Posts Tagged Electrical Stimulation

[BLOG POST] Will Electrical Stimulation Help Me Recover From Stroke?

By Clarice Torrey, OTR/L

Here are the answers to your questions about electrical stimulation: What is electrical stimulation? What can it be used for after stroke? What other devices can be used? Will e-stim help me recover from stroke?

Will Electrical Stimulation Help Me Recover from Stroke?

Electrical Stimulation after Stroke

With so much information at our fingertips, it’s hard to know what to believe. Electrical stimulation is an appealing treatment option for many patients because it looks like might do the work for them, but is it too good to be true?

Here are the answers to your e-stim questions:

What is electrical stimulation?

Does treatment for stroke include electrical stimulation?

What other devices can be used?

Will e-stim help me recover from stroke?

Electrodes applied to a patient's arm for e-stim therapy.

What is electrical stimulation?

Electrical stimulation is a type of therapeutic treatment that can be performed by an occupational or physical therapist, or a trained home user with the correct equipment. There are 3 devices lumped into the category of e-stim that look similar but have different functions. All of the devices consist of electrode pads that stick to the skin and a machine that you can use to adjust the parameters.

True electrocutaneous muscle stimulation (EMT or e-stim) sends an electric impulses to the belly of the muscle to make it contract. It has a limited affect on the muscle, meaning that activating it with an electrical signal alone won’t build strength. In order to build strength and neuroplasticity the signal for the muscle contraction has to come from your brain.

 

Remember that fad where they sold e-stim for you stomach muscles that were supposed to give you a 6 pack without the work of doing sit-ups? People quickly learned this was just not true. You have to put the work in to gain strength.

 

E-stim electrodes applied to the shoulder.

Does treatment for stroke include electrical stimulation?

When a stroke occurs, there is a blood clot and lack of blood supply to the brain tissue (ischemic stroke) or bleeding in the brain (subarachnoid hemorrhage), resulting in brain damage.

For stroke rehabilitation, electrical stimulation is used with people that don’t have full active movement of a muscle. The e-stim can give it an extra boost of muscle contraction. So, the patient is actively sending signals to the muscle, but the machine gives the muscle a little extra force.

This helps in several ways:

It’s more motivating to see more muscle activation

You’ll be more successful in an activity with more muscle movement

It increases sensory feedback to your brain to help your body process the muscle activation

Electrocutaneous muscle stimulation can also be used to reduce edema, also known as swelling, which is one of the symptoms of stroke. The frequency of the signal is set so that the muscle actually becomes a pump, pushing excess fluid out of the area.

 

E-stim is also sometimes used for the management of pain, but this is not specific to stroke rehabilitation.

 

A TENS unit with attached electrode pads.

What other devices can be used?

Transcutaneous electrical nerve stimulation or TENS is a device that often gets mistaken for EMT. A TENS unit is a more superficial electrical signal sent to the nerve at the level of the skin. (whereas the EMT signal is sent to the muscle). The most common use of a TENS unit is for pain, which again is not a stroke specific intervention. A TENS unit can make a muscle contract with a strong enough signal, but it would be better to use an EMT unit for muscle activation.

The other device that often gets mistaken for an EMT unit is an electromyography biofeedback device, also known as an EMG. An EMG device has the same type of electrodes, but instead of sending a signal to the muscle it receives the signal and creates visual or auditory feedback to motivate the person to activate the muscle. The simplest type is one that has a light that activates when the muscle reaches a certain threshold. EMG biofeedback does have evidence to support its use with people after stroke. There are also combo E-stim/biofeedback devices that send a signal to the muscle to activate and receive a signal from the muscle to create a feedback loop.

Will electrical stimulation help me recover from stroke?

Answer: Sometimes. I know everyone’s favorite answer to a yes or no question is: “It depends”, but really it does. Electrical stimulation or e-stim may be used after stroke to reduce swelling or to stimulate muscle activation with stroke survivors that do not have full muscle activation.

E-stim is frequently used after stroke to work on foot drop, wrist extension, finger extension, shoulder subluxation, and elbow extension.

If you don’t have swelling or if you have full active range of motion after stroke, there is no evidence that e-stim is beneficial.

Not all therapists are trained electrical stimulation, so you might need to ask your therapist if it’s a good fit for you and if there is someone that is trained in providing it.

Bottom line: electrical stimulation can be beneficial for stroke recovery… if you have edema or you have partial but not full muscle activation. You should work with a specialist trained in the delivery of these devices to optimize your recovery. E-stim won’t help you gain strength where movement does not exist, so if you’re severely affected it might not help.

Functional Electrical Stimulation. Stroke Engine, Canadian Partnership for Stroke Recovery, 2020, http://www.strokengine.ca/en/patient-info/functional-electrical-stimulation-upper-extremity-info/.Faghri PD. The effects of neuromuscular stimulation-induced muscle contraction versus elevation on hand edema in CVA patients. J Hand Ther. 1997;10(1):29‐34. doi:10.1016/s0894-1130(97)80008-7

Source: www.neofect.com/us/blog/electrical-stimulation-for-stroke-recovery/

 

, , ,

Leave a comment

[Abstract] Design and control of an exoskeleton robot with EMG-driven electrical stimulation for upper limb rehabilitation

Abstract

Purpose

The purpose of this paper is to design and develop a new robotic device for the rehabilitation of the upper limbs. The authors are focusing on a new symmetrical robot which can be used to rehabilitate the right upper limb and the left upper limb. The robotic arm can be automatically extended or reduced depending on the measurements of the patient’s arm. The main idea is to integrate electrical stimulation into motor rehabilitation by robot. The goal is to provide automatic electrical stimulation based on muscle status during the rehabilitation process.

Design/methodology/approach

The developed robotic arm can be automatically extended or reduced depending on the measurements of the patient’s arm. The system merges two rehabilitation strategies: motor rehabilitation and electrical stimulation. The goal is to take the advantages of both approaches. Electrical stimulation is often used for building muscle through endurance, resistance and strength exercises. However, in the proposed approach the electrical stimulation is used for recovery, relaxation and pain relief. In addition, the device includes an electromyography (EMG) muscle sensor that records muscle activity in real time. The control architecture provides the ability to automatically activate the appropriate stimulation mode based on the acquired EMG signal. The system software provides two modes for stimulation activation: the manual preset mode and the EMG driven mode. The program ensures traceability and provides the ability to issue a patient status monitoring report.

Findings

The developed robotic device is symmetrical and reconfigurable. The presented rehabilitation system includes a muscle stimulator associated with the robot to improve the quality of the rehabilitation process. The integration of neuromuscular electrical stimulation into the physical rehabilitation process offers effective rehabilitation sessions for neuromuscular recovery of the upper limb. A laboratory-made stimulator is developed to generate three modes of stimulation: pain relief, massage and relaxation. Through the control software interface, the physiotherapist can set the exercise movement parameters, define the stimulation mode and record the patient training in real time.

Research limitations/implications

There are certain constraints when applying the proposed method, such as the sensitivity of the acquired EMG signals. This involves the use of professional equipment and mainly the implementation of sophisticated algorithms for signal extraction.

Practical implications

Functional electrical stimulation and robot-based motor rehabilitation are the most important technologies applied in post-stroke rehabilitation. The main objective of integrating robots into the rehabilitation process is to compensate for the functions lost in people with physical disabilities. The stimulation technique can be used for recovery, relaxation and drainage and pain relief. In this context, the idea is to integrate electrical stimulation into motor rehabilitation based on a robot to obtain the advantages of the two approaches to further improve the rehabilitation process. The introduction of this type of robot also makes it possible to develop new exciting assistance devices.

Originality/value

The proposed design is symmetrical, reconfigurable and light, covering all the joints of the upper limbs and their movements. In addition, the developed platform is inexpensive and a portable solution based on open source hardware platforms which opens the way to more extensions and developments. Electrical stimulation is often used to improve motor function and restore loss of function. However, the main objective behind the proposed stimulation in this paper is to recover after effort. The novelty of the proposed solution is to integrate the electrical stimulation powered by EMG in robotic rehabilitation.

via Design and control of an exoskeleton robot with EMG-driven electrical stimulation for upper limb rehabilitation | Emerald Insight

, , , , , , , ,

Leave a comment

[VIDEO] Stroke Rehabilitation: Use of electrical stimulation to help the fingers be able to open and close – YouTube

 

This video demonstrates how to use FES, Functional Electrical Stimulation, to engage the muscles of the arm to extend and flex the fingers

via Stroke Rehabilitation: Use of electrical stimulation to help the fingers be able to open and close – YouTube

, , , , , , , ,

Leave a comment

[VIDEO] Mirror Therapy Combined With Electrical Stimulation Using SaeboStim Micro – YouTube

https://www.saebo.com

Saebo, Inc. is a medical device company primarily engaged in the discovery, development and commercialization of affordable and novel clinical solutions designed to improve mobility and function in individuals suffering from neurological and orthopedic conditions. With a vast network of Saebo-trained clinicians spanning six continents, Saebo has helped over 100,000 clients around the globe achieve a new level of independence.

In 2001, two occupational therapists had one simple, but powerful goal – to provide neurological clients access to transformative and life changing products.

At the time, treatment options for improving arm and hand function were limited. The technology that did exist was expensive and inaccessible for home use. With inadequate therapy options often leading to unfavorable outcomes, health professionals routinely told their clients that they have “reached a plateau” or “no further gains can be made”. The founders believed that it was not the clients who had plateaued, but rather their treatment options had plateaued.

Saebo’s commitment – “No Plateau in Sight” – was inspired by this mentality; and the accessible, revolutionary solutions began.

Saebo’s revolutionary product offering was based on the latest advances in rehabilitation research. From the SaeboFlex which allows clients to incorporate their hand functionally in therapy or at home, to the SaeboMAS, an unweighting device used to assist the arm during daily living tasks and exercise training, “innovation” and “affordability” can now be used in the same sentence.

Over the last ten years, Saebo has grown into a leading global provider of rehabilitative products created through the unrelenting leadership and the strong network of clinicians around the world. As we celebrate our history and helping more than 100,000 clients regain function, we are growing this commitment to affordability and accessibility even further by making our newest, most innovative products more accessible than ever.

via Mirror Therapy Combined With Electrical Stimulation Using SaeboStim Micro – YouTube

, , , , , , , ,

Leave a comment

[WEB SITE] Transcutaneous electrical stimulation (TENS) may help lower limb spasticity after stroke

Adult using TENS machine for lower limb pain

Published on 26 February 2019

doi: 10.3310/signal-000738

Transcutaneous electrical stimulation (TENS) delivered alongside standard physical therapies could reduce spasticity in the lower limbs following a stroke.

Spasticity is a muscle control disorder characterised by tight muscles. It is common after stroke and accounts for significant disability. TENS is often used to treat pain and can affect nervous stimulation of the muscles.

The main evidence in this systematic review came from five trials which suggested that TENS combined with other physical therapies has moderate effect on lower limb spasticity compared with placebo.

The review has limitations, with small studies and little evidence on use for upper limbs or comparing with other therapies. However, TENS machines are portable, inexpensive and widely accessible making them an appealing addition to other care.

NICE does not currently recommend the use of TENS in stroke rehabilitation, though guidance covers use of other types of electrical stimulation in certain other contexts.

Why was this study needed?

More than 1.2 million people in the UK are living with the effects of stroke. About two-thirds of stroke survivors leave hospital with residual disability and one quarter experience spasticity.

Electrical stimulation is sometimes used as treatment after a stroke. It includes functional electrical stimulation and neuromuscular electrical stimulation, which both focus on muscle contraction. Transcutaneous electrical stimulation (TENS) targets the sensory nerves in a different way.

Transcutaneous electrical stimulation has been suggested as an adjunct to other rehabilitation therapy to try and reduce spasticity. The device is portable and can be self-administered at home, so its potential for managing spasticity is appealing.

There have been a number of small studies of TENS with conflicting results. This review aimed to combine the results to see if there was evidence for its use to treat spasticity after stroke.

What did this study do?

This systematic review identified 15 studies (10 randomised controlled trials) reporting the effectiveness of TENS on spasticity after stroke.

Studies compared TENS, used alone or alongside other therapies such as functional exercises, with placebo, no treatment or other treatments. Thirteen studies assessed lower limb spasticity, with 11 targeting the ability to flex the foot. Most assessed use in the chronic rather than acute phase of stroke.

Transcutaneous electrical stimulation regimen varied widely. Intervention periods ranged from one day to 12 weeks, the number of TENS sessions from one to seven per week, and the duration of sessions ranged from less than 20 minutes up to 60 minutes.

Trials were small with maximum participant size 80. The quality of randomised controlled trials was good overall, with lack of participant blinding being the most likely source of bias. Seven trials were pooled in meta-analysis.

What did it find?

  • Transcutaneous electrical stimulation used alongside other physical therapies was moderately effective in reducing spasticity in the lower limbs compared with placebo (standard mean difference [SMD] -0.64, 95% confidence interval [CI] -0.98 to -0.31). This was from meta-analysis of five trials (221 adults) with broadly similar results.
  • Pooled results of two trials (60 adults) also found that TENS alongside other physical therapies was more effective at reducing spasticity than no TENS (SMD -0.83, 95% CI -1.51 to -0.15).
  • Five studies assessed longer-term effects on spasticity. Three studies found the effects were maintained for a period of two to five weeks whilst two studies found the effects lasted for less than a day and that spasticity returned to baseline levels immediately following the intervention.
  • None of the studies reported any adverse effects of TENS.

What does current guidance say on this issue?

The NICE guideline on stroke rehabilitation (2013) does not currently include recommendations for use of TENS. NICE advises against the routine use of electrical stimulation for the hand and arm but suggests a trial of treatment may be considered if there is sign of muscle contraction, and the person cannot move their arm against resistance.

NICE guidance from 2009 advises that there is sufficient evidence that functional electrical stimulation can improve walking in people with drop foot following a stroke, provided the normal arrangements are in place for clinical governance, consent and audit.

What are the implications?

This review suggests that TENS, when delivered alongside other physical therapies, could be considered for lower limb spasticity as part of a stroke rehabilitation programme.

The findings are similar to a 2015 systematic review which found that electrical stimulation gave small but significant improvements in spasticity following stroke. Again this earlier review was limited by small sample sizes, varied treatment regimens and few studies that could be pooled in meta-analysis.

There was insufficient evidence to support use for upper limbs.

Cost was not assessed, but TENS is a non-invasive therapy and devices are widely available and could easily be used at home.

Citation and Funding

Mahmood A, Veluswamy SK, Hombali A, et al. Effect of transcutaneous electrical nerve stimulation on spasticity in adults with stroke: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2018; 16 November. doi: 10.1016/j.apmr.2018.10.016. [Epub ahead of print].

No funding information was provided for this study.

Bibliography

NICE. Functional electrical stimulation for drop foot of central neurological origin. IPG278. London: National Institute for Health and Care Excellence; 2009.

NICE. Stroke rehabilitation in adults. CG162. London: National Institute for Health and Care Excellence; 2013.

NICE. Spasticity (after stroke) – botulinum toxin type A. ID768. London: National Institute for Health and Care Excellence; in development.

Stein C, Fritsch CG, Robinson C et al. Effects of electrical stimulation in spastic muscles after stroke: systematic review and meta-analysis of randomized controlled trials. Stroke. 2015;46(8):2197-205.

Stroke Association. State of the nation: stroke statistics. London: Stroke Association; 2018.

 

  1. Analysis of the Faster Knee-Jerk In the Hemiplegic Limb
    TAKAO NAKANISHI et al., JAMA Neurology, 1965
  2. Transcutaneous Electrical Stimulation
    WILLIAM BAUER et al., JAMA Otolaryngology Head Neck Surgery, 1986

via Transcutaneous electrical stimulation (TENS) may help lower limb spasticity after stroke

, , , , , , , , ,

Leave a comment

[Abstract + References] Effect of Transcutaneous Electrical Nerve Stimulation on Spasticity in Adults With Stroke: A Systematic Review and Meta-analysis

Abstract

Objectives

(1) To determine the effect of transcutaneous electrical nerve stimulation (TENS) on poststroke spasticity. (2) To determine the effect of different parameters (intensity, frequency, duration) of TENS on spasticity reduction in adults with stroke. (3) To determine the influence of time since stroke on the effectiveness of TENS on spasticity.

Data Sources

PubMed, PEDro, CINAHL, Web of Science, CENTRAL, and EMBASE databases were searched from inception to March 2017.

Study Selection

Randomized controlled trial (RCT), quasi-RCT, and non-RCT were included if (1) they evaluated the effects of TENS for the management of spasticity in participants with acute or subacute or chronic stroke using clinical and neurophysiological tools; and (2) TENS was delivered either alone or as an adjunct to other treatments.

Data Extraction

Two authors independently screened and extracted data from 15 of the 829 studies retrieved through the search using a pilot tested pro forma. Disagreements were resolved through discussion with other authors. Quality of studies was assessed using Cochrane risk of bias criteria.

Data Synthesis

Meta-analysis was performed using a random-effects model that showed (1) TENS along with other physical therapy treatments was more effective in reducing spasticity in the lower limbs compared to placebo TENS (SMD −0.64; 95% confidence interval [95% CI], −0.98 to −0.31; P=.0001; I2=17%); and (2) TENS, when administered along with other physical therapy treatments, was effective in reducing spasticity when compared to other physical therapy interventions alone (SMD −0.83; 95% CI, −1.51 to −0.15; P=.02; I2=27%). There were limited studies to evaluate the effectiveness of TENS for upper limb spasticity.

Conclusion

There is strong evidence that TENS as an adjunct is effective in reducing lower limb spasticity when applied for more than 30 minutes over nerve or muscle belly in chronic stroke survivors (review protocol registered at PROSPERO: CRD42015020151)

References

  1. Zorowitz, R.D., Gillard, P.J., Brainin, M. Poststroke spasticity. Neurology. 2013;80:S45–S52
  2. Wissel, J., Manack, A., Brainin, M. Toward an epidemiology of poststroke spasticity. Neurology. 2013;80:S13–S19
  3. Watkins, C.L., Leathley, M.J., Gregson, J.M., Smith, T.L., Moore, A.P. Prevalence of spasticity post stroke. Clin Rehabil. 2002;16:515–522
  4. Doan, Q.V., Brashear, A., Gillard, P.J. et al, Relationship between disability and health-related quality of life and caregiver burden in patients with upper limb poststroke spasticity. PM R. 2012;4:4–10
  5. Lundström, E., Smits, A., Borg, J., Terént, A. Four-fold increase in direct costs of stroke survivors with without spasticity the first year after the event. Stroke. 2010;41:319–324
  6. Winstein, C.J., Stein, J., Arena, R. et al, Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016;47:e98–e169
  7. Thibaut, A., Laureys, S., Gosseries, O., Chatelle, C., Ziegler, E. Spasticity after stroke: physiology, assessment and treatment. Brain Inj. 2013;9052:1–13
  8. Richardson, D. Physical therapy in spasticity. Eur J Neurol. 2002;9:17–22
  9. Malas, B., Kacen, M. Orthotic management in patients with stroke. Top Stroke Rehabil. 2001;7:38–45
  10. Lehmann, J.F., Esselman, P.C., Ko, M.J., Smith, J.C., deLateur, B.J., Dralle, A.J. Plastic ankle-foot orthoses: evaluation of function. Arch Phys Med Rehabil. 1983;64:402–407
  11. Barnes, M.P. Medical management of spasticity in stroke. Age Ageing. 2001;30:13–16
  12. Kocabas, H. Comparison of phenol and alcohol neurolysis of tibial nerve motor branches to the gastrocnemius muscle for treatment of spastic foot after stroke: a randomized controlled pilot study.Eur J Phys Rehabil Med. 2010;46:5–10
  13. Fukuhara, T., Kamata, I. Selective posterior rhizotomy for painful spasticity in the lower limbs of hemiplegic patients after stroke: report of two cases. Neurosurgery. 2004;54:1268–1273
  14. Sheean, G., McGuire, J.R. Spastic hypertonia and movement disorders: pathophysiology, clinical presentation, and quantification. PM R. 2009;1:827–833
  15. Martins, F.L., Carvalho, L.C., Silva, C.C., Brasileiro, J.S., Souza, T.O., Lindquist, A.R. Immediate effects of TENS and cryotherapy in the reflex excitability and voluntary activity in hemiparetic subjects: a randomized crossover trial. Rev Bras Fisioter. 2012;16:337–344
  16. Kim, T.H., In, T.S., Cho, H. Task-related training combined with transcutaneous electrical nerve stimulation promotes upper limb functions in patients with chronic stroke. Tohoku J Exp Med. 2013;231:93–100
  17. Tinazzi, M., Zarattini, S., Valeriani, M. et al, Long-lasting modulation of human motor cortex following prolonged transcutaneous electrical nerve stimulation (TENS) of forearm muscles: evidence of reciprocal inhibition and facilitation. Exp Brain Res. 2005;161:457–464
  18. Yan, T., Hui-Chan, C.W. Transcutaneous electrical stimulation on acupuncture points improves muscle function in subjects after acute stroke: a randomized controlled trial. J Rehabil Med. 2009;41:312–316
  19. Tekeoğlu, Y., Adak, B., Göksoy, T. Effect of transcutaneous electrical nerve stimulation (TENS) on Barthel activities of daily living (ADL) index score following stroke. Clin Rehabil. 1998;12:277–280
  20. Sonde, L., Kalimo, H., Viitanen, M. Stimulation with high-frequency TENS — effects on lower limb spasticity after stroke. Adv Physiother. 2000;2:183–187
  21. Jung, K.-S., In, T.-S., Cho, H. Effects of sit-to-stand training combined with transcutaneous electrical stimulation on spasticity, muscle strength and balance ability in patients with stroke: a randomized controlled study. Gait Posture. 2017;54:183–187
  22. Picelli, A., Dambruoso, F., Bronzato, M. et al, Efficacy of therapeutic ultrasound and transcutaneous electrical nerve stimulation compared with botulinum toxin type A in the treatment of spastic equinus in adults with chronic stroke: a pilot randomized controlled trial. Top Stroke Rehabil. 2014;21:S8–S16
  23. Sonde, L., Gip, C., Fernaeus, S.E., Nilsson, C.G., Viitanen, M. Stimulation with low frequency (1.7 Hz) transcutaneous electric nerve stimulation (low-tens) increases motor function of the post-stroke paretic arm. Scand J Rehabil Med. 1998;30:95–99
  24. Branco Mills, P., Dossa, F. Transcutaneous electrical nerve stimulation for management of limb spasticity. Am J Phys Med Rehabil. 2016;95:309–318
  25. Lin, S., Sun, Q., Wang, H., Xie, G. Influence of transcutaneous electrical nerve stimulation on spasticity, balance, and walking speed in stroke patients: a systematic review and meta-analysis. J Rehabil Med. 2018;50:3–7
  26. Ng, S.S., Hui-Chan, C.W. Transcutaneous electrical nerve stimulation combined with task-related training improves lower limb functions in subjects with chronic stroke. Stroke. 2007;38:2953–2959
  27. Cho, H., In, T.S., Cho, K.H., Song, C.H. A single trial of transcutaneous electrical nerve stimulation (TENS) improves spasticity and balance in patients with chronic stroke. Tohoku J Exp Med. 2013;229:187–193
  28. Potisk, K.P., Gregoric, M., Vodovnik, L. Effect of transcutaneous electrical nerve stimulation (TENS) on spasticity in patients with hemiplegia. Scand J Rehabil Med. 1995;27:169–174
  29. Levin, M.F., Hui-Chan, C.W. Relief of hemiparetic spasticity by TENS is associated with improvement in reflex and voluntary motor functions. Electroencephalogr Clin Neurophysiol. 1992;85:131–142
  30. Bernhardt, J., Hayward, K.S., Kwakkel, G. et al, Agreed definitions and a shared vision for new standards in stroke recovery research: the Stroke Recovery and Rehabilitation Roundtable taskforce. Int J Stroke. 2017;12:444–450
  31. Cochrane Effective Practice and Organisation of Care. Suggested risk of bias criteria for EPOC reviews. (Available at:)http://epoc.cochrane.org/resources/epoc-resources-review-authors(Accessed August 22, 2018)
  32. Higgins, J.P., Green, S. Cochrane handbook for systematic reviews of interventions: version 5.1.0.(Available at:)http://handbook.cochrane.org(Accessed August 27, 2018)
  33. Hussain, T., Mohammad, H. The effect of transcutaneous electrical nerve stimulation (TENS) combined with Bobath on post stroke spasticity. A randomized controlled study. J Neurol Sci. 2013;4:22–29
  34. Park, J., Seo, D., Choi, W., Lee, S. The effects of exercise with tens on spasticity, balance, and gait in patients with chronic stroke: a randomized controlled trial. Med Sci Monit. 2014;20:1890–1896
  35. Laddha, D., Ganesh, G.S., Pattnaik, M., Mohanty, P., Mishra, C. Effect of transcutaneous electrical nerve stimulation on plantar flexor muscle spasticity and walking speed in stroke patients. Physiother Res Int. 2016;21:247–256
  36. Hui-Chan, C.W., Levin, M.F. Stretch reflex latencies in spastic hemiparetic subjects are prolonged after transcutaneous electrical nerve stimulation. Can J Neurol Sci. 1993;20:97–106
  37. Karakoyun, A., Boyraz, İ., Gunduz, R., Karamercan, A., Ozgirgin, N. Electrophysiological and clinical evaluation of the effects of transcutaneous electrical nerve stimulation on the spasticity in the hemiplegic stroke patients. J Phys Ther Sci. 2015;27:3407–3411
  38. Koyama, S., Tanabe, S., Takeda, K., Sakurai, H., Kanada, Y. Modulation of spinal inhibitory reflexes depends on the frequency of transcutaneous electrical nerve stimulation in spastic stroke survivors.Somatosens Mot Res. 2016;33:8–15
  39. Okuma, Y., Lee, R.G. Reciprocal inhibition in hemiplegia: correlation with clinical features and recovery. Can J Neurol Sci. 1996;23:15–23
  40. Sommerfeld, D.K., Gripenstedt, U., Welmer, A.-K. Spasticity after stroke. Am J Phys Med Rehabil. 2012;91:814–820
  41. Fernández-Tenorio, E., Serrano-Muñoz, D., Avendaño-Coy, J., Gómez-Soriano, J. Transcutaneous electrical nerve stimulation for spasticity: a systematic review. Neurologia. 2016; (pii: S0213-4853(16)30111-6)
  42. Kwong, P.W., Ng, G.Y., Chung, R.C., Ng, S.S. Transcutaneous electrical nerve stimulation improves walking capacity and reduces spasticity in stroke survivors: a systematic review and meta-analysis.Clin Rehabil. 2018;32:1203–1219

source:
https://www.archives-pmr.org/article/S0003-9993(18)31455-2/abstract

, , , , , ,

Leave a comment

[Abstract] Effect of afferent electrical stimulation with mirror therapy on motor function, balance, and gait in chronic stroke survivors: a randomized controlled trial

PDF

 

BACKGROUND: When solely mirror therapy is applied for a long period of time, spatial perception and attention to the damaged side may decrease, and the effect of mirror therapy may be limited. To overcome this limitation, it has recently been suggested that the combination of mirror therapy with mirror treatment is effective.
AIM: The aim of this study was to investigate the effects of afferent electrical stimulation with mirror therapy on motor function, balance, and gait in chronic stroke survivors.
DESIGN: A randomized controlled trial.
SETTING: Rehabilitation center.
POPULATION: Thirty stroke survivors were randomly assigned to two groups: the experimental group (n = 15) and the control group (n = 15).
METHODS: Participants of the experimental group received afferent electrical stimulation with mirror therapy, and participants of the control group received sham afferent electrical stimulation with sham mirror therapy for 60 minutes per day, 5 days per week, for 4 weeks. Motor function was measured using a handheld dynamometer and the Modified Ashworth Scale, balance was measured using the Berg Balance Scale, and gait was assessed using the GAITRite at baseline and after 4 weeks.
RESULTS: The experimental group showed significant differences in muscle strength, Modified Ashworth Scale, and Berg Balance Scale results, and velocity, cadence, step length, stride length, and double support time of their gait (p <0.05) in the pre-post intervention comparison. Significant differences between the two groups in muscle strength, Berg Balance Scale, gait velocity, step length, and stride length (p <0.05) were found.
CONCLUSIONS: Mirror therapy with afferent electrical stimulation may effectively improve muscle strength and gait and balance abilities in hemiplegic stroke survivors.
CLINICAL REHABILITATION IMPACT: Afferent electrical stimulation combined with mirror therapy can be used as an effective intervention to improve lower limb motor function, balance, and gait in chronic stroke survivors in clinical settings.

via Effect of afferent electrical stimulation with mirror therapy on motor function, balance, and gait in chronic stroke survivors: a randomized controlled trial – European Journal of Physical and Rehabilitation Medicine 2019 Mar 22 – Minerva Medica – Journals

, , , , ,

Leave a comment

[WEB SITE] Electrical stimulation in brain bypasses senses, instructs movement

Date:December 7, 2017
Source:University of Rochester Medical Center
Summary:The brain’s complex network of neurons enables us to interpret and effortlessly navigate and interact with the world around us. But when these links are damaged due to injury or stroke, critical tasks like perception and movement can be disrupted. New research is helping scientists figure out how to harness the brain’s plasticity to rewire these lost connections, an advance that could accelerate the development of neuro-prosthetics.
FULL STORY

The brain’s complex network of neurons enables us to interpret and effortlessly navigate and interact with the world around us. But when these links are damaged due to injury or stroke, critical tasks like perception and movement can be disrupted. New research is helping scientists figure out how to harness the brain’s plasticity to rewire these lost connections, an advance that could accelerate the development of neuro-prosthetics.

A new study authored by Marc Schieber, M.D., Ph.D., and Kevin Mazurek, Ph.D. with the University of Rochester Medical Center Department of Neurology and the Del Monte Institute for Neuroscience, which appears in the journal Neuron, shows that very low levels of electrical stimulation delivered directly to an area of the brain responsible for motor function can instruct an appropriate response or action, essentially replacing the signals we would normally receive from the parts of the brain that process what we hear, see, and feel.

“The analogy is what happens when we approach a red light,” said Schieber. “The light itself does not cause us to step on the brake, rather our brain has been trained to process this visual cue and send signals to another parts of the brain that control movement. In this study, what we describe is akin to replacing the red light with an electrical stimulation which the brain has learned to associate with the need to take an action that stops the car.”

The findings could have significant implications for the development of brain-computer interfaces and neuro-prosthetics, which would allow a person to control a prosthetic device by tapping into the electrical activity of their brain.

To be effective, these technologies must not only receive output from the brain but also deliver input. For example, can a mechanical arm tell the user that the object they are holding is hot or cold? However, delivering this information to the part of the brain responsible for processing sensory inputs does not work if this part of the brain is injured or the connections between it and the motor cortex are lost. In these instances, some form of input needs to be generated that replaces the signals that combine sensory perception with motor control and the brain needs to “learn” what these new signals mean.

“Researchers have been interested primarily in stimulating the primary sensory cortices to input information into the brain,” said Schieber. “What we have shown in this study is that you don’t have to be in a sensory-receiving area in order for the subject to have an experience they can identify.”

A similar approach is employed with cochlear implants for hearing loss which translate sounds into electrical stimulation of the inner ear and, over time, the brain learns to interpret these inputs as sound.

In the new study, the researchers detail a set of experiments in which monkeys were trained to perform a task when presented with a visual cue, either turning, pushing, or pulling specific objects when prompted by different lights. While this occurred, the animals simultaneously received a very mild electrical stimulus called a micro-stimulation in different areas of the premotor cortex — the part of the brain that initiates movement — depending upon the task and light combination.

The researchers then replicated the experiments, but this time omitted the visual cue of the lights and instead only delivered the micro-stimulation. The animals were able to successfully identify and perform the tasks they had learned to associate with the different electrical inputs. When the pairing of micro-stimulation with a particular action was reshuffled, the animals were able to adjust, indicating that the association between stimulation and a specific movement was learned and not fixed.

“Most work on the development of inputs to the brain for use with brain-computer interfaces has focused primarily on the sensory areas of the brain,” said Mazurek. “In this study, we show you can expand the neural real estate that can be targeted for therapies. This could be very important for people who have lost function in areas of their brain due to stroke, injury, or other diseases. We can potentially bypass the damaged part of the brain where connections have been lost and deliver information to an intact part of the brain.”

Story Source:

Materials provided by University of Rochester Medical CenterNote: Content may be edited for style and length.

 

via Electrical stimulation in brain bypasses senses, instructs movement — ScienceDaily

, , , ,

Leave a comment

[VIDEO] Post Stroke Foot Dorsiflexion: Using Electrical Stimulation to Reduce Tone & Promote Plasticity – YouTube

Further reading on electrophysiology and muscle contractions: http://strokemed.com/motor-behaviour-…

via  Post Stroke Foot Dorsiflexion: Using Electrical Stimulation to Reduce Tone & Promote Plasticity – YouTube

, , , , , , , , ,

Leave a comment

[WEB PAGE] Reconnecting the Disconnected: Restoring Movement in Paralyzed Limbs – Video

"Moving an arm can involve more than 50 different muscles," UA professor Andrew Fuglevand said. "Replicating how the brain naturally coordinates the activities of these muscles is extremely challenging."

“Moving an arm can involve more than 50 different muscles,” UA professor Andrew Fuglevand said. “Replicating how the brain naturally coordinates the activities of these muscles is extremely challenging.”

UA professor Andrew Fuglevand is using artificial intelligence to stimulate multiple muscles to elicit natural movement in ways previous methods have been unable to do.
Dec. 20, 2018

Andrew Fuglevand

Andrew Fuglevand

Scientists now know that the brain controls movement in people by signaling groups of neurons to tell the muscles when and where to move. Researchers also have learned it takes a complex orchestration of many signals to produce even seemingly simple body movements.

If any of these signals are blocked or broken, such as from a spinal cord injury or stroke, the messages from the brain to the muscles are unable to connect, causing paralysis. The person’s muscles are functional, but they no longer are being sent instructions.

Andrew Fuglevand, professor of physiology at the University of Arizona College of Medicine – Tucson and professor of neuroscience at the UA College of Science, has received a $1.2 million grant from the National Institutes of Health to study electrical stimulation of the muscles as a way to restore limb movements in paralyzed individuals. Fuglevand’s goal is to restore voluntary movement to a person’s own limbs rather than relying on external mechanical or robotic devices.

Producing a wide range of movements in paralyzed limbs has been unsuccessful so far because of the substantial challenges associated with identifying the patterns of muscle stimulation needed to elicit specified movements, Fuglevand explained.

“Moving a finger involves as many as 20 different muscles at a time. Moving an arm can involve more than 50 different muscles. They all work together in an intricate ‘dance’ to produce beautifully smooth movements,” he said. “Replicating how the brain naturally coordinates the activities of these muscles is extremely challenging.”

Recent advances in “machine learning,” or artificial intelligence, are making the impossible possible.

Fuglevand, who also is an affiliate professor of biomedical engineering and teaches neuroscience courses at the UA, is employing machine learning to mimic and replicate the patterns of brain activity that control groups of muscles. Tiny electrodes implanted in the muscles replay the artificially generated signals to produce complex movements.

“If successful, this approach would greatly expand the repertoire of motor behaviors available to paralyzed individuals,” he said.

“More than 5 million Americans are living with some form of paralysis, and the leading causes are stroke and spinal injury,” said Nicholas Delamere, head of the UA Department of Physiology. “New innovations in artificial intelligence, developed by scientists like Fuglevand and his team, are allowing them to decode subtle brain signals and make brain-machine interfaces that ultimately will help people move their limbs again.”

“The headway researchers have made in our understanding of artificial intelligence, machine learning and the brain is incredible,” said UA President Robert C. Robbins. “The opportunity to incorporate AI to brain-limb communication has life-changing potential, and while there are many challenges to optimize these interventions, we are really committed to making this step forward. I am incredibly excited to track Dr. Fuglevand’s progress with this new grant.”

Research reported in this release was supported by the National Institutes of Health, National Institute of Neurological Disorders and Stroke, under grant No. 1R01NS102259-01A1. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
A version of this article originally appeared on the UA Health Sciences website:https://opa.uahs.arizona.edu/newsroom/news/2018/reconnecting-disconnected-ua-physiology-professor-receives-12m-nih-grant-use-ai

 

via Reconnecting the Disconnected: Restoring Movement in Paralyzed Limbs | UANews

, , , , , , , ,

Leave a comment

%d bloggers like this: