setting

This was a prospective cohort study in Andalusia (Spain).

Participants

One hundred and forty-five patients completed the outcome data.

Measures

Daily activities were measured by the Barthel index, Canadian Neurological Scale (to assess mental state), Tinetti scale (balance and gait), and Short Form Health Survey-36 (SF-36 to compare the quality of life).

Results

No statistically significant differences were found between the two groups regarding the clinical characteristics of patients in the initial measurement, except for age and mental state (younger and with greater neurological impairment in the hospital group). After physical therapy, both groups showed statistically significant improvements from baseline in each of the measures. These improvements were better in RITH patients than in the hospital patients on all functionality scales with a smaller number of sessions.

Conclusions

Home rehabilitation is at least as effective as the outpatient rehabilitation programs in a hospital setting, in terms of recovery of functionality in post-stroke patients. Overall quality of life is severely impaired in both groups, as stroke is a very disabling disease that radically affects patients’ lives.

Continue —> PLOS ONE: Comparison of Two Post-Stroke Rehabilitation Programs: A Follow-Up Study among Primary versus Specialized Health Care

, , , ,

Leave a comment

[ARTICLE] Music Upper Limb Therapy—Integrated: An Enriched Collaborative Approach for Stroke Rehabilitation – Full Text 

Stroke is a leading cause of disability worldwide. It leads to a sudden and overwhelming disruption in one’s physical body, and alters the stroke survivors’ sense of self. Long-term recovery requires that bodily perception, social participation and sense of self are restored; this is challenging to achieve, particularly with a single intervention. However, rhythmic synchronization of movement to external stimuli facilitates sensorimotor coupling for movement recovery, enhances emotional engagement, and has positive effects on interpersonal relationships.

In this proof-of-concept study, we designed a group music-making intervention, Music Upper Limb Therapy-Integrated (MULT-I), to address the physical, psychological and social domains of rehabilitation simultaneously, and investigated its effects on long-term post-stroke upper limb recovery. The study used a mixed-method pre-post design with one-year follow up.

Thirteen subjects completed the 45-minute intervention twice a week for six weeks. The primary outcome was reduced upper limb motor impairment on the Fugl-Meyer Scale. Secondary outcomes included sensory impairment (two-point discrimination test), activity limitation (Modified Rankin scale), well-being (WHO well-being index), and participation (Stroke Impact Scale). Repeated measures ANOVA was used to test for differences between pre- and post-intervention, and one-year follow up scores. Significant improvement was found in upper limb motor impairment, sensory impairment, activity limitation, and well-being immediately post-intervention that persisted at 1 year. Activities of daily living and social participation improved only from post-intervention to one-year follow up. The improvement in upper limb motor impairment was more pronounced in a subset of lower functioning individuals as determined by their pre-intervention wrist range of motion. Qualitatively, subjects reported new feelings of ownership of their impaired limb, more spontaneous movement, and enhanced emotional engagement.

The results suggest that the MULT-I intervention may help stroke survivors re-create their sense of self by integrating sensorimotor, emotional and interoceptive information, and facilitate long-term recovery across multiple domains of disability, even in the chronic stage post-stroke. Randomized controlled trials are warranted to confirm the efficacy of this approach. Clinical Trial Registration: National Institutes of Health, clinicaltrials.gov, NCT01586221.

Continue —> Frontiers | Music Upper Limb Therapy—Integrated: An Enriched Collaborative Approach for Stroke Rehabilitation | Frontiers in Human Neuroscience

, , , , , , , , , , , , ,

Leave a comment

[ARTICLE] Stroke research at the crossroads – where are we heading? – Full Text HTML

Summary

Stroke causes 5.7 million deaths annually. This ranks stroke as the second most common cause of death and, additionally, it is a major cause of disability. Because of an ageing population, stroke incidence and costs will greatly increase in the future. This makes stroke an ongoing social and economic burden, in contrast to the only very limited therapeutic options.

In the last decade vast sums were spent on translational research focused on neuroprotective strategies in the acute phase of ischaemic stroke. A plethora of candidate agents were tested in experimental models and preclinical studies, but none was proven effective in clinical trials. This gave rise to discussions about the possible reasons for this failure, ending up mainly with criticism of methodological aspects of the preclinical and clinical studies, or of the relevance of animal studies in drug development. Indeed, the question could rather be whether neuroprotection is the right target for successful stroke treatment. In this context, a paradigm change can currently be observed: the focus of experimental and translational stroke research is shifting from early neuroprotection to delayed mechanisms such as stroke-associated comorbidities, regeneration and plasticity.

In this review we highlight a few recently emerging fields in translational stroke research. One such topic is the crosstalk between immunity and the injured brain as key pathomechanism in stroke. On one hand, innate and adaptive immune cells play an important role in the fate of injured brain tissue after stroke; on the other, peripheral immune alterations are critically involved in post-stroke comorbidities.

Another emerging research area is the analysis of mechanisms involved in regeneration and neuronal plasticity after stroke. Here, we discuss the current understanding of basic mechanisms involved after brain injury, clinical imaging approaches and therapeutic strategies to promote regeneration in stroke patients.

Continue —> SMW – Swiss Medical Weekly – Stroke research at the crossroads – where are we heading?

Figure 1 Multiphasic brain interactions after stroke and opportunities for treatment. Previous neuroprotective strategies targeted pathological mechanisms in a very narrow window of opportunity in the (hyper-) acute phase after stroke (orange). Recently, the focus of translational stroke research has shifted towards understanding pathological processes in the subacute and chronic phase such as neuroinflammation and neuroregeneration (green). These targets have the potential for novel therapeutic approaches which are suitable for a larger population of stroke patients then neuroprotective agents or thrombolysis.

 

, , , , , , ,

Leave a comment

[ARTICLE] A new treatment in the rehabilitation of the paretic upper limb after stroke: the ARAMIS prototype and treatment protocol – Full Text PDF

Abstract

Background. In recent years, as part of the rehabilitation of post stroke patients, the use of robotic technologies to improve recovery of upper limb has become more widespread. The Automatic Recovery Arm Motility Integrated System (ARAMIS) is a concept robot and prototype designed to promote the functional interaction of the arms in the neurorehabilitation of the paretic upper limb. Two computer-controlled, symmetric and interacting exoskeletons compensate for the inadequate strength and accuracy of the paretic arm and the effect of gravity during rehabilitation. Rehabilitation is possible in 3 different modalities; asynchronous, synchronous and active-assisted.

Objectives. To compare the effectiveness of robotic rehabilitation by an exoskeleton prototype system with traditional rehabilitation in motor and functional recovery of the upper limb after stroke.

Methods. Case-control study, 52 patients enrolled in the study, 28 cases (women: 8, age: 65 ± 10 yrs) treated with ARAMIS and 24 controls (women: 11, age: 69 ± 7 yrs) with conventional rehabilitation. Motor impairment assessed before and after treatment with Fugl-Meyer scale and Motricity Index, level of disability assessed with the Functional Independence Measure. A questionnaire was also administered to assess the patient’s tolerance to robotic therapy.

Results. After 28 ± 4 sessions over a 54 ± 3.6-day period, the patients treated by ARAMIS had an improvement on the Fugl-Meyer scale (global score from 43 ± 18 to 73 ± 29; p < 0.00001), Motricity Index scale (p < 0.004) and Functional Independence Measure (p < 0.001). A lesser degree of improvement was achieved using conventional rehabilitation, the Fugl-Meyer global score of the control group improved from 41 ± 13 to 58 ± 16 (p < 0.006) and the motor function item from 9.4 ± 4.1 to 14.9 ± 5.8 (p < 0.023).

Conclusions. Motor improvement was greater at the wrist and hand than at shoulder and elbow level in patients treated by ARAMIS and controls, but it was significantly greater in ARAMIS-treated patients than in controls. The results indicate a greater efficacy of ARAMIS compared to conventional rehabilitation.

Download Full Text PDF 

, , , , , , , , , , ,

Leave a comment

[Abstract] Enhancement of motor relearning and functional recovery in stroke patients: non-invasive strategies for modulating the central nervous system. – PubMed

INTRODUCTION: Most of the stroke survivors do not recover the basal state of the affected upper limb, suffering from a severe disability which remains during the chronic phase of the illness. This has an extremely negative impact in the quality of life of these patients. Hence, neurorehabilitation strategies aim at the minimization of the sensorimotor dysfunctions associated to stroke, by promoting neuroplasticity in the central nervous system.

DEVELOPMENT: Brain reorganization can facilitate motor and functional recovery in stroke subjects. None-theless, after the insult, maladaptive neuroplastic changes can also happen, which may lead to the appearance of certain sensori-motor disorders such as spasticity. Noninvasive brain stimulation strategies, like transcranial direct current stimulation or transcranial magnetic stimulation, are widely used techniques that, when applied over the primary motor cortex, can modify neural networks excitability, as well as cognitive functions, both in healthy subjects and individuals with neurological disorders. Similarly, brain-machine-interface systems also have the potential to induce a brain reorganization by the contingent and simultaneous association between the brain activation and the peripheral stimulation.

CONCLUSION: This review describes the positive effects of the previously mentioned neurorehabilitation strategies for the enhancement of cortical reorganization after stroke, and how they can be used to alleviate the symptoms of the spasticity syndrome.

Source: [Enhancement of motor relearning and functional recovery in stroke patients: non-invasive strategies for modulating the central nervous system]. – PubMed – NCBI

, , , , , , , ,

Leave a comment

[WEB SITE] Longer, intense rehabilitation boosts recovery after brain injury – Medical News Today

Animal studies suggest greater emphasis for better results and highlight key role of brain system in rebuilding structure and function.

Cognitive and functional recovery after a stroke or traumatic injury requires intense rehabilitative therapy to help the brain repair and restructure itself. New findings by researchers at University of California, San Diego School of Medicine report that not only is rehabilitation vital – in an animal model, rats with cortical injury that did not receive intensive rehab did not rebuild brain structure or recover function – but that a longer, even more intense period of rehabilitation may produce even greater benefit.

Neurons

A cultured neuron in green is shown with hundreds of protruding dendritic spines. The dendrites of other neurons labeled in blue, with adjacent glial cells depicted in red. Credit: UC San Diego Health

“This has implications for medical practice and medical insurance,” said senior study author Mark Tuszynski, MD, PhD, professor in the Department of Neurosciences and director of the Center for Neural Repair at UC San Diego School of Medicine, and a neurologist with the VA San Diego Healthcare System. “Typically, insurance supports brief periods of rehab to teach people to get good enough to go home. These findings suggest that if insurance would pay for longer and more intensive rehab, patients might actually recover more function.”

The findings are published in the February 22 online early edition of PNAS.

In recent years, numerous studies have documented the surprising plasticity or ability of the adult central nervous system to recover from injury. The emerging question has been how to best encourage the repair and regrowth of damaged nerve cells and connections.

To better understand what happens at the molecular and cellular levels and how rehabilitation might be made more effective after brain injury, researchers studied rats relearning skills and physical abilities. They found rats that received intensive therapy for an extended period of time showed significant restructuring of the brain around the damage site: Surviving neurons sprouted greater numbers of dendritic spines, which made more connections with other neurons. The result, said Tuszynski, was a dramatic 50 percent recovery of function.

Animals that did not undergo intensive rehabilitation did not rebuild brain structure or recover function.

Additionally, the researchers found that a key system in the brain – the basal forebrain cholinergic system – is critical to rehabilitation. Structures in this part of the brain, such as the nucleus basalis, produce acetylcholine, a chemical released by nerve cells to send signals to other cells. Specifically, motor neurons release acetylcholine to activate muscles.

Damage to the cholinergic system, which can occur naturally during aging, completely blocks brain plasticity mediated by rehabilitation and significantly reduces functional recovery. Tuszynski said the finding suggests that a class of drugs called cholinesterase inhibitors, which boost the levels and persistence of acetylcholine and are used in some treatments for Alzheimer’s disease, might further improve functional outcomes after brain injury.

“We did not try to do this in our study,” said Tuszynski, “but we did suggest future studies could be done to look at this possibility.”

Source: Longer, intense rehabilitation boosts recovery after brain injury – Medical News Today

, , , , ,

Leave a comment

[Research Report] Functional level during the first 2 years after moderate and severe traumatic brain injury – CNS

Research Reports – Functional level during the first 2 years after moderate and severe traumatic brain injury

Brain Inj. 2015 Sep 11:1-8. [Epub ahead of print]

Sandhaug M(1,)(2), Andelic N(3,)(4), Langhammer B(1,)(5), Mygland A(6,)(7,)(8).

BACKGROUND: Long-term outcomes after TBI are examined to a large extent, butlongitudinal studies with more than 1-year follow-up time after injury have beenfewer in number. The course of recovery may vary due to a number of factors and it is still somewhat unclear which factors are contributing.

AIM: The aim of this study was to describe the functional level at four time points up to 24 months after traumatic brain injury (TBI) and to evaluate the predictive impact of pre-injury and injury-related factors.

DESIGN: A cohort study.

SETTING: Outpatient.

POPULATION: Sixty-five patients with moderate (n = 21) or severe (n = 44) TBI.

METHODS: The patients with TBI were examined with Functional Independence Measure(FIM) and Glasgow Outcome Scale Extended (GOSE) at 3 months, 12 months and 24months after injury. Possible predictors were analysed in a regression modelusing FIM total score at 24 months as the outcome measure.

RESULTS: FIM scores improved significantly from rehabilitation unit discharge to 24 months after injury, with peak levels at 3 and 24 months after injury(p < 0.001), for the whole TBI group and the group with severe TBI. The moderateTBI group did not show significant FIM score improvement during this time period. GOSE scores for the whole group and the moderate group improved significantlyover time, but the severe group did not. FIM at admission to the rehabilitation unit and GCS score at admission to the rehabilitation unit were closest to being significant predictors of FIM total scores 24 months after injury (B = 0.265 and2.883, R(2 )= 0.39, p = 0.073, p = 0.081).

CONCLUSION: FIM levels improved during the period from rehabilitation unitdischarge to 3 months follow-up; thereafter, there was a ‘plateauing’ of recovery. In contrast, GOSE ‘plateauing’ of recovery was at 12 months.

CLINICAL REHABILITATION IMPACT: The study results may indicate that two of themost used outcome measures in TBI research are more relevant for assessment of the functional recovery in a sub-acute phase than in later stages of TBI recovery.

Source: Traumatic Brain Injury Resource Guide – Research Reports – Functional level during the first 2 years after moderate and severe traumatic brain injury

, , , , , ,

Leave a comment

[ARTICLE] Clinical Assessments for Predicting Functional Recovery after Stroke – Full Text PDF

Abstract

Despite on-going technological developments, clinical assessment remains an essential tool to evaluate the effects of rehabilitation treatment and to predict functional recovery. This paper provides a review of clinical assessment for stroke patients focusing on predictive value of motor, function and participation assessment, taking into consideration some specific evaluations for upper and lower limb function, trunk control, balance and walking. In the future an increased integration between clinical assessment, neurophysiology and neuroimaging will be required, in order to apply specific evaluation pathways to reach a more accurate and customized prognostic stratification.

Full Text PDF

, , ,

Leave a comment

[ARTICLE] Magnetic stimulation and movement-related cortical activity for acute stroke with hemiparesis

Cover image for Vol. 22 Issue 8Abstract

Background and purpose

This double-blind, randomized, placebo-controlled study investigated the beneficial effects of repetitive transcranial magnetic stimulation (rTMS) to patients with motor paresis in acute subcortical stroke on functional recovery and electrophysiological measures.

Methods

Twenty patients with acute stroke were randomized into real rTMS (n = 10) or sham (n = 10) groups. Patients received five daily sessions of rTMS with 1200 pulses at 1 Hz for 20 min or sham stimulation over the contralesional motor cortex. Movement-related cortical potential MRCP, consisting of the Bereitschaftpotential, negative slope (NS′) and motor potential (MP), was recorded during self-paced wrist extension of the affected limb associated with assessment of the Fugl−Meyer assessment (FMA) of the upper extremity, the pegboard test and the grip strength before and after the rTMS session.

Results

Real rTMS improved the FMA and pegboard test scores compared to the sham group in the affected hand. This improvement was associated with increases in the MP and NS′ over the front-central sites in the ipsilesional hemisphere, whereas the sham group did not show significant changes in MRCP components by rTMS.

Conclusions

Our findings suggest that low-frequency rTMS to the contralesional motor cortex facilitates functional recovery of paretic limbs in acute stroke patients through enhancing the the neuronal activity of ipsilesional motor and pre-motor areas.

via Magnetic stimulation and movement-related cortical activity for acute stroke with hemiparesis – Matsuura – 2015 – European Journal of Neurology – Wiley Online Library.

, , , , , ,

Leave a comment

%d bloggers like this: