Posts Tagged Attention

[WEB SITE] 7 signs of executive dysfunction after brain injury

7 signs of executive dysfunction after brain injury Main Image

 ‘Executive dysfunction‘ is not, perhaps, a particularly well known term, but the effects of brain injury that it covers are very common indeed. It is used to collectively describe impairment in the ‘executive functions’ – the key cognitiveemotional and behavioural skills that are used to navigate through life, especially when undertaking activities and interacting with others.

Although executive dysfunction is a common problem among many brain injury survivors, it is most commonly experienced following an injury to the frontal lobe.

The importance of executive functions is shown by the difficulties caused when they don’t work properly and someone has problems with executive dysfunction. Since the executive functions are involved in even the most routine activities, frontal injuries leading to executive dysfunction can lead to problems in many aspects of life.

Here we list the most common effects of executive dysfunction, with some examples of common issues that brain injury survivors can face:

Difficulties with motivation and organisation

  • Loss of ‘get up and go’, which can be mistaken for laziness
  • Problems with thinking ahead and carrying out the sequence of steps needed to complete a task

Rigid thinking

  • Difficulty in evaluating the result of actions and reduced ability to change behaviour or switch between tasks if needed

Poor problem solving

  • Finding it hard to anticipate consequences
  • Decreased ability to make accurate judgements or find solutions if things are going wrong

Impulsivity

  • Acting too quickly and impulsively without fully thinking through the consequences, for example, spending more money than can be afforded

Mood disturbances

  • Difficulty in controlling emotions which may lead to outbursts of emotion such as anger or crying
  • Rapid mood changes may occur, for example, switching from happiness to sadness for no apparent reason

Difficulties in social situations

  • Reduced ability to engage in social interactions
  • Finding it hard to initiate, participate in, or pay attention to conversations
  • Poor judgement in social situations, which may lead to saying or doing inappropriate things

Memory/attention problems

  • Finding it harder to concentrate
  • Difficulty with learning new information
  • Decreased memory for past or current events, which may lead to disorientation

Find out more

If you or someone you care for is affected by executive dysfunction, it is important to seek support. Speak to your doctor about your symptoms, and ask about referral to specialist services such as counselling, neuropsychology and rehabilitation.

You can find out more and get tips and strategies to help manage your condition on our executive dysfunction after brain injury page.

Headway groups and branches can offer support in your area, and you can contact our helpline if you would like to talk things through.

via 7 signs of executive dysfunction after brain injury | Headway

Advertisements

, , , , , , , , , , , ,

Leave a comment

[Abstract] Longitudinal Recovery of Executive Control Functions After Moderate-Severe Traumatic Brain Injury: Examining Trajectories of Variability and Ex-Gaussian Parameters

Background. Executive control deficits are deleterious and enduring consequences of moderate-severe traumatic brain injury (TBI) that disrupt everyday functioning. Clinically, such impairments can manifest as behavioural inconsistency, measurable experimentally by the degree of variability across trials of a reaction time (RT) task (also known as intraindividual variability [IIV]). Growing research on cognition after TBI points to cognitive deterioration in the chronic stages postinjury. Objective. To examine the longitudinal recovery of RT characteristics (IIV and more detailed ex-Gaussian components, as well as the number of impulsively quick responses) following moderate-severe TBI. Methods. Seventy moderate-severe TBI patients were assessed at 2, 5, 12, and 24+ months postinjury on a go/no-go RT task. RT indices (ex-Gaussian parameters mu and sigma [mean and variability of the normal distribution component], and tau [extremely slow responses]; mean, intraindividual coefficient of variation [ICV], and intraindividual standard deviation [ISD]) were analyzed with repeated-measures multivariate analysis of variance. Results. ICV, ISD, and ex-Gaussian tau significantly decreased (ie, improved) over time in the first year of injury, but worsened from 1 to 2+ years, as did the frequency of extremely fast responses. These quadratic patterns were accentuated by age and shown primarily in tau (extremely slow) and extremely fast (impulsive) responses. Conclusions. The pattern of early recovery followed by decline in executive control function is consistent with growing evidence that moderate-severe TBI is a progressive and degenerative disorder. Given the responsiveness to treatment of executive control deficits, elucidating the trajectory and underpinnings of inconsistent behavioral responding may reveal novel prognostic and clinical management opportunities.

1. Azouvi, P, Couillet, J, Leclercq, M, Martin, Y, Asloun, S, Rousseaux, M. Divided attention and mental effort after severe traumatic brain injury. Neuropsychologia. 2004;42:12601268. doi:10.1016/j.neuropsychologia.2004.01.001. Google ScholarCrossrefMedline
2. Dockree, PM, Bellgrove, MA, O’Keeffe, FM. Sustained attention in traumatic brain injury (TBI) and healthy controls: enhanced sensitivity with dual-task load. Exp Brain Res. 2006;168:218229. doi:10.1007/s00221-005-0079-x. Google ScholarCrossrefMedline
3. Ponsford, JL, Downing, MG, Olver, J. Longitudinal follow-up of patients with traumatic brain injury: outcome at two, five, and ten years post-injury. J Neurotrauma. 2014;31:6477. doi:10.1089/neu.2013.2997. Google ScholarCrossrefMedline
4. Green, RE, Colella, B, Christensen, B. Examining moderators of cognitive recovery trajectories after moderate to severe traumatic brain injury. Arch Phys Med Rehabil. 2008;89(12 suppl):S16S24. doi:10.1016/j.apmr.2008.09.551. Google ScholarCrossrefMedline
5. Stuss, DT, Pogue, J, Buckle, L, Bondar, J. Characterization of stability of performance in patients with traumatic brain injury: variability and consistency on reaction time tests. Neuropsychology. 1994;8:316324. doi:10.1037/0894-4105.8.3.316. Google ScholarCrossref
6. West, R, Murphy, KJ, Armilio, ML, Craik, FIM, Stuss, DT. Lapses of intention and performance variability reveal age-related increases in fluctuations of executive control. Brain Cogn. 2002;49:402419. doi:10.1006/brcg.2001.1507. Google ScholarCrossrefMedlineISI
7. Segalowitz, SJ, Dywan, J, Unsal, A. Attentional factors in response time variability after traumatic brain injury: an ERP study. J Int Neuropsychol Soc. 1997;3:95107Google ScholarMedline
8. Sinclair, KL, Ponsford, JL, Rajaratnam, SMW, Anderson, C. Sustained attention following traumatic brain injury: use of the Psychomotor Vigilance Task. J Clin Exp Neuropsychol. 2013;35:210224. doi:10.1080/13803395.2012.762340. Google ScholarCrossrefMedline
9. Slovarp, L, Azuma, T, Lapointe, L. The effect of traumatic brain injury on sustained attention and working memory. Brain Inj. 2012;26:4857. doi:10.3109/02699052.2011.635355. Google ScholarCrossrefMedline
10. Stuss, DT, Stethem, LL, Hugenholtz, H, Picton, T, Pivik, J, Richard, MT. Reaction time after head injury: fatigue, divided and focused attention, and consistency of performance. J Neurol Neurosurg Psychiatry. 1989;52:742748Google ScholarCrossrefMedline
11. Whyte, J, Polansky, M, Fleming, M, Coslett, HB, Cavallucci, C. Sustained arousal and attention after traumatic brain injury. Neuropsychologia. 1995;33:797813Google ScholarCrossrefMedlineISI
12. Collins, LF, Long, CJ. Visual reaction time and its relationship to neuropsychological test performance. Arch Clin Neuropsychol. 1996;11:613623Google ScholarCrossrefMedline
13. Vasquez, BP, Binns, MA, Anderson, ND. Staying on task: age-related changes in the relationship between executive functioning and response time consistency. J Gerontol B Psychol Sci Soc Sci. 2016;71:189200. doi:10.1093/geronb/gbu140. Google ScholarCrossrefMedline
14. Lacouture, Y, Cousineau, D. How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times. Tutorials Quant Methods Psychol. 2008;4:3545. doi:10.20982/tqmp.04.1.p035. Google ScholarCrossref
15. Cicerone, KD, Maestas, KL. Rehabilitation of attention and executive function impairments. In: Sherer, M, Sanders, AM, eds. Handbook on the Neuropsychology of Traumatic Brain Injury. New York, NYSpringer2014:191211. doi:10.1007/978-1-4939-0784-7_10. Google ScholarCrossref
16. Christensen, BK, Colella, B, Inness, E. Recovery of cognitive function after traumatic brain injury: a multilevel modeling analysis of Canadian outcomes. Arch Phys Med Rehabil. 2008;89(12 suppl):S3S15. doi:10.1016/j.apmr.2008.10.002. Google ScholarCrossrefMedline
17. Masel, BE, DeWitt, DS. Traumatic brain injury: a disease process, not an event. J Neurotrauma. 2010;27:15291540. doi:10.1089/neu.2010.1358. Google ScholarCrossrefMedlineISI
18. Till, C, Colella, B, Verwegen, J, Green, RE. Postrecovery cognitive decline in adults with traumatic brain injury. Arch Phys Med Rehabil. 2008;89(12 suppl):S25S34. doi:10.1016/j.apmr.2008.07.004. Google ScholarCrossrefMedline
19. Millis, SR, Rosenthal, M, Novack, TA. Long-term neuropsychological outcome after traumatic brain injury. J Head Trauma Rehabil. 2001;16:343355Google ScholarCrossrefMedlineISI
20. Ruff, RM, Young, D, Gautille, T. Verbal learning deficits following severe head injury: heterogeneity in recovery over 1 year. J Neurosurg. 1991;75(1s):S50S58Google Scholar
21. Himanen, L, Portin, R, Isoniemi, H, Helenius, H, Kurki, T, Tenovuo, O. Longitudinal cognitive changes in traumatic brain injury: a 30-year follow-up study. Neurology. 2006;66:187192. doi:10.1212/01.wnl.0000194264.60150.d3. Google ScholarCrossrefMedline
22. Hetherington, CR, Stuss, DT, Finlayson, MA. Reaction time and variability 5 and 10 years after traumatic brain injury. Brain Inj. 1996;10:473486Google ScholarCrossrefMedlineISI
23. MacDonald, SWS, Hultsch, DF, Dixon, RA. Performance variability is related to change in cognition: evidence from the Victoria Longitudinal Study. Psychol Aging. 2003;18:510523. doi:10.1037/0882-7974.18.3.510. Google ScholarCrossrefMedlineISI
24. Bielak, AM, Cherbuin, N, Bunce, D, Anstey, KJ. Intraindividual variability is a fundamental phenomenon of aging: evidence from an 8-year longitudinal study across young, middle, and older adulthood. Dev Psychol. 2014;50:143151. doi:10.1037/a0032650. Google ScholarCrossrefMedline
25. Levin, HS, O’Donnell, VM, Grossman, RG. The Galveston orientation and amnesia test. A practical scale to assess cognition after head injury. J Nerv Ment Dis. 1979;167:675684Google ScholarCrossrefMedlineISI
26. Green REA. Editorial: brain injury as a neurodegenerative disorder. Front Hum Neurosci. 2016;9:615. doi:10.3389/fnhum.2015.00615. Google ScholarCrossref
27. Robertson, IH, Manly, T, Andrade, J, Baddeley, BT, Yiend, J. “Oops!”: performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia. 1997;35:747758Google ScholarCrossrefMedlineISI
28. Hultsch, DF, Strauss, E, Hunter, MA, MacDonald, SWS. Intraindividual variability, cognition, and aging. In: Craik, FIM, Salthouse, TA, eds. The Handbook of Aging and Cognition. 3rd ed. New York, NYPsychology Press2008:491556Google Scholar
29. Dixon, RA, Garrett, DD, Lentz, TL, MacDonald, SWS, Strauss, E, Hultsch, DF. Neurocognitive markers of cognitive impairment: exploring the roles of speed and inconsistency. Neuropsychology. 2007;21:381399. doi:10.1037/0894-4105.21.3.381. Google ScholarCrossrefMedlineISI
30. MacDonald, SWS, Hultsch, DF, Bunce, D. Intraindividual variability in vigilance performance : does degrading visual stimuli mimic age-related “neural noise?“ J Clin Exp Neuropsychol. 2006;28:655675. doi:10.1080/13803390590954245. Google ScholarCrossrefMedline
31. Garrett, DD, MacDonald, SWS, Craik, FIM. Intraindividual reaction time variability is malleable: feedback- and education-related reductions in variability with age. Front Hum Neurosci. 2012;6:101. doi:10.3389/fnhum.2012.00101. Google ScholarCrossrefMedline
32. Beharelle, AR, Kovačević, N, McIntosh, AR, Levine, B. Brain signal variability relates to stability of behavior after recovery from diffuse brain injury. Neuroimage. 2012;60:15281537. doi:10.1016/j.neuroimage.2012.01.037. Google ScholarCrossrefMedline
33. Gmehlin, D, Fuermaier, ABM, Walther, S. Intraindividual variability in inhibitory function in adults with ADHD—an ex-Gaussian approach. PLoS One. 2014;9:e112298. doi:10.1371/journal.pone.0112298.Google ScholarCrossrefMedline
34. MacFlynn, G, Montgomery, EA, Fenton, GW, Rutherford, W. Measurement of reaction time following minor head injury. J Neurol Neurosurg Psychiatry. 1984;47:13261331Google ScholarCrossrefMedline
35. Dykiert, D, Der, G, Starr, JM, Deary, IJ. Sex differences in reaction time mean and intraindividual variability across the life span. Dev Psychol. 2012;48:12621276. doi:10.1037/a0027550. Google ScholarCrossrefMedline
36. Williams, BR, Hultsch, DF, Strauss, EH, Hunter, MA, Tannock, R. Inconsistency in reaction time across the life span. Neuropsychology. 2005;19:8896. doi:10.1037/0894-4105.19.1.88. Google ScholarCrossrefMedline
37. Farbota, KDM, Sodhi, A, Bendlin, BB. Longitudinal volumetric changes following traumatic brain injury: a tensor-based morphometry study. J Int Neuropsychol Soc. 2012;18:10061018. doi:10.1017/S1355617712000835. Google ScholarCrossrefMedline
38. Green, RE, Colella, B, Maller, JJ, Bayley, M, Glazer, J, Mikulis, DJ. Scale and pattern of atrophy in the chronic stages of moderate-severe TBI. Front Hum Neurosci. 2014;8:67. doi:10.3389/fnhum.2014.00067.Google ScholarCrossrefMedline

via Longitudinal Recovery of Executive Control Functions After Moderate-Severe Traumatic Brain Injury: Examining Trajectories of Variability and Ex-Gaussian Parameters – Brandon P. Vasquez, Jennifer C. Tomaszczyk, Bhanu Sharma, Brenda Colella, Robin E. A. Green, 2018

, , , , , , , , , , , ,

Leave a comment

[Poster] Randomized Trial on the Effects of Attentional Focus on Motor Training of the Upper Extremity Using Robotics With Individuals After Chronic Stroke

Highlights

  • Participants improved on motor outcomes after engaging in high-repetition robotics arm training.
  • There were no differences between external focus or internal focus of attention on retention of motor skills after 4 weeks of arm training.
  • Individuals with moderate-to-severe arm impairment may not experience the advantages of an external focus during motor training found in healthy individuals.
  • Attentional focus is most likely not an active ingredient for retention of trained motor skills for individuals with moderate-to-severe arm impairment.

Abstract

Objective

To compare the long-term effects of external focus (EF) and internal focus (IF) of attention after 4 weeks of arm training.

Design

Randomized, repeated-measures, mixed analysis of variance.

Setting

Outpatient clinic.

Participants

Individuals with stroke and moderate-to-severe arm impairment living in the community (N=33; withdrawals: n=3).

Interventions

Four-week arm training protocol on a robotic device (12 sessions).

Main Outcome Measures

Joint independence, Fugl-Meyer Assessment, and Wolf Motor Function Test measured at baseline, discharge, and 4-week follow-up.

Results

There were no between-group effects for attentional focus. Participants in both groups improved significantly on all outcome measures from baseline to discharge and maintained those changes at 4-week follow-up regardless of group assignment (joint independence EF condition: F1.6,45.4=17.74; P<.0005; partial η2=.39; joint independence IF condition: F2,56=18.66; P<.0005; partial η2=.40; Fugl-Meyer Assessment: F2,56=27.83; P<.0005; partial η2=.50; Wolf Motor Function Test: F2,56=14.05; P<.0005; partial η2=.35).

Conclusions

There were no differences in retention of motor skills between EF and IF participants 4 weeks after arm training, suggesting that individuals with moderate-to-severe arm impairment may not experience the advantages of an EF found in healthy individuals. Attentional focus is most likely not an active ingredient for retention of trained motor skills for individuals with moderate-to-severe arm impairment, whereas dosage and intensity of practice appear to be pivotal. Future studies should investigate the long-term effects of attentional focus for individuals with mild arm impairment.

 

via Randomized Trial on the Effects of Attentional Focus on Motor Training of the Upper Extremity Using Robotics With Individuals After Chronic Stroke – ScienceDirect

, , , , , , , , ,

Leave a comment

[Abstract] From cortical blindness to conscious visual perception: Theories on neuronal networks and visual training strategies

Homonymous hemianopia (HH) is the most common cortical visual impairment leading to blindness in the contralateral hemifield. It is associated with many inconveniences and daily restrictions such as exploration and visual orientation difficulties. However, patients with HH can preserve the remarkable ability to unconsciously perceive visual stimuli presented in their blindfield, a phenomenon known as blindsight. Unfortunately, the nature of this captivating residual ability is still misunderstood and the rehabilitation strategies have been insufficiently exploited. This paper discusses type I and type II blindsight in a neuronal framework of altered global workspace, resulting from inefficient perception, attention and conscious networks. To enhance synchronisation and create global availability for residual abilities to reach visual consciousness, rehabilitation tools need to stimulate subcortical extrastriate pathways through V5/MT. Multisensory bottom-up compensation combined with top-down restitution training could target pre-existing and new neuronal mechanisms to recreate a framework for potential functionality.

Source: Frontiers | From cortical blindness to conscious visual perception: Theories on neuronal networks and visual training strategies | Frontiers in Systems Neuroscience

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Effects of neurofeedback on the short-term memory and continuous attention of patients with moderate traumatic brain injury: A preliminary randomized controlled clinical trial – Full Text

Abstract

Purpose

There are some studies which showed neurofeedback therapy (NFT) can be effective in clients with traumatic brain injury (TBI) history. However, randomized controlled clinical trials are still needed for evaluation of this treatment as a standard option. This preliminary study was aimed to evaluate the effect of NFT on continuous attention (CA) and short-term memory (STM) of clients with moderate TBI using a randomized controlled clinical trial (RCT).

Methods

In this preliminary RCT, seventeen eligible patients with moderate TBI were randomly allocated in two intervention and control groups. All the patients were evaluated for CA and STM using the visual continuous attention test and Wechsler memory scale-4th edition (WMS-IV) test, respectively, both at the time of inclusion to the project and four weeks later. The intervention group participated in 20 sessions of NFT through the first four weeks. Conversely, the control group participated in the same NF sessions from the fifth week to eighth week of the project.

Results

Eight subjects in the intervention group and five subjects in the control group completed the study. The mean and standard deviation of participants’ age were (26.75±15.16) years and (27.60±8.17) years in experiment and control groups, respectively. All of the subjects were male. No significant improvement was observed in any variables of the visual continuous attention test and WMS-IV test between two groups (p≥0.05).

Conclusion

Based on our literature review, it seems that our study is the only study performed on the effect of NFT on TBI patients with control group. NFT has no effect on CA and STM in patients with moderate TBI. More RCTs with large sample sizes, more sessions of treatment, longer time of follow-up and different protocols are recommended.


Introduction

Traumatic brain injury (TBI) means an injury to the brain that is caused by an external physical force. It is well known that TBI is an important cause of mortality and morbidity and it is reported that each year about 1.7 million people sustain a TBI in USA. Some of them die (about 50,000) and some other experience long-term disability (80,000 to 90,000).12 ;  3 The severity of TBI can be categorized based on the Glasgow comma scale (GCS) at the time of injury as follows: mild (13-15), moderate (9-12) and severe (<9).4 TBI usually affect the brain function such as cognitive status, executive function, memory, data processing, language skills and attention.5 It has heterogeneous aspects and based on the injury location and type. It can have different presentations. Hence it is considered as a difficult one to treat.6

The brain plasticity could help it in rehabilitation phase to restore its normal function after any trauma or disease. But the amount of this ability is poorly understood. Some studies approved that neurofeedback therapy (NFT) can promote neuroplasticity.7 In the method of neurofeedback (NF), as a non-pharmacological intervention, the feedback to brain waves which are representative of subconscious neural activity can be observed by the client and then he/she will be able to control and change them.8 ;  9 There are some evidences that show NFT can be useful in some other diseases like Obsessive-compulsive disorder,10 attention-deficit/hyperactivity disorder11 and also refractory epilepsy.12 There are also some published studies about the effect of NFT on patients with TBI. Surmeli in 2007 investigated the effect of NFT on 24 patients with mild TBI and reported that NFT can result in significant improvement in test of variables of attention, beck depression inventory and minnesota multiphasic personality inventory.13 In a study in 2014, with evaluation of two patients with moderate head injury and without control group, it is reported that electroencephalogram biofeedback can lead to increase the cognitive scores and improve the concussion symptoms and finally concluded that NFT can be effective on the changes in the structural and functional connectivity among patients with moderate TBI.14

Although these published papers reported a positive effect of NFT on the TBI patients, we have not enough data about the standard treatment protocol with NF, and literature still needs more original studies like randomized controlled clinical trial to suggest NF as a treatment option among patients with TBI regarding the two following functions of cognitive status: short-term memory (STM) and continuous attention (CA).6

In this preliminary study, we tried to evaluate the effect of NFT on CA and STM of patients with moderate TBI using a randomized controlled clinical trial. […]

Continue —> Effects of neurofeedback on the short-term memory and continuous attention of patients with moderate traumatic brain injury: A preliminary randomized controlled clinical trial

, , , , , , ,

Leave a comment

[ARTICLE] Efficacy of home-based visuomotor feedback training in stroke patients with chronic hemispatial neglect – Full Text

Hemispatial neglect is a severe cognitive condition frequently observed after a stroke, associated with unawareness of one side of space, disability and poor long-term outcome. Visuomotor feedback training (VFT) is a neglect rehabilitation technique that involves a simple, inexpensive and feasible training of grasping-to-lift rods at the centre. We compared the immediate and long-term effects of VFT vs. a control training when delivered in a home-based setting. Twenty participants were randomly allocated to an intervention (who received VFT) or a control group (n = 10 each). Training was delivered for two sessions by an experimenter and then patients self-administered it for 10 sessions over two weeks. Outcome measures included the Behavioural Inattention Test (BIT), line bisection, Balloons Test, Landmark task, room description task, subjective straight-ahead pointing task and the Stroke Impact Scale. The measures were obtained before, immediately after the training sessions and after four-months post-training. Significantly greater short and long-term improvements were obtained after VFT when compared to control training in line bisection, BIT and spatial bias in cancellation. VFT also produced improvements on activities of daily living. We conclude that VFT is a feasible, effective, home-based rehabilitation method for neglect patients that warrants further investigation with well-designed randomised controlled trials on a large sample of patients.

Continue —> Efficacy of home-based visuomotor feedback training in stroke patients with chronic hemispatial neglect: Neuropsychological Rehabilitation: Vol 0, No 0

Figure

Figure 3 of 5 Figure 3. (A) Lesion map for individual patients. B-C) Lesion overlap map summarising the degree of involvement for each voxel in the intervention (B; N = 8) and control (C; N = 5) groups. Lesions were identified by a clinical neurologist (K.M.), who was blind to the design, group assignment and purpose of the study. Lesions were mapped onto 11 axial slices of a T1-weighted template, corresponding to the MNI z coordinates of −24, −16, −8, 0, 8, 16, 24, 32, 40, 50, 60 mm using identical or closest matching transverse slices for each patient using MRIcro software package (Rorden & Brett, 2000 Rorden, C., & Brett, M. (2000). Stereotaxic display of brain lesions. Behavioural Neurology, 12, 191–200. doi: 10.1155/2000/421719 [CrossRef], [PubMed], [Web of Science ®] ). Due to technical difficulties at the clinical facility, we were able to obtain and map digital brain scans for 13 patients only (6 MRIs and 7 CTs) as the remaining digital brain scans were either lost or corrupted. Please note however, that all brain scan reports were available and confirmed the presence of a stroke and its location for all our patients. The range of colour scale derives from the absolute number of patient lesions involved in each voxel.

, , , , , , , ,

Leave a comment

[WEB SITE] New combinatination therapy shows promise in treating patients with traumatic brain injury

A combination of the stimulant drug methylphenidate with a process known as cognitive-behavioral rehabilitation is a promising option to help people who suffer from persistent cognitive problems following traumatic brain injury, researchers at Indiana University School of Medicine have reported.

The study, believed to be the first to systematically compare the combination therapy to alternative treatments, was published online in the journal Neuropsychopharmacology, a Nature publication.

The researchers, led by Brenna McDonald, PsyD, associate professor of radiology and imaging sciences, and Thomas McAllister, MD, chairman of the Department of Psychiatry, compared the effectiveness of two forms of cognitive therapy with and without the use of methylphenidate, a drug used to treat attention-deficit/hyperactivity disorder and better known by its trade name, Ritalin.

“We found that the combination of methylphenidate and Memory and Attention Adaptation Training resulted in significantly better results in attention, episodic and working memory, and executive functioning after traumatic brain injury,” said Dr. McDonald.

In the Memory and Attention Adaptation Training intervention – also used to assist patients with cognitive issues following breast cancer chemotherapy – therapists work with patients to help them develop behaviors and strategies to improve performance in memory and other cognitive tasks. In this study, this “metacognitive” approach was compared with Attention Builders Training, which Dr. McDonald likened to more of a “drill and practice” approach.

The 71 participants who completed the six-week trial were adults who had experienced a traumatic brain injury of at least mild severity – a blow to the head with some alteration of consciousness – at least four months previously, and who either complained of having cognitive problems, or who had been identified with cognitive problems in testing.

The participants were divided into four groups: the two cognitive therapy approaches with the drug therapy, and the two approaches with placebo. After six weeks, the researchers found that participants in the combination metacognitive-Ritalin group improved significantly better in word list learning, nonverbal learning and measures of attention-related and executive function.

However, Dr. McDonald cautioned that due to the relatively small number of participants in the each of the four arms of the trial – 17 to 19 people each – the results of the trial should be considered preliminary.

Nonetheless, she said, the work breaks new ground in providing evidence for the combination therapy.

“There have been a few small studies suggesting methylphenidate could help with attention and executive function after traumatic brain injury, which makes senses because it’s used to improve attention and focus. But this is the first to test it in combination with cognitive-behavioral therapy for treatment in traumatic brain injury,” said Dr. McDonald.

Source: Indiana University

Source: New combinatination therapy shows promise in treating patients with traumatic brain injury

, , , , ,

Leave a comment

[WEB SITE] Computerized cognitive rehabilitation of attention and executive function in acquired brain injury – Systematic review – CNS

OBJECTIVE: Comprehensive review of the use of computerized treatment as a rehabilitation tool for attention and executive function in adults (aged 18 years or older) who suffered an acquired brain injury.

DESIGN: Systematic review of empirical research.

MAIN MEASURES: Two reviewers independently assessed articles using the methodological quality criteria of Cicerone et al. Data extracted included sample size, diagnosis, intervention information, treatment schedule, assessment methods, and outcome measures.

RESULTS: A literature review (PubMed, EMBASE, Ovid, Cochrane, PsychINFO, CINAHL) generated a total of 4931 publications. Twenty-eight studies using computerized cognitive interventions targeting attention and executive functions were included in this review. In 23 studies, significant improvements in attention and executive function subsequent to training were reported; in the remaining 5, promising trends were observed.

CONCLUSIONS: Preliminary evidence suggests improvements in cognitive function following computerized rehabilitation for acquired brain injury populations including traumatic brain injury and stroke. Further studies are needed to address methodological issues (eg, small sample size, inadequate control groups) and to inform development of guidelines and standardized protocols.

Source: Traumatic Brain Injury Resource Guide – Research Reports – Computerized cognitive rehabilitation of attention and executive function in acquired brain injury

, , ,

Leave a comment

[WEB SITE] Computerized rehab aids those suffering from brain injuries | EurekAlert! Science News

(Boston) — For the first time, researchers have shown that computerized cognitive rehabilitation (a program to help brain-injured or otherwise cognitively impaired individuals to restore normal functioning) can improve attention and executive functioning in brain injury survivors including traumatic brain injury (TBI) and stroke.

The findings, which appear online in the Journal of Head Trauma Rehabilitation, may lead to improved treatment outcomes in patients with brain injury, especially for patients with limited mobility and means and those residing in rural areas.

Persistent cognitive problems are very common following brain injury, especially in executive functioning, attention and learning.

The research team conducted a systematic literature review of computerized treatment for attention and executive function in adults who suffered a brain injury. Studies published before or during April 2015 were evaluated for quality and methodology as no previous reviews had been completed. They found eight of 11 studies reported significant gains in cognitive function following treatment in TBI patients, with the three remaining studies reporting trends toward significance. Similarly, 10 of 12 mixed population studies observed significant improvements on measures of attention and executive function, with the remaining two studies reporting positive trends. Five studies reported significant improvements subsequent to treatment for stroke patients.

“The results of this systematic review provide encouraging evidence that computerized cognitive rehabilitation can improve attention and executive functioning in brain injury survivors,” explained corresponding author Yelena Bogdanova, PhD, assistant professor of psychiatry at Boston University School of Medicine and principal investigator at the VA Boston Healthcare System.

According to the researchers computerized treatment delivery can significantly reduce the wait time and cost of treatment, provide immediate access to treatment in any location, improve the quality of life of patients and reduce the burden of caregivers.

Bogdanova believes further studies are needed. “It is important to evaluate the efficacy of computerized cognitive training programs and to provide specific guidelines for computerized methods of rehabilitation in patients with brain injury, as it can reduce cost and increase accessibility of treatment to traditionally underserved populations,” she added.

###

Funding for this study was provided by the Rehabilitation Research & Development Service of the Department of Veterans Affairs (VA) grants D6996W and I21RX001773-01 to YB, the National Institutes of Health and Boston University Clinical & Translational Science Institute grant UL1-RR025771 to YB, the VA Translation Research Center for TBI & Stress Disorders [YB], and the VA BHS Psychology Research Service [YB].

Contact:

Gina DiGravio,
617-638-8480
ginad@bu.edu

Source: Computerized rehab aids those suffering from brain injuries | EurekAlert! Science News

, , , ,

Leave a comment

[BROSHURE] Traumatic Brain Injury—What College Disability Specialists and Educators Should Know about Executive Functions

The four-page guide defines executive functions and how they are affected by traumatic brain injury (TBI), and describes the unique challenges that students with TBI face in the college environment. The guide also offers specific academic strategies that may be helpful for deficits in executive function. The guide was developed in collaboration with Chapman University.

Get the PDF Guide

, , , , ,

Leave a comment

%d bloggers like this: