Posts Tagged hand function

[ARTICLE] Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors – Full Text

Various robotic exoskeletons have been proposed for hand function assistance during activities of daily living (ADL) of stroke survivors. However, traditional exoskeletons involve the use of complex rigid systems that impede the natural movement of joints, and thus reduce the wearability and cause discomfort to the user. The objective of this paper is to design and evaluate a soft robotic glove that is able to provide hand function assistance using fabric-reinforced soft pneumatic actuators. These actuators are made of silicone rubber which has an elastic modulus similar to human tissues. Thus, they are intrinsically soft and compliant. Upon air pressurization, they are able to support finger range of motion (ROM) and generate the desired actuation of the finger joints. In this work, the soft actuators were characterized in terms of their blocked tip force, normal and frictional grip force outputs. Combining the soft actuators and flexible textile materials, a soft robotic glove was developed for grasping assistance during ADL for stroke survivors. The glove was evaluated on five healthy participants for its assisted ROM and grip strength. Pilot test was performed in two stroke survivors to evaluate the efficacy of the glove in assisting functional grasping activities. Our results demonstrated that the actuators designed in this study could generate desired force output at a low air pressure. The glove had a high kinematic transparency and did not affect the active ROM of the finger joints when it was being worn by the participants. With the assistance of the glove, the participants were able to perform grasping actions with sufficient assisted ROM and grip strength, without any voluntary effort. Additionally, pilot test on stroke survivors demonstrated that the patient’s grasping performance improved with the presence and assistance of the glove. Patient feedback questionnaires also showed high level of patient satisfaction and comfort. In conclusion, this paper has demonstrated the possibility of using soft wearable exoskeletons that are more wearable, lightweight, and suitable to be used on a daily basis for hand function assistance of stroke survivors during activities of daily living.


The ability to perform basic activities of daily living (ADL) impacts a person’s quality of life and independence (Katz, 1983Andersen et al., 2004). However, an individual’s independence to perform ADLs is jeopardized due to hand motor impairments, which can be observed in patients with neurological disorders such as stroke. In order to improve hand motor functions in terms of strength and range of motion (ROM) (Kutner et al., 2010), stroke survivors undergo rehabilitation programs comprising repetitive practice of simulated ADL tasks (Michaelsen et al., 2006). Normally, patients undergo rehabilitation exercises in a specialized rehabilitation center under the guidance of physiotherapists or occupational therapists. However, due to increasing patient population, it is foreseen that there will be a shortage of physiotherapists to assist in the rehabilitative process. Thus, there will be comparatively less therapy time, which will eventually lead to a slower recovery process for the patients. Over the past decade, technological developments in robotics have facilitated the rehabilitative process and have shown potential to assist patients in their daily life (Maciejasz et al., 2014). One example of such a device is the hand exoskeleton, which is secured around the hand to guide and assist the movement of the encompassed joints. However, due to the complexity of the hand, designing a hand exoskeleton remains a challenging task.

Traditional hand exoskeletons involve the use of rigid linkage-based mechanisms. In this kind of mechanism, rigid components, such as linear actuators, rotary motors, racks, and pinions as well as rigid linkages are normally involved (Worsnopp et al., 2007Rotella et al., 2009Martinez et al., 2010). To assist hand movements that have high degrees of freedom (DOFs), traditional exoskeletons can be incorporated with a substantial number of actuators to achieve the requirement. However, this means that their application is limited due to the increasing bulkiness for higher DOFs. Therefore, these devices are normally restricted in clinical settings and not suitable for performing home therapy. Additionally, their rigidity, weight and constraint on the non-actuated DOFs of the joints pose complications. As a result, the level of comfort and safety of patients is reduced. In view of this, there is an apparent need for the development of exoskeletons that may be used in both clinical and home settings. A lightweight and wearable exoskeleton may allow patients to bring back home to continue daily therapy or to serve as an assistive device for the ADLs.

The development of wearable robotic exoskeletons serves to provide an alternative approach toward addressing this need. Instead of using rigid linkage as an interface between the hand and the actuators, wearable exoskeletons typically utilize flexible materials such as fabric (Sasaki et al., 2004Yap et al., 2016a) and polymer (Kang et al., 2016), driven by compliant actuators such as cables (Sangwook et al., 2014Xiloyannis et al., 2016) and soft inflatable actuators (Polygerinos et al., 2015dYap et al., 2016c). Therefore, they are more compliant and lightweight compared to the rigid linkage-based mechanism. Cable-driven based exoskeletons involve the use of cables that are connected to actuators in the form of electrical motors situated away from the hand (Nilsson et al., 2012Ying and Agrawal, 2012Sangwook et al., 2014Varalta et al., 2014). By providing actuations on both dorsal and palmar sides of the hand, bi-directional cable-driven movements are possible (Kang et al., 2016). These cables mimic the capability of the tendons of the human hand and they are able to transmit the required pulling force to induce finger flexion and extension. However, the friction of the cable, derailment of the tendon, and inaccurate routing of the cable due to different hand dimensions can affect the efficiency of force transmission in the system.

On the other hand, examples of the soft inflatable actuators are McKibben type muscles (Feifei et al., 2006Tadano et al., 2010), sheet-like rubber muscles (Sasaki et al., 2004Kadowaki et al., 2011), and soft elastomeric actuators (Polygerinos et al., 2015b,cYap et al., 2015); amongst which, soft elastomeric actuators have drawn increasing research interest due to their high compliance (Martinez et al., 2013). This approach typically embeds pneumatic chamber networks in elastomeric constructs to achieve different desired motions with pressurized air or water (Martinez et al., 2012). Soft elastomeric actuators are highly customizable. They are able to achieve multiple DOFs and complex motions with a single input, such as fluid pressurization. The design of a wearable hand exoskeleton that utilizes soft elastomeric actuators is usually simple and does not require precise routing for actuation, compared to the cable-driven mechanism. Thus, the design reduces the possibility of misalignment and the setup time. These properties allow the development of hand exoskeletons that are more compliant and wearable, with the ability to provide safe human-robot interaction. Additionally, several studies have demonstrated that compactness and ease of use of an assistive device critically affect its user acceptance (Scherer et al., 20052007). Thus, these exoskeletons provide a greater chance of user acceptance.

Table 1 summarizes the-state-of-art of soft robotic assistive glove driven by inflatable actuators. Several pioneer studies on inflatable assistive glove have been conducted by Sasaki et al. (2004)Kadowaki et al. (2011) and Polygerinos et al. (2015a,b,c). Sasaki et al. have developed a pneumatically actuated power assist glove that utilizes sheet-like curved rubber muscle for hand grasping applications. Polygerinos et al. have designed a hydraulically actuated grip glove that utilizes fiber-reinforced elastomeric actuators that can be mechanically programmed to generate complex motion paths similar to the kinematics of the human finger and thumb. Fiber reinforcement has been proved to be an effective method to constrain the undesired radial expansion of the actuators that does not contribute to effective motion during pressurization. However, this method limits the bending capability of the actuators (Figure S1); as a result, higher pressure is needed to achieve desired bending.

Table 1. Hand assistive exoskeletons driven by inflatable actuators.

This paper presents the design and preliminary feasibility study of a soft robotic glove that utilizes fabric-reinforced soft pneumatic actuators. The intended use of the device is to support the functional tasks during ADLs, such as grasping, for stroke survivors. The objectives of this study were to characterize the soft actuators in terms of their force output and to evaluate the performance of the glove with healthy participants and stroke survivors. The glove was evaluated on five healthy participants in order to determine the ROM of individual finger joints and grip strength achieved with the assistance of the glove. Pilot testing with two stroke survivors was conducted to evaluate the feasibility of the glove in providing grasping assistance for ADL tasks. We hypothesized that with the assistance of the glove, the grasping performance of stroke patients improved.

Specific contributions of this work are listed as follows:

(a) Presented fabric-reinforcement as an alternative method to reinforce soft actuators, which enhanced the bending capability and reduced the required operating pressure of the actuators,

(b) Utilized the inherence compliance of soft actuators and allowed the actuators to achieve multiple motions to support ROM of the human fingers,

(c) Integrated elastic fabric with soft actuators to enhance the extension force for finger extension,

(d) Designed and characterized a soft robotic glove using fabric-reinforced soft actuators with the combination of textile materials, and

(e) Conducted pilot tests with stroke survivors to evaluate the feasibility of the glove in providing functional assistance for ADL tasks.

Design Requirements and Rationale

The design requirements of the glove presented in this paper are similar to those presented by Polygerinos et al. (2015a,b,c) in terms of design considerations, force requirements, and control requirements. For design considerations, weight is the most important design criterion when designing a hand exoskeleton. Previous studies have identified the threshold for acceptable weight of device on the hand, which is in the range of 400–500 g (Aubin et al., 2013Gasser and Goldfarb, 2015). Cable-driven, hydraulic, and pneumatic driven mechanisms are found to be suitable options to meet the criteria. To develop a fully portable system for practical use in home setting, reduction in the weight of the glove as well as the control system is required. The total weight of the control system should not exceed 3 kg (Polygerinos et al., 2015a,b,c). In this work, the criteria for the weight of the glove and control system are defined as: (a) the weight of the glove should be <200 g, and (b) the weight of the control system should be <1.5 kg.

Considering the weight requirement, hydraulic systems are not ideal for this application, as the requirement of a water reservoir for hydraulic control systems and actuation of the actuators with pressurized water will add extra weight to the hand. The second consideration is that the hand exoskeleton should allow fast setup time. Therefore, it is preferable for the hand exoskeleton to fit the hand anatomy rapidly without precise joint alignment. Compared to cable-driven mechanisms, soft pneumatic actuators are found to be more suitable as they allow rapid customization to different finger length. Additionally, they do not require precise joint alignment and cable routing for actuation as the attachment of the soft pneumatic actuators on the glove is usually simple. Therefore, in this work, pneumatic mechanisms were selected. Using pneumatic mechanism, Connelly et al. and Thielbar et al. have developed a pneumatically actuated glove, PneuGlove that is able to provide active extension assistance to each finger while allowing the wearer to flex the finger voluntarily (Connelly et al., 2010Thielbar et al., 2014). The device consists of five air bladders on the palmar side of the glove. Inflation of the air bladders due to air pressurization created an extension force that extends the fingers. However, due to the placement of the air bladders on the palmar side, grasping activities such as palmar and pincer grasps were more difficult. Additionally, this device is limited to stroke survivors who are able to flex their fingers voluntarily.

In this work, the soft robotic glove is designed to provide functional grasping assistance for stroke survivors with muscle weakness and impairments in grasping by promoting finger flexion. While the stroke survivors still preserve the ability to modulate grip force within their limited force range, the grip release (i.e., hand opening) is normally prolonged (Lindberg et al., 2012). Therefore, the glove should assist with grip release by allowing passive finger extension via reinforced elastic components, similar to Saeboflex (Farrell et al., 2007) and HandSOME (Brokaw et al., 2011). The elastic components of these devices pull the fingers to the open hand state due to increased tension during finger flexion. Additionally, the glove should generate the grasping force required to manipulate and counteract the weight of the objects of daily living, which are typically below 1.07 kg (Smaby et al., 2004). Additionally, the actuators in the glove should be controlled individually in order to achieve different grasping configurations required in simulated ADL tasks, such as palmar grasp, pincer grasp, and tripod pinch. For the speed of actuation, the glove should reach full grasping motion in <4 s during simulated ADL tasks and rehabilitation training.

For the actuators, we have recently developed a new type of soft fabric-reinforced pneumatic actuator with a corrugated top fabric layer (Yap et al., 2016a) that could minimize the excessive budging and provide better bending capability compared to fiber-reinforced soft actuators developed in previous studies (Polygerinos et al., 2015c,d). This corrugated top fabric layer allows a small initial radial expansion to initiate bending and then constrains further undesired radial expansion (Figure 1). The detailed comparison of the fiber-reinforced actuators and fabric-reinforced actuators can be found in the Supplementary Material.



Figure 1. (A) A fabric-reinforced soft actuators with a corrugated fabric layer and an elastic fabric later [Actuator thickness, T= 12 mm, and length, L = 160 mm (Thumb), 170 mm (Little Finger), 180 mm (Index & Ring Fingers), 185 mm (Middle Finger)]. (B) Upon air pressurization, the corrugated fabric layer unfolds and expands due to the inflation of the embedded pneumatic chamber. Radial budging is constrained when the corrugated fabric layer unfolds fully. The elastic fabric elongates during air pressurization and stores elastic energy. The actuator achieves bending and extending motions at the same time. (C) A bending motion is preferred at the finger joints (II, IV, VI). An extending motion is preferred over the bending motion at the finger segments (I, III, V) and the opisthenar (VII).

Continue —>  Frontiers | Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors | Neuroscience


, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Soft Robotic Haptic Interface with Variable Stiffness for Rehabilitation of Neurologically Impaired Hand Function – Full Text

The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation therapies focus on strengthening motor skills, such as grasping, employ multiple objects of varying stiffness so that affected persons can experience a wide range of strength training. These devices have limited range of stiffness due to the rigid mechanisms employed in their variable stiffness actuators. This paper presents a novel soft robotic haptic device for neuromuscular rehabilitation of the hand, which is designed to offer adjustable stiffness and can be utilized in both clinical and home settings. The device eliminates the need for multiple objects by employing a pneumatic soft structure made with highly compliant materials that act as the actuator of the haptic interface. It is made with interchangeable sleeves that can be customized to include materials of varying stiffness to increase the upper limit of the stiffness range. The device is fabricated using existing 3D printing technologies, and polymer molding and casting techniques, thus keeping the cost low and throughput high. The haptic interface is linked to either an open-loop system that allows for an increased pressure during usage or closed-loop system that provides pressure regulation in accordance to the stiffness the user specifies. Preliminary evaluation is performed to characterize the effective controllable region of variance in stiffness. It was found that the region of controllable stiffness was between points 3 and 7, where the stiffness appeared to plateau with each increase in pressure. The two control systems are tested to derive relationships between internal pressure, grasping force exertion on the surface, and displacement using multiple probing points on the haptic device. Additional quantitative evaluation is performed with study participants and juxtaposed to a qualitative analysis to ensure adequate perception in compliance variance. The qualitative evaluation showed that greater than 60% of the trials resulted in the correct perception of stiffness in the haptic device.


The human hand is a complex sensorimotor apparatus that consists of many joints, muscles, and sensory receptors. Such complexity allows for skillful and dexterous manual actions in activities of daily living (ADL). When the sensorimotor function of hand is impaired by neurological diseases or traumatic injuries, the quality of life of the affected individual could be severely impacted. For example, stroke is a condition that is broadly defined as a loss in brain function due to necrotic cell death stemming from a sudden loss in blood supply within the cranium (Hankey, 2017). This event can lead to a multitude of repercussions on sensorimotor function, one of which being impaired hand control such as weakened grip strength (Foulkes et al., 1988Duncan et al., 1994Nakayama et al., 1994Jørgensen et al., 1995Wilkinson et al., 1997Winstein et al., 2004Legg et al., 2007). Other potential causes of impaired hand function include cerebral palsy, multiple sclerosis, and amputation. Therefore, effective rehabilitation to help patients regain functional hand control is critically important in clinical practice. It has been shown that recovery of sensory motor function relies on the plasticity of the central nervous system to relearn and remodel the brain (Warraich and Kleim, 2010). Specifically, there are several factors that are known to contribute to neuroplasticity (Kleim and Jones, 2008): specificity, number of repetition, training intensity, time, and salience. However, existing physical therapy of hand is limited by the resource and accessibility, leading to inadequate dosage and lack of patients’ motivation. Robot-assisted hand rehabilitation has recently attracted a lot of attention because robotic devices have the advantage to provide (1) enriched environment to strengthen motivation, (2) increase number of repetition through automated control, and (3) progressive intensity levels that adapts to patient’s need (for review, see Balasubramanian et al., 2010).

Specifically, haptic interfaces and variable stiffness mechanisms are usually incorporated into robotic rehabilitation devices to provide varying difficulties by adjusting force output or stiffness. For example, the LINarm++ is a rehabilitative device that appropriates variable stiffness actuators with multimodal sensors to provide changing resistance in a physical environment in which users performs arm movement (Malosio et al., 2016Spagnuolo et al., 2017). This device also encompasses a functional electrical stimulation system which has been shown to promote motor recovery in upper limb rehabilitation (Popović and Popović, 2006). The Haptic Knob is a device that trains stroke patients’ grasping movements, and wrist pronation and supination motions by rotating a dial that is able to produce forces and torques up to 50 N and 1.5 Nm, respectively, depending on the patient’s level of impairment (Lambercy et al., 2009). The GripAble is a handheld rehabilitative device that allows the patient to squeeze, lift, and rotate to play a video game with increasing difficulty and gives feedback through vibration in response to the patient’s performance (Mace et al., 20152017). The MIT-MANUS, a planar rehabilitation robot, also has a hand-module that converts rotary motions to linear motions, and in turn allows for controllable impedance in the device (Masia et al., 2006). In addition, pneumatic particle jamming systems have been designed to provide users with haptic feedback by changing the stiffness and geometry of the surface the user presses on with their fingertips (Stanley et al., 2013Genecov et al., 2014). These devices and systems, however, are either costly and bulky due to complex mechanical design or have limited range of stiffness due to passive mechanical components.

To overcome these limitations, this paper proposes the design of a novel pneumatically actuated soft robotics-based variable stiffness haptic interface to support rehabilitation of sensorimotor function of hands (Figure 1). Soft robotics is a rapidly growing field that utilizes highly compliant materials that are fluidic actuated to effectively adapt to shapes and constraints that traditionally rigid machines are unable to Majidi (2014) and Polygerinos et al. (2017). Several soft-robotics devices have been developed to provide assistance to stroke patients, but none of these has been designed as resistive training devices. An example of an existing device includes the use of soft actuators that bend, twist, and extend through finger-like motions in a rehabilitative exoglove to be worn by stroke patients (Polygerinos et al., 2015a,bYap et al., 2017). A variable stiffness device that employs soft-robotics allows a greater range of stiffness to be implemented since there is minimal or no impedance to the initial stiffness of the device. In addition, soft robotics methods allow devices to be manufactured with lowered cost and have much less complexity, thus suitable to be used not only inpatient but also outpatient hand rehabilitative services (Taylor et al., 1996Godwin et al., 2011).


Figure 1. The prototyped soft haptic variable stiffness interface with a hand grasping it.

In Section “Materials and Methods” of this paper, the materials and methods employed in designing and fabricating the soft robotic haptic interface are described, including the design criteria of the prototype. This section also describes the methodology for a stiffness perception test on healthy participant with the proposed device. In addition, the overall closed-loop control system of the device to provide pressure regulation is presented in this section. Section “Results” describes the preliminary results obtained from characterization of the device’s varying stiffness in response to changing pressure inputs, and the subjective evaluation of perceived stiffness obtained from test participants. Finally, Section “Discussion” includes an overall discussion of open question and future research directions. […]

Continue —>  Frontiers | Soft Robotic Haptic Interface with Variable Stiffness for Rehabilitation of Neurologically Impaired Hand Function | Robotics and AI

, , , , , , , , ,

Leave a comment



Background: Hand dysfunction is a common problem of stroke patients and it is the main cause of impairment of the upper limb. Finding new method to improve hand performance will decrease the disability of chronic stroke patients. Aim of the study: to study the effect of bilateral hand training with weight on the non paretic hand on the hand performance and time of performance in chronic stroke patients.

Materials and Methods: Thirty left chronic stroke patients participated in this study. The patients were assigned randomly into two equal groups. Group one (G1) received unilateral hand training and group two (G2) received bilateral hand training with weight on non affected hand. Both groups assessed two times before starting training program and after two months of training by Fugl meyer assessment scale, Wolf motor function test and hand dynamometer for the motor performance, time of performance and hand grip respectively.

Results: the patients in G2 showed significant improvement in the hand performance (P<.0001) and significant decrease in the time of performance (P<.001) and also significant improvement of hand grip (P<.0001).

Conclusion: Bilateral hand movement with weight on the non affected hand has a significant effect on improving hand performance and decreasing the time of performance and increasing hand grip than unilateral hand movement.

Full Text PDF

, , , , , , , ,

Leave a comment

[BLOG POST] SaeboFlex Helps Client Regain Hand Function 23 Years After Stroke

SaeboFlexStroke survivor exhibits remarkable improvement in hand function more than two decades after stroke, disproving theories that recovery window is limited to 6 months. 

Charlotte, N.C. – Tuesday, July 25, 2017 – Until recently, researchers believed that if a stroke survivor exhibited no improvement within the first 6 months, then he or she would have little to no chance of regaining motor function in the future. This assumed end of recovery is called a plateau. However, a groundbreaking new article published in the Journal of Neurophysiology discusses a stroke patient’s remarkable improvement decades after suffering a stroke at the age of 15. Doctors Peter Sörös, Robert Teasell, Daniel F. Hanley, and J. David Spence formally dismiss previous theories that stroke recovery occurs within 6 months, reporting that the patient experienced “recovery of hand function that began 23 years after the stroke.”

The patient’s stroke resulted in paralysis on the left side of his body, rendering his left hand completely nonfunctional, despite regular physical therapy. More than twenty years after his stroke, the patient took up swimming when his doctor recommended he lose weight. A year later, he began to show signs of movement on his affected side and returned to physical therapy. Therapists fitted the patient with the SaeboFlex, a mechanical device shown to improve hand function and speed up recoveryand, after only a few months of therapy, he began picking up coins with his previously nonfunctional hand. He also saw notable improvement in hand strength and control with the SaeboGlove, a low-profile hand device recently patented by Saebo.

Functional MRI studies showed the reorganization of sensorimotor neurons in both sides of the patient’s brain more than two decades after his stroke, resulting in a noticeable recovery in both hemispheres and improved motor function. “The marked delayed recovery in our patient and the widespread recruitment of bilateral areas of the brain indicate the potential for much greater stroke recovery than is generally assumed,” the doctors reported. “Physiotherapy and new modalities in development might be indicated long after a stroke.”

“This article highlights what we have seen for the last 15 years with many of our clients,” states Saebo co-founder, Henry Hoffman. “Oftentimes, stroke survivors are told that they have plateaued and no further progress is possible. We believe it is not the client that has plateaued but failed treatment options have plateaued them. In other words, traditional therapy interventions that lack scientific evidence can be ineffective and can actually facilitate the plateau.”

“The SaeboFlex device is a life-changing treatment designed for clients that lack motor recovery and function,” Hoffman continues. “Whether the client recently suffered a stroke or decades later, they can immediately begin using their hand with this device and potentially make significant progress over time. I agree with the authors that the neurorehabilitation community needs to take a hard look at traditional beliefs with respect to the window of recovery following stroke. It is my hope that this article will spark more interest by researchers to investigate upper limb function with clients at the chronic stage using Saebo’s hand technology.”

The abstract and article in its entirety can be viewed at the Journal of Neurophysiology’s website,

If you are suffering from limited hand function or have been told you have plateaued, then schedule a call with a Saebo Specialist or click here to get started on the road to recovery.

via SaeboFlex Helps Client Regain Hand Function 23 Years After Stroke | Saebo

, , , , , , , ,

Leave a comment

[Abstract] The effect of kinesiotaping on hand function in stroke patients: A pilot study


Upper extremity motor impairment is one of the most prevalent problems following stroke. Considering the functional importance of the upper extremity in the daily life, the purpose of this study was to investigate the effect of kinesiotaping (KT) on hand function and spasticity in individuals following a stroke. Eight individuals who had experienced a stroke, with their age ranging from 47 to 66, participated in this pretest-posttest clinical study. An I- strip of tape was placed on the extensor muscles of the forearm. Primary outcome measures were the Modified Modified Ashwoth Scale, Box and Block test, and Nine Hole Peg test. At the immediate assessment, there were significant differences between two hand function tests scores. Secondary assessment was done after one week and the results showed significant differences between two hand function test scores. There was no significant change in flexor muscles spasticity after the intervention. This pilot study indicated that KT in the direction of the extensor muscles could result in better hand function in stroke patients.

Source: The effect of kinesiotaping on hand function in stroke patients: A pilot study – Journal of Bodywork and Movement Therapies

, , , , , , , ,

Leave a comment

[Abstract] Design and Test of a Closed-Loop FES System for Supporting Function of the Hemiparetic Hand Based on Automatic Detection Using the Microsoft Kinect Sensor

This paper describes the design of a FES system automatically controlled in a closed loop using a Microsoft Kinect sensor, for assisting both cylindrical grasping and hand opening. The feasibility of the system was evaluated in real-time in stroke patients with hand function deficits. A hand function exercise was designed in which the subjects performed an arm and hand exercise in sitting position. The subject had to grasp one of two differently sized cylindrical objects and move it forward or backwards in the sagittal plane. This exercise was performed with each cylinder with and without FES support. Results showed that the stroke patients were able to perform up to 29% more successful grasps when they were assisted by FES. Moreover, the hand grasp-and-hold and hold-and-release durations were shorter for the smaller of the two cylinders. FES was appropriately timed in more than 95% of all trials indicating successful closed loop FES control. Future studies should incorporate options for assisting forward reaching in order to target a larger group of stroke patients.

, , , , , , , , , ,

Leave a comment

[Abstract] Applying a soft-robotic glove as assistive device and training tool with games to support hand function after stroke: Preliminary results on feasibility and potential clinical impact

Published in: Rehabilitation Robotics (ICORR), 2017 International Conference on


Recent technological developments regarding wearable soft-robotic devices extend beyond the current application of rehabilitation robotics and enable unobtrusive support of the arms and hands during daily activities. In this light, the HandinMind (HiM) system was developed, comprising a soft-robotic, grip supporting glove with an added computer gaming environment. The present study aims to gain first insight into the feasibility of clinical application of the HiM system and its potential impact. In order to do so, both the direct influence of the HiM system on hand function as assistive device and its therapeutic potential, of either assistive or therapeutic use, were explored. A pilot randomized clinical trial was combined with a cross-sectional measurement (comparing performance with and without glove) at baseline in 5 chronic stroke patients, to investigate both the direct assistive and potential therapeutic effects of the HiM system. Extended use of the soft-robotic glove as assistive device at home or with dedicated gaming exercises in a clinical setting was applicable and feasible. A positive assistive effect of the soft-robotic glove was proposed for pinch strength and functional task performance ‘lifting full cans’ in most of the five participants. A potential therapeutic impact was suggested with predominantly improved hand strength in both participants with assistive use, and faster functional task performance in both participants with therapeutic application.

Source: Applying a soft-robotic glove as assistive device and training tool with games to support hand function after stroke: Preliminary results on feasibility and potential clinical impact – IEEE Xplore Document

, , , , , , , , , , , , ,

Leave a comment

[ARTICLE] Role of Practice And Mental Imagery on Hand Function Improvement in Stroke Survivors – Full Text


Objective: The purpose of this study was to evaluate the Role of Practice and Mental Imagery on Hand function improvement in stroke survivors

Method: We conducted systematic review of the previous studies and searched electronic databases for the years 1995 to 2016, studies were selected according to inclusion criteria, and critical appraisal was done for each study and summarized the use of mental practice for the improvement in hand function in stroke survivors.

Results: Studies differed in the various aspects like intervention protocols, outcome measures, design, and patient’s characteristics. The total number of practice hours to see the potential benefits from mental practice varied widely. Results suggest that mental practice has potential to improve the upper extremity function in stroke survivors.

Conclusion: Although the benefits of mental practice to improve upper extremity function looks promising, general guidelines for the clinical use of mental practice is difficult to make. Future research should explore the dosage, factors affecting the use of Mental Practice, effects of Mental Therapy alone without in combination with other interventions.


Up to 85% stroke survivors experience hemi paresis resulting in impaired movement of the arm, and hand as reported by Nakayama et al. Loss of arm function adversely affects quality of life and functional motor recovery in affected upper extremity.

Sensorimotor deficits in the upper limb, such as weakness, decreased speed of movement, decreased angular excursion and impaired temporal coordination of the joints impaired upper-limb and trunk coordination.

Treatment interventions such as materials-based occupations constraint-induced movement therapy modified constraint-induced movement therapy and task-related or task-specific training are common training methods for remediating impairments and restoring function in the upper limb.

For the improvement of upper and lower functions, physical therapy provides training for functional improvement and fine motor. For most patients such rehabilitation training has many constraints of time, place and expense, accordingly in recent studies, clinical methods such as mental practice for improvement of the upper and lower functions have been suggested.

Mental practice is a training method during which a person cognitively rehearses a physical skill using motor imagery in the absence of overt, physical movements for the purpose of enhancing motor skill performance. For example, a review of the duration of mental movements found temporal equivalence for reaching; grasping; writing; and cyclical activities, such as walking and running.

Evidence for the idea that motor imagery training could enhance the recovery of hand function comes from several lines of research: the sports literature; neurophysiologic evidence; health psychology research; as well as preliminary findings using motor imagery techniques in stroke patients.

Much interest has been raised by the potential of Motor Practice of Motor task, also called “Motor Imagery” as a neuro rehabilitation technique to enhance Motor Recovery following Stroke.

Mental Practice is a training method during which a person cognitively rehearsals a physical skill using Motor Imagery in the absence of Physical movements for the purpose of enhancing Motor skill performance.

The merits of this intervention are that the patient concentration and motivation can be enhanced without regard to time and place and the training is possible without expensive equipment.

Researchers have speculated about its utility in neurorehabilitation. In fact, several review articles examining the impact of mental practice have been published. Two reviews examined stroke outcomes in general and did not limit their review to upper-extremity–focused outcomes. Both articles included studies that were published in 2005 or earlier.

Previous reviews, however, did not attempt to rate the studies reviewed in terms of the level of evidence. Thus, in this review, we determined whether mental practice is an effective intervention strategy to remediate impairments and improve upper-limb function after stroke by examining and rating the current evidence. […]

Continue –>  Role of Practice And Mental Imagery on Hand Function Improvement in Stroke Survivors | Insight Medical Publishing

, , , , , , , , , , , , ,

Leave a comment

[Abstract] The suitcase packing activity: A new evaluation of hand function



Study Design

Prospective, repeated-measures study.


Understanding individual hand function can assist therapists with the process of determining relevant treatment approaches and realistic therapeutic outcomes. At this point in time, a composite test that assesses both unilateral and bimanual hand function in relation to a functional activity is not available.

Purpose of the Study

To establish the reliability and validity of the suitcase packing activity (SPA).


An expert panel established face and content validity. Eighty healthy, English-speaking volunteers aged between 18 and 45 years were randomly assigned to either 1 or 2 sessions (test-retest reliability). Relative agreement between 2 examiners using an intraclass correlation coefficient (ICC)3,1 determined interrater reliability. Test-retest reliability was determined by using a repeated-measures analysis of variance and an ICC3,2. Concurrent validity was evaluated against 2 well-established hand evaluations using separate tests of correlational coefficients.


Face and content validity were established across 4 focus groups. Our results demonstrate good to excellent interrater reliability (ICC3,1 ≥ 0.93) and good to excellent test-retest reliability (ICC3,2 ≥ 0.83). SPA scores were moderately correlated with the 2-hand evaluations.


Through evaluating hand function during participation in a goal-directed activity (eg, packing a suitcase), the SPA exhibits promise in usefulness as a future viable outcome measure that can be used to assess functional abilities following a hand injury.


The SPA is a valid and reliable tool for assessing bimanual and unilateral hand function in healthy subjects.

Source: The suitcase packing activity: A new evaluation of hand function – Journal of Hand Therapy


, , , , , , ,

Leave a comment

[ARTICLE] Design and test of an automated version of the modified Jebsen test of hand function using Microsoft Kinect – Full Text



The present paper describes the design and evaluation of an automated version of the Modified Jebsen Test of Hand Function (MJT) based on the Microsoft Kinect sensor.


The MJT was administered twice to 11 chronic stroke subjects with varying degrees of hand function deficits. The test times of the MJT were evaluated manually by a therapist using a stopwatch, and automatically using the Microsoft Kinect sensor. The ground truth times were assessed based on inspection of the video-recordings. The agreement between the methods was evaluated along with the test-retest performance.


The results from Bland-Altman analysis showed better agreement between the ground truth times and the automatic MJT time evaluations compared to the agreement between the ground truth times and the times estimated by the therapist. The results from the test-retest performance showed that the subjects significantly improved their performance in several subtests of the MJT, indicating a practice effect.


The results from the test showed that the Kinect can be used for automating the MJT.


Deficits in motor function, in the form of hemiparesis or hemiplegia, are a frequent consequence of cerebral stroke [1]. Even though motor function may be regained to some extent through intensive rehabilitative training following acute treatment of stroke, deficits in hand function often remain [23]. Following discharge from the rehabilitation unit, patients are typically asked to perform unsupervised self-training in their own home. The lack of supervision during training at home will likely have an impact on the patient’s training compliance and training quality. Therefore, it is important to perform regular evaluations of the patient’s functional level in order to provide useful supervision and to maintain patient motivation. The patients’ performance in a specific motor function test provides valuable insight into whether the training scheme chosen for a patient is effective or it should be changed. Thus, it is very important that the motor function tests being used are objective and reflect the actual functional level of the patient being tested. Several validated motor function tests including assessment of hand function exist, e.g. Jebsen Test of Hand Function [4], Action Research Arm Test [5], Fugl-Meyer Assessment [6], Wolf Motor Function Test (WMFT) [7], Box and Blocks Test [8] and Nine Hole Peg Test [9]. Common for all these tests is that they must be administered by a therapist, which might be a source for variability in the test results, and cause the test results not always to be completely reproducible and objective. In tests including performance time as an outcome measure, e.g. the WMFT, the reaction time of the subject could introduce a bias to the results, as suggested by previous studies [1011]. Likewise, the end time of the test would likely be subjected to a bias, since the examiner has a finite reaction time. Thus, both the reaction time of the examiner and the subject could be potential sources of bias and variability in timed motor function tests. The sensitivity of a motor function test is affected by sources of bias and variability and therefore it is of interest to minimize these, to make detection of even small changes possible.

By automating motor function tests, the objectivity of the tests would be increased. This might also make possible to use the tests at remote sites, without direct supervision, as a part of a tele-rehabilitation service. Finally, automated tests could be administered more frequently. Previous studies have shown that selected parts of the WMFT can be automated by use of motion sensors mounted on the body of healthy subjects [10] and stroke patients [11]. Both systems automated the test by analyzing three-dimensional kinematics data from body-worn sensors (inertial measurement units) mounted on the most affected wrist, arm and shoulder of stroke patients [1011]. Similarly, using inertial measurement unit sensors, Yang et al. (2013) showed that when administering the 10 m walking test, the output from their system was in close agreement with the walking speeds estimated using a stop-watch [12]. These systems require though correct positioning and mounting of the motion sensors [10]. Huang et al. (2012) showed that also a computer vision based approach, consisting of a monitor camera and a Xilinx Virtex II Pro Field Programmable Gate Array (for computation), may be used for automating the WMFT. All participants being tested had to wear a black sweatband on the wrist of the extremity being tested [13]. Another low-price method for capturing the movements of a patient performing a motor function test is the Microsoft Kinect sensor (Kinect). By using a Kinect, the need for body mounted sensors is eliminated, thus lowering the susceptibility to data loss and easing donning and doffing of the system. Furthermore, the Microsoft Kinect sensor is a low-cost commercially available device. In this paper, we describe the design and test of a Kinect based system for automatic evaluation of a standardized, validated motor function test, administered to stroke patients with hand function deficits. The Modified Jebsen Test of Hand Function (MJT) [14], initially proposed by Bovend’Eerdt et al. (2004) as a test for assessment of gross functional dexterity in stroke patients, was selected for automation as this test is easy to administer and takes short time to complete.

Continue —> Design and test of an automated version of the modified Jebsen test of hand function using Microsoft Kinect | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 3 The edge of the table was detected in the binary image (lower) produced by thresholding the depth image (upper) into two parts, one part containing all pixels with a depth value lower than a depth level of 300 mm below the surface of the table and the other part containing pixels with depth values above this threshold

, , , , , , , , , , , ,

Leave a comment

%d bloggers like this: