Posts Tagged botulinum toxin

[ARTICLE] Effectiveness of Robot-Assisted Upper Limb Training on Spasticity, Function and Muscle Activity in Chronic Stroke Patients Treated With Botulinum Toxin: A Randomized Single-Blinded Controlled Trial – Full Text

Background: The combined use of Robot-assisted UL training and Botulinum toxin (BoNT) appear to be a promising therapeutic synergism to improve UL function in chronic stroke patients.

Objective: To evaluate the effects of Robot-assisted UL training on UL spasticity, function, muscle strength and the electromyographic UL muscles activity in chronic stroke patients treated with Botulinum toxin.

Methods: This single-blind, randomized, controlled trial involved 32 chronic stroke outpatients with UL spastic hemiparesis. The experimental group (n = 16) received robot-assisted UL training and BoNT treatment. The control group (n = 16) received conventional treatment combined with BoNT treatment. Training protocols lasted for 5 weeks (45 min/session, two sessions/week). Before and after rehabilitation, a blinded rater evaluated patients. The primary outcome was the Modified Ashworth Scale (MAS). Secondary outcomes were the Fugl-Meyer Assessment Scale (FMA) and the Medical Research Council Scale (MRC). The electromyographic activity of 5 UL muscles during the “hand-to-mouth” task was explored only in the experimental group and 14 healthy age-matched controls using a surface Electromyography (EMGs).

Results: No significant between-group differences on the MAS and FMA were measured. The experimental group reported significantly greater improvements on UL muscle strength (p = 0.004; Cohen’s d = 0.49), shoulder abduction (p = 0.039; Cohen’s d = 0.42), external rotation (p = 0.019; Cohen’s d = 0.72), and elbow flexion (p = 0.043; Cohen’s d = 1.15) than the control group. Preliminary observation of muscular activity showed a different enhancement of the biceps brachii activation after the robot-assisted training.

Conclusions: Robot-assisted training is as effective as conventional training on muscle tone reduction when combined with Botulinum toxin in chronic stroke patients with UL spasticity. However, only the robot-assisted UL training contributed to improving muscle strength. The single-group analysis and the qualitative inspection of sEMG data performed in the experimental group showed improvement in the agonist muscles activity during the hand-to-mouth task.

Introduction

Upper limb (UL) sensorimotor impairments are one of the major determinants of long-term disability in stroke survivors (1). Several disturbances are the manifestation of UL impairments after stroke (i.e., muscle weakness, changes in muscle tone, joint disturbances, impaired motor control). However, spasticity and weakness are the primary reason for rehabilitative intervention in the chronic stages (13). Historically, spasticity refers to a velocity-dependent increase in tonic stretch reflexes with exaggerated tendon jerks resulting from hyperexcitability of the stretch reflex (4) while weakness is the loss of the ability to generate the normal amount of force.

From 7 to 38% of post-stroke patients complain of UL spasticity in the first year (5). The pathophysiology of spasticity is complicated, and new knowledge has progressively challenged this definition. Processes involving central and peripheral mechanisms contribute to the spastic movement disorder resulting in abnormal regulation of tonic stretch reflex and increased muscle resistance of the passively stretched muscle and deficits in agonist and antagonist coactivation (67). The resulting immobilization of the muscle at a fixed length for a prolonged time induces secondary biomechanical and viscoelastic properties changes in muscles and soft tissues, and pain (811). These peripheral mechanisms, in turn, leads to further stiffness, and viscoelastic muscle changes (28). Whether the muscular properties changes may be adaptive and secondary to paresis are uncertain. However, the management of UL spasticity should combine treatment of both the neurogenic and peripheral components of spasticity (910).

UL weakness after stroke is prevalent in both acute and chronic phases of recovery (3). It is a determinant of UL function in ADLs and other negative consequences such as bone mineral content (3), atrophy and altered muscle pattern of activation. Literature supports UL strengthening training effectiveness for all levels of impairment and in all stages of recovery (3). However, a small number of trials have been performed in chronic subgroup patients, and there is still controversy in including this procedure in UL rehabilitation (3).

Botulinum toxin (BoNT) injection in carefully selected muscles is a valuable treatment for spastic muscles in stroke patients improving deficits in agonist and antagonist coactivation, facilitating agonist recruitment and increasing active range of motion (681214). However, improvements in UL activity or performance is modest (13). With a view of improving UL function after stroke, moderate to high-quality evidence support combining BoNT treatment with other rehabilitation procedures (1915). Specifically, the integration of robotics in the UL rehabilitation holds promise for developing high-intensity, repetitive, task-specific, interactive treatment of upper limb (15). The combined use of these procedures to compensate for their limitations has been studied in only one pilot RCT reporting positive results in UL function (Fugl-Meyer UL Assessment scale) and muscular activation pattern (16). With the limits of the small sample, the results support the value of combining high-intensity UL training by robotics and BoNT treatment in patients with UL spastic paresis.

Clinical scales are currently used to assess the rehabilitation treatment effects, but these outcome measures may suffer from some drawbacks that can be overcome by instrumental assessment as subjectivity, limited sensitivity, and the lack of information on the underlying training effects on motor control (17). Instrumental assessment, such as surface electromyography (sEMG) during a functional task execution allows assessing abnormal activation of spastic muscles and deficits of voluntary movements in patients with stroke.

Moreover, the hand-to-mouth task is representative of Activities of Daily Life (ADL) such as eating and drinking. Kinematic analysis of the hand-to-mouth task has been widely used to assess UL functions in individuals affected by neurological diseases showing adequate to more than adequate test-retest reliability in healthy subjects (1819). The task involves flexing the elbow a slightly flexing the shoulder against gravity, and it is considered to be a paradigmatic functional task for the assessment of spasticity and strength deficits on the elbow muscles (1720). Although sEMG has been reported to be a useful assessment procedure to detect muscle activity improvement after rehabilitation, limited results have been reported (1621).

The primary aim of this study was to explore the therapeutic synergisms of combined robot-assisted upper limb training and BoNT treatment on upper limb spasticity. The secondary aim was to evaluate the treatment effects on UL function, muscle strength, and the electromyographic activity of UL muscles during a functional task.

The combined treatment would contribute to decrease UL spasticity and improve function through a combination of training effects between BoNT neurolysis and the robotic treatment. A reduction of muscle tone would parallel improvement in muscle strength ought to the high-intensity, repetitive and task-specific robotic training. Since spasticity is associated with abnormal activation of shortening muscles and deficits in voluntary movement of the UL, the sEMG assessment would target these impairments (281115).

Materials and Methods

Trial Design

A single-blind RCT with two parallel group is reported. The primary endpoint was the changes in UL spasticity while the secondary endpoints were changes in UL function, muscle strength and the electromyographic activity of UL muscles during a functional task. The study was conducted according to the tenets of the Declaration of Helsinki, the guidelines for Good Clinical Practice, and the Consolidated Standards of Reporting Trials (CONSORT), approved by the local Ethics Committee “Nucleo ricerca clinica–Research and Biostatistic Support Unit” (prog n.2366), and registered at clinical trial (NCT03590314).

Patients

Chronic post-stroke patients with upper-limb spasticity referred to the Neurorehabilitation Unit (AOUI Verona) and the Physical Medicine and Rehabilitation Section, “OORR” Hospital (University of Foggia) were assessed for eligibility.

Inclusion criteria were: age > 18 years, diagnosis of ischemic or hemorrhagic first-ever stroke as documented by a computerized tomography scan or magnetic resonance imaging, at least 6 months since stroke, Modified Ashworth Scale (MAS) score (shoulder and elbow) ≤ 3 and ≥1+ (22), BoNT injection within the previous 12 weeks of at least one of muscles of the affected upper limb, Mini-Mental State Examination (MMSE) score ≥24 (23) and Trunk Control Test score = 100/100 (24).

Exclusion criteria were: any rehabilitation intervention in the 3 months before recruitment, bilateral cerebrovascular lesion, severe neuropsychologic impairment (global aphasia, severe attention deficit or neglect), joint orthopedic disorders.

All participants were informed regarding the experimental nature of the study. Informed consent was obtained from all subjects. The local ethics committee approved the study.

Interventions

Each patient underwent a BoNT injection in the paretic limb. The dose of BoNT injected into the target muscle was based on the severity of spasticity in each case. Different commercial formulations of BoNT were used according to the pharmaceutical portfolio contracts of our Hospitals (Onabotulinumtoxin A, Abobotulinumtoxin A, and Incobotulinumtoxin A). The dose, volume and number of injection sites were set accordingly. A Logiq ® Book XP portable ultrasound system (GE Healthcare; Chalfont St. Giles, UK) was used to inject BoNT into the target muscle.

Before the start of the study authors designed the experimental (EG) and the control group (CG) protocols. Two physiotherapists, one for each group, carried out the rehabilitation procedures. Patients of both groups received ten individual sessions (45 min/session, two sessions/week, five consecutive weeks). Treatments were performed in the rehabilitative gym of the G. B. Rossi University Hospital Neurological Rehabilitation Unit, or “OORR” Hospital.

Robot-Assisted UL Training

The Robot-assisted UL Training group was treated using the electromechanical device Armotion (Reha Technology, Olten, Switzerland). It is an end-effector device that allows goal-directed arm movements in a bi-dimensional space with visual feedback. It offers different training modalities such as passive, active, passive-active, perturbative, and assistive modes. The robot can move, drive or oppose the patient’s movement and allows creating a personalized treatment, varying parameters such as some repetitions, execution speed, resistance degree of motion. The exercises available from the software are supported by games that facilitate the functional use of the paretic arm (25). The robot is equipped with a control system called “impedance control” that modulates the robot movements for adapting to the motor behavior of the patient’s upper limb. The joints involved in the exercises were the shoulder and the elbow, is the wrist fixed to the device.

The Robot-assisted UL Training consisted of passive mobilization and stretching exercises for affected UL (10 min) followed by robot-assisted exercises (35 min). Four types of exercises contained within the Armotion software and amount of repetitions were selected as follows: (i) “Collect the coins” (45–75 coins/10 min), (ii) “Drive the car” (15–25 laps/10 min), (iii) “Wash the dishes” (40–60 repetitions/10 min), and (iv) “Burst the balloons” (100–150 balloons/5 min) (Figure 1). All exercises were oriented to achieving several goals in various directions, emphasizing the elbow flexion-extension and reaching movement. The robot allows participants to execute the exercises through an “assisted as needed” control strategy. For increment the difficulty, we have varied the assisted and non-assisted modality, increasing the number of repetitions over the study period.[…]

 

Figure 1. The upper limb robot-assisted training setting.

Continue —> Frontiers | Effectiveness of Robot-Assisted Upper Limb Training on Spasticity, Function and Muscle Activity in Chronic Stroke Patients Treated With Botulinum Toxin: A Randomized Single-Blinded Controlled Trial | Neurology

, , , , , , , , , ,

Leave a comment

[ARTICLE] Effects of a 6-month self-rehabilitation programme in addition to botulinum toxin injections and conventional physiotherapy on limitations of patients with spastic hemiparesis following stroke (ADJU-TOX): protocol study for a randomised controlled, investigator blinded study -Full Text

Abstract

Introduction Home-based self-rehabilitation programmes combined with botulinum toxin injections (BTIs) appear to be a relevant approach to increase the recommended intensive rehabilitation of patients with spasticity following a stroke. The literature highlights a lack of evidence of beneficial effects of this adjuvant therapy to reduce limitations of patients with stroke. The aim of this study is to assess the effects of a 6-month self-rehabilitation programme in adjunction to BTI, in comparison with BTI alone, to reduce limitations of patients with spasticity following a stroke.

 

Methods and analysis 220 chronic patients will participate to this multicentre, prospective, randomised, controlled, assessor blinded study. All patients will benefit from two successive BTI (3 months apart), and patients randomised in the self-rehabilitation group will perform in adjunction 6 months of self-rehabilitation at home. All patients continue their conventional physiotherapy. The main outcome is the primary treatment goal (PTG), which will be determined jointly by the patient and the medical doctor using Goal Attainment Scaling. Impairments and functions, quality of life, mood and fatigue will be assessed. Botulinum toxin will be injected into the relevant muscles according to the PTG. Patients in the self-rehab group will be taught the self-rehabilitation programme involving respectively 10 min of stretching, 10 min of strengthening and 10 min of task-oriented exercises, corresponding to their PTG. Compliance to the self-rehabilitation programme will be monitored.

Strengths and limitations of this study

  • This study is the first to assess the effects of a self-rehabilitation in addition of usual treatments over a long period (6 months).

  • This study will include a large sample with patients from 16 hospitals across all the country.

  • The design of this study (randomised, controlled, assessor blinded study) tends to meet the highest level of evidence.

  • This study would permit to apply recommendations to improve patients limitations with little additional cost to the already limited health system budget.

Background

Stroke is the second highest cause of death worldwide and the fourth leading cause of lost productivity (disability-adjusted life years) according to WHO. The annual incidence is around 130 000 new cases each year in France.1 Around half of survivors are left with some functional limitations as a result of multiple impairments including motor impairments with a loss of strength, stereotyped movements and changes in muscle tone.2 3 Following stroke, about one-third of people with motor deficits have complete upper limb recovery, one-third have a partial recovery, with capacity to carry a bag or to point to an object and, one-third have little to no recovery of function with often dependence for activities of daily living.4 Among impairments, positive signs of the upper motor neuron syndrome (spasticity, cocontraction and dystonia) are associated with active motor dysfunction and disabilities to use arm in daily living activities.5 6 Gait limitations following symptoms of upper motor neuron syndrome reduce also displacements and participation of patients with stroke.7 8 Although 65%–85% of stroke survivors regain the capacity to walk, their gait is slower and their cadence, step length and single support phase of gait cycle are reduced in comparison with healthy subjects.9 These spatio-temporal changes are associated with joint kinematics changes, such as reduced peak hip flexion,10 reduced peak knee flexion during swing (stiff knee gait)10 11 and reduced ankle dorsiflexion (equinus).10 Motor impairments are largely involved in these kinematic abnormalities, particularly spasticity of quadriceps reducing knee flexion in stiff knee gait11 and spasticity of the ankle plantar flexors contributing to the equinus.12

Physiotherapy has been shown to be effective for the treatment of motor impairment and the improvement of function following stroke.13 14 Different techniques have been developed, however, one has not been shown more effective than another.15 16 Nevertheless, it has been demonstrated that the intensity, the frequency and the specificity (to train specifically the task to improve) of physiotherapy is positively correlated with recovery.17–20 To increase the duration and the specificity of physiotherapy lead indeed to greater improvements in impairments and functional limitations. French et al 21 published a systematic review relating positive effects of repetitive functional task practice on upper and lower limb function in 1078 patients with stroke.21 Van de Port et al 22 showed indeed that intensive circuit training organised in specific workstations induced greater locomotor improvements than usual physiotherapy in 250 chronic outpatients with stroke.22 This likely suggests that patients do not attempt their maximal potential of recovery when they benefit of usual care. This means also that an adjuvant care might permit to the patients to reach their maximal capacity and thus reducing the impact of impairments and functional limitations. Moreover, many studies highlighted that improvements continue and are effective in chronic patients with stroke who follow intensive active rehabilitation.13 23 Currently, because of the constraints within the French health system, patients with stroke living at home usually receive only 1.7 sessions of 20–30 min of physiotherapy per week.24 These sessions, which last about 30 min, usually only consist of stretching and strengthening exercises. This contrasts with recommendations of intensive rehabilitation for chronic patients due to functional deteriorations observed when patients decrease or stop their rehabilitation.19 20 25 This suggests the necessity to develop novel approaches which could increase the intensity and specificity of rehabilitation for chronic patients with stroke living at home. A self-rehabilitation (SR) programme appears a relevant approach to increase the intensity of the oriented rehabilitation which is needed and further improve recovery of these patients.

The treatment commonly used to reduce spasticity and increase functions in patients with stroke is botulinum toxin injections (BTIs).12 26–28 In the upper limb, BTI appear associated with a global moderate treatment effect and depends of the parameters studied. A meta-analysis carried out by Foley et al 29 showed a relatively large effect size for the reduction of spasticity and the improvement of passive function and, a small effect size for the improvement of active functions such as prehension.29 This confirms the results of a previous international consensus statement in which authors consider BTI as effective for reduction of pain, deformity and improvement of washing and dressing (class I evidence, recommendation level A), but no clear benefit in active function (class III evidence, recommendations C).30 In the lower limb, several studies have evaluated the effects of BTI in the rectus femoris (RF) and triceps surae muscles in patients with stroke. Studies have shown that BTI in the triceps surae reduced passive resistance to ankle dorsiflexion, pain and the requirement of a gait aid and increased gait speed of patients with hemiparesis.31 32 An open-label study found a significant increase of 8° peak knee flexion during swing following BTI in the RF in patients with hemiparesis with inappropriate RF activity in mid-swing.33 However, there were no significant improvements in functional tests of gait capacity (gait speed, gait distance assessed during the 6 min walking test, stairs). Taken together, the results obtained in the upper and lower limbs after a single BTI session suggest that, although this treatment reduces muscle tone and increases passive function, its impact on active function is low and it does not improve activities of daily living. Some authors state that conventional outcome measures used in these previous studies are not suitable.30 34 35 They suggest using an individually based approach such as the Goal Attainment Scaling (GAS) which showed significant improvements following BTI.34 35 GAS determined the primary treatment goal which is the main treatment objective determined jointly by the patient and the therapist.

Several studies showed moreover that repeated BTI induce better improvements of muscle tone, active movements, functions and quality of life of patients with stroke than single injection.27 36–38

In view of all these studies, it appears essential to develop a combined therapy approach to improve the treatment of spasticity and functional activities in daily life. To increase the intensity of the oriented rehabilitation following BTI would be indeed relevant. Sun et al 39 highlighted greater improvements of spasticity, active function and use of the paretic upper limb of patients with stroke when a constraint-induced therapy is coupled with BTI in comparison with less intensive rehabilitation.39 Similarly, Roche et al showed that a 30 min daily SR programme of 4 weeks coupled with a single session of BTI in the lower limb significantly improved several gait-related activities compared with BTI alone.40 The SR programme was developed to combine safe and feasible exercises combining 10 min of strengthening, 10 min of stretching and 10 min of task-oriented gait-related exercises. Eighty-three per cent of the patients in the SR group carried out 33 min exercises per day more than 5 days per week.40 These results show that combining SR at home with BTI seems effective, well accepted and well tolerated. Results of these pilot studies with restricted sample suggest effectiveness of adding sessions of specific exercises following BTI in patients with stroke, which corresponds to the conclusions of two recent reviews.41 42 These reviews recommend however further study with large sample size, long duration and robust methodology.

The aim of this study is to assess the effects of a 6 months SR programme in adjunction to BTI, in comparison with BTI alone, to reduce limitations of patients with spasticity having a stroke. All previous results lead us to the hypothesis that the addition of a specific 30 min SR programme to repeated BTI and usual physiotherapy should increase the proportion of patients who attain their primary treatment goal (impairments and functions assessed with GAS) more than usual care (involving repeated BTI and conventional physiotherapy), in poststroke outpatients with spasticity. Secondary objectives are to compare the effects of the two therapeutic strategies on impairments and functional status, on quality of life, mood, fatigability and fatigue of patients with stroke and evaluate the time course of the effects. Another aim is to assess compliance with, and tolerability of the SR programme, and to define the characteristics of compliant and non-compliant patients.[…]

Continue —> Effects of a 6-month self-rehabilitation programme in addition to botulinum toxin injections and conventional physiotherapy on limitations of patients with spastic hemiparesis following stroke (ADJU-TOX): protocol study for a randomised controlled, inves… | BMJ Open

, , , , ,

Leave a comment

[ARTICLE] Efficacy of physical therapy associated with botulinum toxin type A on functional performance in post-stroke spasticity: A randomized, double-blinded, placebo-controlled trial – Full Text

Abstract

The aim was to investigate if botulinum toxin type A (BTx-A) associated with physical therapy is superior to physical therapy alone in post stroke spasticity. A randomized, double-blinded controlled trial was performed in a rehabilitation unit on Northeastern, Brazil. Patients with post stroke spasticity were enrolled either to BTx-A injections and a pre-defined program of physical therapy or saline injections plus physical therapy. Primary endpoint was functional performance evaluated through time up and go test, six minutes walking test and Fugl-Meyer scale for upper limb. Secondary endpoint was spasticity improvement. Confidence interval was considered at 95%. Although there was a significant decrease in upper limbs flexor tonus (P<0.05) in the BTx-A group, there was no difference regarding functional performance after 9 months of treatment. When analyzing gait speed and performance, both groups showed a significant improvement in the third month of treatment, however it was not sustained over time. Although BTx-A shows superiority to improve muscle tone, physical therapy is the cornerstone to improve function in the upper limbs of post stroke patients.

Introduction

Stroke is the major cause of permanent and temporary functional incapacity worldwide among adults, affecting limb strength, motor control, balance and mobility.1 Spasticity is characterized by an increase in tonic stretch reflex movement velocity dependent and post-stroke spasticity is frequently associated with poor functional performance due to abnormal postural patterns, leading to retractions, atrophy, selective movement control loss, limb weakness, fibrosis and structured contractions.2 Moreover, impairment in activities of daily living (ADL) such as feeding, locomotion, proper hygiene and sleeping habits results in poor quality of life (QOL) and increased burden to relatives and caregivers.3

Several trials support the efficacy and safety of botulinum toxin type A (BTx-A) on spasticity treatment, reducing muscle permanent contraction and abnormal postural patterns, therefore, favoring rehabilitation process.4 Physical therapy has been described to be effective in post-stroke spastic patients through prevention of secondary incapacities and promoting behavioral reeducation, based on biomechanical and neurophysiological patterns. These techniques include physical exercises that focus on functional rehabilitation, reduction of limb spasticity, muscle strength improvement and sustained joint movement amplitude, besides proprioceptive and sensorial stimuli.5

Several trials with BTx-A show functional improvement in post-stroke spastic patients when compared to placebo, however, none have studied the impact of physical therapy alone.4

The aim of this trial was to investigate if BTx-A treatment associated with physical therapy is superior to physical therapy alone on functional performance in post-stroke spastic patients.[…]

 

Continue —> Efficacy of physical therapy associated with botulinum toxin type A on functional performance in post-stroke spasticity: A randomized, double-blinded, placebo-controlled trial

, , , ,

Leave a comment

[ARTICLE] Botulinum Toxin Type A Treatment Combined with Intensive Rehabilitation for Gait Poststroke: A Preliminary Study – Full Text

Goal

To examine the effects of botulinum toxin type A (BoNT-A) treatment combined with intensive rehabilitation for gait compared with intensive rehabilitation alone in patients with chronic stroke.

Materials and Methods

A comparative case series design was used. Subjects were 19 patients with chronic stroke and spastic hemiplegia. In 9 patients (group I), BoNT-A was injected into spastic muscles of the affected lower limbs, followed by a 4-week inpatient intensive rehabilitation program. In the other 10 patients (group II), a 4-week inpatient intensive rehabilitation program alone was first provided (control period) followed by the same treatment protocol in group I. The Modified Ashworth Scale (MAS) scores, range of motion (ROM), gait speed in the 10-Meter Walking Test, 6-Minute Walking Distance Test (6MD) scores, Timed Up and Go Test (TUG) scores, and Berg Balance Scale scores were evaluated every 4 weeks following baseline assessments.

Results

All results except for the MAS score of knee flexor and the ROM of knee flexion improved in group I and the gait speed, 6MD, and TUG scores improved in group II. Intergroup comparisons at week 4 showed significantly greater improvements in the MAS score of ankle plantar flexor, ROM of ankle dorsiflexion, and 6MD in group I than in group II (P = .016, .011, and .009, respectively).

Conclusions

BoNT-A treatment for lower-limb spasticity, combined with intensive rehabilitation, was effective in improving spasticity and the 6MD compared with intensive rehabilitation alone in patients with chronic stroke.

 

Introduction

Lower-limb spasticity is a major problem in the management of patients after stroke12 because it causes gait disturbance.3 Such patients often have difficulty performing ankle dorsiflexion effectively during the swing phase of the gait cycle because of muscle spasticity and the inability to activate the ankle dorsiflexors.4 Calf muscle spasticity typically causes foot deformity, which results in the loss of heel strike, reduced toe clearance, and an inadequate base of support.5 These impairments decrease gait ability: cadence, stride length, speed, capacity, and stability.678910 Thus, lower-limb spasticity causes gait disturbance, which limits activities of daily living and, eventually, quality of life. Effective treatment of lower-limb spasticity is important in improving gait ability and enhancing the independence of patients after a stroke.

One of the primary treatments for lower-limb spasticity is botulinum toxin type A (BoNT-A). Although BoNT-A has been shown to reduce lower-limb spasticity in patients after stroke,111213its effects on improving gait ability have not been consistent among different previous studies. Pittock et al,14 Kaji et al,15 and Burbaud et al1 reported that BoNT-A injection reduced lower-limb spasticity but did not significantly improve gait pattern or speed. By contrast, Hesse et al11 and Mancini et al16 reported that BoNT-A treatment was effective in improving gait speed as well as lower-limb spasticity. Similarly, a systematic review and meta-analysis recently showed that BoNT-A treatment for lower-limb spasticity was associated with a small but statistically significant increase in gait speed.17 Consequently, the effect of BoNT-A alone for improving gait ability has been considered minimal.

To improve gait ability, adjunctive rehabilitation has recently been recommended to optimize the effects of BoNT-A treatment for lower-limb spasticity in poststroke patients.181920212223Gastaldi et al21 reported that BoNT-A treatment for lower-limb spasticity combined with additional stretching and physical therapy improved gait speed and single- and double-limb support during the stance phase of the gait cycle. Similarly, Roche et al22 reported that BoNT-A treatment for lower-limb spasticity combined with self-rehabilitation improved gait speed, capacity, and time to ascend and descend a flight of stairs. By contrast, Demetrios et al23 suggested no significant improvement in gait speed for 2 groups receiving BoNT-A treatment for lower-limb spasticity combined with high- or low-intensity rehabilitation. However, they concluded that both groups received BoNT-A treatment combined with regular rehabilitation, so there may have been insufficient variation of intensity during the rehabilitation phase. Therefore, the capacity of BoNT-A treatment combined with more intensive rehabilitation to improve gait ability remains unclear in poststroke patients.

The aim of this study was to examine the effects of BoNT-A treatment for lower-limb spasticity combined with intensive rehabilitation on improving gait ability in patients with chronic stroke and spastic hemiplegia compared with intensive rehabilitation alone. This study hypothesized that BoNT-A treatment combined with intensive rehabilitation would improve lower-limb spasticity and gait ability more effectively than intensive rehabilitation alone.[…]

 

Continue —> Botulinum Toxin Type A Treatment Combined with Intensive Rehabilitation for Gait Poststroke: A Preliminary Study – ScienceDirect

, , , , , ,

Leave a comment

[Abstract] Comparative hybrid effects of combining botulinum toxin A injection with bilateral robot-assisted, mirror or task-oriented therapy for upper extremity spasticity in patients with chronic stroke

Introduction/Background

Spasticity, a common impairment after stroke, has profound negative impact on outcomes in patients with stroke. Botulinum toxin type A (BoNT-A) injection combined with rehabilitation training is suggested for spasticity treatment. However, there is no recommendation about what kind of rehabilitation training is more appropriate than others following BoNT-A injection. The purpose of this study was to compare the effects of combining BoNT-A injection with bilateral robot-assisted (RT) or mirror (MT) or task-oriented (TT) therapy for upper extremity (UE) spasticity in patients with chronic stroke.

Material and method

Participants were randomly assigned to RT, or MT, or TT group after BoNT-A injection. The participants received 45 minutes of intervention per day, 3 days/week, for 8 weeks according the allocated results. In addition, all participants received 30 minutes of functional practice training. At pre-intervention, post-intervention and 3-month follow-up a blinded research assistant did outcome measures, including body function and structures by Fugl-Meyer Assessment (FMA), and Modified Ashworth Scale (MAS); activity and participation measures by Motor Activity Log (MAL), and Nottingham Extended Activities of Daily Living Scale (EADLS).

Results

Thirty-seven subjects met the inclusion criteria and underwent randomization, 13 were assigned to the RT; 12 to MT; and 12 to TT group. The 3 groups were well matched with regard to baseline characteristics and functional status. All groups had significant improvement in FMA, MAS and MAL post-intervention. There were no group differences in FMA, MAS, EADLs either post-intervention or at follow-up. There was a trend that TT group had higher quality of movement (QOM) in MAL post intervention than the other 2 groups (P = 0.07), at follow-up TT group had significantly higher QOM in MAL than the other 2 groups (P = 0.03).

Conclusion

Combining BoNT-A injection with TT resulted in better quality of UE movement in patients with spastic stroke than with RT or MT.

 

via Comparative hybrid effects of combining botulinum toxin A injection with bilateral robot-assisted, mirror or task-oriented therapy for upper extremity spasticity in patients with chronic stroke – ScienceDirect 

, , , , , , , ,

Leave a comment

[ARTICLE] Combining Upper Limb Robotic Rehabilitation with Other Therapeutic Approaches after Stroke: Current Status, Rationale, and Challenges – Full Text

Abstract

A better understanding of the neural substrates that underlie motor recovery after stroke has led to the development of innovative rehabilitation strategies and tools that incorporate key elements of motor skill relearning, that is, intensive motor training involving goal-oriented repeated movements. Robotic devices for the upper limb are increasingly used in rehabilitation. Studies have demonstrated the effectiveness of these devices in reducing motor impairments, but less so for the improvement of upper limb function. Other studies have begun to investigate the benefits of combined approaches that target muscle function (functional electrical stimulation and botulinum toxin injections), modulate neural activity (noninvasive brain stimulation), and enhance motivation (virtual reality) in an attempt to potentialize the benefits of robot-mediated training. The aim of this paper is to overview the current status of such combined treatments and to analyze the rationale behind them.

1. Introduction

Significant advances have been made in the management of stroke (including prevention, acute management, and rehabilitation); however cerebrovascular diseases remain the third most common cause of death and the first cause of disability worldwide [16]. Stroke causes brain damage, leading to loss of motor function. Upper limb (UL) function is particularly reduced, resulting in disability. Many rehabilitation techniques have been developed over the last decades to facilitate motor recovery of the UL in order to improve functional ability and quality of life [710]. They are commonly based on principles of motor skill learning to promote plasticity of motor neural networks. These principles include intensive, repetitive, task-oriented movement-based training [1119]. A better understanding of the neural substrates of motor relearning has led to the development of innovative strategies and tools to deliver exercise that meets these requirements. Treatments mostly target the neurological impairment (paresis, spasticity, etc.) through the activation of neural circuits or by acting on peripheral effectors. Robotic devices provide exercises that incorporate key elements of motor learning. Advanced robotic systems can offer highly repetitive, reproducible, interactive forms of training for the paretic limb, which are quantifiable. Robotic devices also enable easy and objective assessment of motor performance in standardized conditions by the recording of biomechanical data (i.e., speed, forces) [2022]. This data can be used to analyze and assess motor recovery in stroke patients [2326]. Since the 1990s, many other technology-based approaches and innovative pharmaceutical treatments have also been developed for rehabilitation, including virtual reality- (VR-) based systems, botulinum neurotoxin (BoNT) injections, and noninvasive brain stimulation (NIBS) (Direct Current Stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS)). There is currently no high-quality evidence to support any of these innovative interventions, despite the fact that some are used in routine practice [27]. By their respective mechanisms of action, each of these treatments could potentiate the effects of robotic therapy, leading to greater improvements in motor capacity. The aim of this paper is to review studies of combined treatments based on robotic rehabilitation and to analyze the rationale behind such approaches.[…]

 

Continue —> Combining Upper Limb Robotic Rehabilitation with Other Therapeutic Approaches after Stroke: Current Status, Rationale, and Challenges

, , , , , , , , , , , ,

Leave a comment

[Abstract] Botulinum Toxin Injection Techniques for the Management of Adult Spasticity

Abstract

Spasticity is often experienced by individuals with injury or illness of the central nervous system from etiologies such as stroke, spinal cord injury, brain injury, multiple sclerosis, or other neurologic conditions. Although spasticity may provide benefits in some patients, it more often leads to complications negatively impacting the patient. Nonpharmacologic treatment options often do not provide long-term reduction of spasticity, and systemic interventions, such as oral medications, can have intolerable side effects. The use of botulinum neurotoxin injections is one option for management of focal spasticity. Several localization techniques are available to physicians that allow for identification of the selected target muscles. These methods include anatomic localization in isolation or in conjunction with electromyography guidance, electrical stimulation guidance, or ultrasound guidance. This article will focus on further description of each of these techniques in relation to the treatment of adult spasticity and will discuss the advantages and disadvantages of each technique, as well as review the literature comparing the techniques.

 

via Botulinum Toxin Injection Techniques for the Management of Adult Spasticity – ScienceDirect

, , ,

Leave a comment

[ARTICLE] Botulinum toxin type A in post-stroke lower limb spasticity: a multicenter, double-blind, placebo-controlled trial – Full Text

Abstract

Lower limb spasticity in post-stroke patients can impair ambulation and reduces activities of daily living (ADL) performance of patients. Botulinum toxin type A (BoNTA) has been shown effective for upper limb spasticity. This study assesses the treatment of lower limb spasticity in a large placebo-controlled clinical trial. In this multicenter, randomized, double-blind, parallel-group, placebo-controlled study, we evaluate the efficacy and safety of one-time injections of botulinum toxin type A (BoNTA) in Japanese patients with post-stroke lower limb spasticity. One hundred twenty patients with lower limb spasticity were randomized to a single treatment with BoNTA 300 U or placebo. The tone of the ankle flexor was assessed at baseline and through 12 weeks using the Modified Ashworth Scale (MAS). Gait pattern and speed of gait were also assessed. The primary endpoint was area under the curve (AUC) of the change from baseline in the MAS ankle score. Significant improvement in spasticity with BoNTA 300 U was demonstrated by a mean difference in the AUC of the change from baseline in the MAS ankle score between the BoNTA and placebo groups (−3.428; 95% CIs, −5.841 to −1.016; p = 0.006; t test). A significantly greater decrease from baseline in the MAS ankle score was noted at weeks 4, 6 and 8 in the BoNTA group compared to the placebo group (p < 0.001). Significant improvement in the Clinicians Global Impression was noted by the investigator at weeks 4, 6 and 8 (p = 0.016–0.048, Wilcoxon test), but not by the patient or physical/occupational therapist. Assessments of gait pattern using the Physician’s Rating Scale and speed of gait revealed no significant treatment differences but showed a tendency towards improvement with BoNTA. No marked difference was noted in the frequency of treatment-related adverse events between BoNTA and placebo groups. This was the first large-scale trial to indicate that BoNTA significantly reduced spasticity in lower limb muscles.

Introduction

Spasticity is defined by Lance as a motor disorder characterized by a velocity-dependent increase in tonic stretch reflexes (muscle tone) with exaggerated tendon jerks, resulting from hyperexcitability of the stretch reflex, as one of the components of upper motor neuron syndrome [1].

BoNTA (botulinum toxin type A, onabotulinumtoxinA1) is a specific formulation of a locally injected muscle relaxant whose active ingredient is botulinum toxin type A produced by Clostridium botulinum. Botulinum toxin type A binds to the receptors in the presynaptic, cholinergic motor nerve terminal and is taken up by the nerve cells where the light chain of toxin cleaves a synaptosome-associated protein (SNAP-25) to inhibit acetylcholine release from the nerve terminal. As its muscle relaxant effect is exerted in the hypertonic muscle, BoNTA offers an alternative treatment for spastic patients who have difficulty with oral muscle relaxants that can produce generalized weakness and drowsiness, cognitive impairment, and/or a reduced level of arousal. Locally injected BoNTA is expected to improve limb position and functional ability, and reduce pain in patients with spasticity. Moreover, BoNTA has no sedative action, unlike existing oral antispastic treatments, and therefore can be used in patients with cognitive impairment or a reduced level of arousal. Based on these considerations, BoNTA is a first-line treatment choice if the upper and lower limb spasticity is focal and reversible without contracture [2].

The efficacy and safety of BoNTA in patients with post-stroke lower limb spasticity have been suggested by randomized-controlled trials of limited scale [345678] and meta-analysis [9]. The efficacy of BoNTA in patients with severe brain injury has also been demonstrated in a randomized-control trial [10]. Approved treatments of spasticity in Japan include peripheral and central muscle relaxants, alcohol, phenol block, and intrathecal baclofen (only in cases of severe spastic paralysis). We conducted a clinical study to evaluate the efficacy and safety of BoNTA in Japanese patients with post-stroke lower limb spasticity who received a single placebo-controlled injection of BoNTA followed by open-label repeated treatment of up to three sessions. This article reports the efficacy and safety results of the double-blind phase. […]

 

Continue —->  Botulinum toxin type A in post-stroke lower limb spasticity: a multicenter, double-blind, placebo-controlled trial | SpringerLink

, , , , ,

Leave a comment

[ARTICLE] A systematic review: efficacy of botulinum toxin in walking and quality of life in post-stroke lower limb spasticity – Full Text

Abstract

Background

Improved walking is one of the highest priorities in people living with stroke. Post-stroke lower limb spasticity (PSLLS) impedes walking and quality of life (QOL). The understanding of the evidence of improved walking and QOL following botulinum toxin (BoNTA) injection is not clear. We performed a systematic review of the randomized control trials (RCT) to evaluate the effectiveness of BoNTA injection on walking and QOL in PSLLS.

Methods

We searched PubMed, Web of Science, Embase, CINAHL, ProQuest Thesis and Dissertation checks, Google Scholar, WHO International Clinical Trial Registry Platform, ClinicalTrials.gov, Cochrane, and ANZ and EU Clinical Trials Register for RCTs looking at improvement in walking and QOL following injection of BoNTA in PSLLS. The original search was carried out prior to 16 September 2015. We conducted an additional verifying search on CINHAL, EMBASE, and MEDLINE (via PubMed) from 16 September 2015 to 6 June 2017 using the same clauses as the previous search. Methodological quality of the individual studies was critically appraised using Joanna Briggs Institute’s instrument. Only placebo-controlled RCTs looking at improvement in walking and QOL were included in the review.

Results

Of 2026 records, we found 107 full-text records. Amongst them, we found five RCTs qualifying our criteria. No new trials were found from the verifying search. Two independent reviewers assessed methodological validity prior to inclusion in the review using Joanna Briggs Institute’s appraisal instrument. Two studies reported significant improvement in gait velocity (p = 0.020) and < 0.05, respectively. One study showed significant improvement in 2-min-walking distance (p < 0.05). QOL was recorded in one study without any significant improvement. Meta-analysis of reviewed studies could not be performed because of different methods of assessing walking ability, small sample size with large confidence interval and issues such as lack of power calculations in some studies. Findings from our systematic and detailed study identify the need for a well-designed RCT to adequately investigate the issues highlighted.

Conclusions

This review could not conclude there was sufficient evidence to support or refute improvement on walking or QOL following BoNTA injection. Reasons for this are discussed, and methods for future RCTs are developed.

Background

Stroke is a common cause of adult disability worldwide [1]. More than two thirds of the stroke survivors develop post-stroke sequelae including impaired motor functions and spasticity [2]. The prevalence of post-stroke spasticity ranges from 19.0 to 42.6% [3]. There have been many recent developments in diagnosis, management, and prevention of stroke, while advances in rehabilitation have been modest [4]. There has, however, been progress with the use of botulinum toxin (BoNTA) as a treatment to improve spasticity in the upper limb [567]. Three systematic reviews [8910] have addressed research progress on both the upper and lower limbs, with the conclusion from two of these that the effect on the upper and lower limbs spasticity favored BoNTA [89]; however, these reviews did not fulfill the criteria for inclusion in this study.

As far as the lower limb is concerned, improvement in spasticity while important is only a first stage in post-stroke improvement, and the aim of RCTs should be to address the more important questions of functional activity including walking. How well this outcome has been addressed is the aim of this study. This is also an important question for many countries to resolve, because to date, botulinum toxin A is not approved for use in the post-stroke lower limb spasticity (PSLLS) by the pharmaceutical authorities except in the USA [11].

Lower limb spasticity most commonly involves the foot and the ankle leading to equinovarus (plantarflexion and inversion) deformity. Post-stroke patients with equinovarus deformity fail to achieve optimal contact with the ground leading to a poor stance, loss of heel to toe rhythm while walking and post-stroke patients walk predominantly with plantarflexion/inversion of the foot. Transfers and walking are essentially bipedal activity involving phases like balancing on one leg and swinging the other leg forward. The awkward position of the foot in addition to spasticity impairs balance, transfer, stride, gait, and mobility, besides causing spasm and pain. In many cases, complications like falls, fractures, deep vein thrombosis, and pressure ulcers may also result [12]. Inability to walk is associated with loss of independence and premature residential aged care placement [1314] and in the older population contributes substantially to adverse health outcomes including activities of daily living and mortality [15]. Improving and maintaining walking ability and activities of daily living are therefore vital for post-stroke survivors [16] and a major contributor to functional improvements. The overall human and economic cost of spasticity is, therefore, considerable, and interventions potentially can deliver significant benefits [17].

Given the evidence for efficacy of BoNTA in reducing spasticity, the objective of this review was to assess the available evidence of BoNTA injection: (1) to improve mobility (using gait velocity and walking distance as measuring parameters) and quality of life (QOL) and (2) to make appropriate recommendations for further research regarding these questions. […]

 

Continue —> A systematic review: efficacy of botulinum toxin in walking and quality of life in post-stroke lower limb spasticity | Systematic Reviews | Full Text

, , , ,

Leave a comment

[ARTICLE] Patient Registry of Spasticity Care World: Data Analysis Based on Physician Experience – Full Text

Objective The aim of the study was to report physician experience–based “real-world” treatment patterns with botulinum toxin type A in patients with stroke and traumatic brain injury.

Design A prospective, multicenter, international observational registry design was used.

Results Six hundred twenty-seven participants with stroke and 132 participants with traumatic brain injury were assessed and treated by 17 more experienced physicians and 12 less experienced physicians. Due to the limited usage of abobotulinumtoxinA Dysport and incobotulinumtoxinA Xeomin, data were reported on onabotulinumtoxinA BOTOX only. Based on physician experience, onabotulinumtoxinA doses were statistically different with larger mean doses injected by more experienced physicians in the upper limb (59.9 [39.0], P = 0.001) and in the lower limb (101.8 [69.2], P < 0.001). Treated deformities significantly differed for both upper limb and lower limb (P < 0.001). More experienced physicians showed a larger mean change in Ashworth Scale scores from baseline for the equinovarus/equinus foot and stiff knee (P = 0.001 and 0.03). Less experienced physicians showed a larger mean change in Ashworth Scale scores from baseline for the adducted thigh (P = 0.05). Less experienced physicians had statistically significant larger change in hand pain scores for clenched fist deformity treatment at follow-up compared with more experienced physicians (P = 0.01). Physician experience demonstrated a significant difference on patients reported satisfaction toward their secondary goal with higher scores for more experienced physician (P = 0.04).

Conclusions This international registry provides clinical nuances of treatment based on physician clinical experience in a robust sample size.

 

Every year, 15 million people worldwide are adversely affected by a stroke, and according to the World Health Organization, traumatic brain injury (TBI) will surpass by 2020 many other diseases as the major cause of death and disability.1 Functional problems caused by stroke or a TBI may include paralysis, cognitive and speech changes, and impaired motor control and dexterity as well as abnormal muscle activity that include spasticity, clonus, dystonia, co-contraction, associated reactions, and flexor and extensor spasms as seen in the upper motor neuron syndrome.2Spasticity as a motor behavior is a specific physiologic sign that has classically been described by Lance et al.3 as one component of the upper motor neuron syndrome, distinguishable from other positive features of muscle overactivity (e.g., dystonia, co-contraction). For simplification, all of these abnormal muscle activation patterns are frequently referred to as “spasticity.”4 We have elected the term spastic muscle overactivity as a more encompassing and better suited term.5–7Muscle overactivity can result in multiple patterns of clinical motor dysfunction affecting the lower (e.g., equinovarus, stiff knee, striatal toe, adducted thighs, flexed hip) and/or upper limbs (flexed elbow, internally rotated shoulder, flexed wrist, clenched fist, thumb-in-palm, intrinsics).4

Botulinum toxin has become a widely used biological toxin for a growing number of clinical applications. Clinical trials provide evidence that botulinum toxin can improve symptoms of muscle overactivity when appropriate muscles, doses, and the number of injection sites are selected.4,7 The proper use of these treatments in a “real-world” setting is not restricted to a regimented dosing structure provided by a clinical trial requires appropriate training and education. As in other areas of medicine, physician experience may play a role in care delivery. Physician level of experience may serve as a surrogate in understanding physician practice patterns variation that can inform healthcare services use8 and reduce physician care variations.9 Given these information void, we proposed and conducted a global, multicenter, observational study of participants treated with botulinum toxins in patients with stroke- or TBI-related spastic muscle overactivity to generate real-world data. The use of botulinum toxin A varies internationally; onabotulinumtoxinA (onaBoNTA) BOTOX has been approved for use in the United States for many years, whereas abobotulinumtoxinA (aboBoNTA) Dysport and incobotulinumtoxinA (incoBoNTA) Xeomin were only recently approved (2016). The onaBoNTA and aboBoNTA have been in use in Europe for more than 20 yrs, and incoBoNTA was approved only 10 yrs ago. Published registries have presented real-life data on the treatment of spasticity with onaBonTA10–12; however, to our knowledge, this is the first international registry that includes real-world longitudinal data that include baseline, injection, and outcomes when using the various botulinum toxins available while considering physician experience for its stratification and analysis. Despite the available evidence of botulinum toxin use, it is unclear whether physician level of experience may play a role in the appropriate delivery of toxin-related care. We hypothesized that the physician experience level may impart differences in care patterns in the use of botulinum toxin for spasticity management. Specifically, we focus on analyses based on the physician experience related to the identification of the problem presentation, muscle selection for treatment, formulation selected, dosing, injection technique, dilution, and number of injection sites. We also recorded the primary and secondary goals for treatment as selected by the patient and agreed upon by the treating physician. The primary purpose for this registry was to describe treatment patterns and clinical presentation used in these populations from a global perspective on the basis of clinical experience. Ashworth Scale (AS), presence of pain, and patient-reported satisfaction after treatment were stratified on the basis of reported physicians’ clinical experiences to determine treatment effect.[…]

Continue —> Patient Registry of Spasticity Care World: Data Analysis Bas… : American Journal of Physical Medicine & Rehabilitation

, , ,

Leave a comment

%d bloggers like this: