Posts Tagged chronic stroke

[Abstract] A Randomized Trial on the Effects of Attentional Focus on Motor Training of the Upper Extremity Using Robotics with Individuals after Chronic Stroke 



  • Individuals with moderate-to-severe arm impairment after stroke improved motor control after engaging in high-repetition training
  • There were no differences between external focus or internal focus of attention on retention of motor skills after four weeks of arm training for individuals with stroke
  • Individuals with moderate-to-severe arm impairment may not experience the advantages of an external focus during motor training found in healthy individuals
  • Attentional focus is most likely not an active ingredient for retention of trained motor skills for individuals with moderate-to-severe arm impairment



To compare the long-term effects of external focus (EF) versus internal focus (IF) of attention after 4-weeks of arm training. Design: Randomized, repeated measure, mixed ANOVA.


Outpatient clinic.


33 individuals with stroke and moderate-to-severe arm impairment living in the community (3 withdrawals).


4-week arm training protocol on the InMotion ARM robot (12 sessions).

Main Outcome Measures

Joint independence, Fugl-Meyer Assessment, and Wolf Motor Function Test measured at baseline, discharge, and 4-week follow-up.


There were no between-group effects for attentional focus. Participants in both groups improved significantly on all outcome measures from baseline to discharge and maintained those changes at 4-week follow-up regardless of group assignment [Jt indep-EF, F(1.6, 45.4) = 17.74, p<.0005, partial η2=.39; Jt indep-IF, F(2, 56)= 18.66, p<.0005, partial η2=.40; FMA, F(2, 56) = 27.83, p<.0005, partial η2=.50 ; WMFT, F(2, 56) =14.05, p<.0005, partial η2=.35].


There were no differences in retention of motor skills between EF and IF participants four weeks after arm training, suggesting that individuals with moderate-to-severe arm impairment may not experience the advantages of an EF found in healthy individuals. Attentional focus is most likely not an active ingredient for retention of trained motor skills for individuals with moderate-to-severe arm impairment, whereas dosage and intensity of practice appear to be pivotal. Future studies should investigate the long-term effects of attentional focus for individuals with mild arm impairment.

Source: A Randomized Trial on the Effects of Attentional Focus on Motor Training of the Upper Extremity Using Robotics with Individuals after Chronic Stroke – Archives of Physical Medicine and Rehabilitation

, , , , , , ,

Leave a comment

[Abstract] The Effect of Modified Constraint-Induced Movement Therapy on Spasticity and Motor Function of the Affected Arm in Patients with Chronic Stroke

Purpose: The purpose of this study was to explore the effect of modified constraint-induced movement therapy (CIMT) in a real-world clinical setting on spasticity and functional use of the affected arm and hand in patients with spastic chronic hemiplegia.

Method: A prospective consecutive quasi-experimental study design was used. Twenty patients with spastic hemiplegia (aged 22–67 years) were tested before and after 2-week modified CIMT in an outpatient rehabilitation clinic and at 6 months. The Modified Ashworth Scale (MAS), active range of motion (AROM), grip strength, Motor Activity Log (MAL), Sollerman hand function test, and Box and Block Test (BBT) were used as outcome measures.

Results: Reductions (p<0.05–0.001) in spasticity (MAS) were seen both after the 2-week training period and at 6-month follow-up. Improvements were also seen in AROM (median change of elbow extension 5°, dorsiflexion of hand 10°), grip strength (20 Newton), and functional use after the 2-week training period (MAL: 1 point; Sollerman test: 8 points; BBT: 4 blocks). The improvements persisted at 6-month follow-up, except for scores on the Sollerman hand function test, which improved further.

Conclusion: Our study suggests that modified CIMT in an outpatient clinic may reduce spasticity and increase functional use of the affected arm in spastic chronic hemiplegia, with improvements persisting at 6 months.

Source: The Effect of Modified Constraint-Induced Movement Therapy on Spasticity and Motor Function of the Affected Arm in Patients with Chronic Stroke | Physiotherapy Canada

, , , , , ,

Leave a comment

[ARTICLE] Upper Extremity Motor Impairments and Microstructural Changes in Bulbospinal Pathways in Chronic Hemiparetic Stroke – Full Text

Following hemiparetic stroke, precise, individuated control of single joints is often replaced by highly stereotyped patterns of multi-joint movement, or abnormal limb synergies, which can negatively impact functional use of the paretic arm. One hypothesis for the expression of these synergies is an increased dependence on bulbospinal pathways such as the rubrospinal (RubST) tract and especially the reticulospinal (RetST) tracts, which co-activate multiple muscles of the shoulder, elbow, wrist, and fingers. Despite indirect evidence supporting this hypothesis in humans poststroke, it still remains unclear whether it is correct. Therefore, we used high-resolution diffusion tensor imaging (DTI) to quantify white matter microstructure in relation to severity of arm synergy and hand-related motor impairments. DTI was performed on 19 moderately to severely impaired chronic stroke individuals and 15 healthy, age-matched controls. In stroke individuals, compared to controls, there was significantly decreased fractional anisotropy (FA) and significantly increased axial and radial diffusivity in bilateral corona radiata and body of the corpus callosum. Furthermore, poststroke, the contralesional (CL) RetST FA correlated significantly with both upper extremity (UE) synergy severity (r = −0.606, p = 0.003) and hand impairment (r = −0.609, p = 0.003). FA in the ipsilesional RubST significantly correlated with hand impairment severity (r = −0.590, p = 0.004). For the first time, we separately evaluate RetST and RubST microstructure in chronic stroke individuals with UE motor impairment. We demonstrate that individuals with the greatest UE synergy severity and hand impairments poststroke have the highest FA in the CL RetST a pattern consistent with increased myelination and suggestive of neuroplastic reorganization. Since the RetST pathway microstructure, in particular, is sensitive to abnormal joint coupling and hand-related motor impairment in chronic stroke, it could help test the effects of specific, and novel, anti-synergy neurorehabilitation interventions for recovery from hemiparesis.


Approximately 85% of stroke survivors experience significant motor impairment in the contralesional (CL) arm (1), which can include a loss of independent joint control (2, 3), weakness (4), and spasticity (5). After stroke, precise, individuated control of single joints is often replaced by highly stereotyped patterns of multi-joint movement caused by abnormal muscle co-activation patterns (6). The most prevalent of these patterns is the flexion synergy, which is characterized by an abnormal coupling of shoulder abduction and elbow, wrist, and finger flexion (7, 8). This impairment has a negative impact on reaching ability (9) and hand function (3, 10), both critical components of functional use of the arm during activities of daily living. Despite the debilitating nature of this motor impairment, the underlying neuropathophysiology is not fully understood.

One hypothesis for why the flexion synergy emerges is that following a reduction of corticofugal input from the lesioned hemisphere, there is an increased dependence on CL motor cortex and bulbospinal pathways, such as reticulospinal (RetST) and rubrospinal (RubST) tracts. Therefore, in the present study, we quantify microstructural properties in white matter of both the brain and the brainstem, focusing primarily on corticoreticulospinal and corticorubrospinal systems. We evaluate whether these microstructural properties increase in integrity in relation to arm synergy and hand impairment severity, which could be indicative of increased use.

Although the RetST was previously believed to be predominantly involved in gross movements, such as locomotion (11, 12) and posture (13, 14), recent work in primates suggests the RetST also influences the motor neurons that control forearm and intrinsic hand muscles (15). In the non-human primate, stimulation of the RetST produces ipsilateral wrist flexor, elbow flexor, and shoulder abductor activation (16), mirroring the flexion synergy pattern observed in humans poststroke. Furthermore, stimulating the RetST after a corticospinal tract (CST) lesion elicits increased excitatory post-synaptic potentials in motoneurons innervating the forearm flexor and intrinsic hand muscles (17). This evidence makes the contralesional corticoreticulospinal system a compelling candidate for underlying abnormal joint coupling in humans with hemiparetic stroke.

In the non-human primate, the RubST also contributes to reaching and grasping movements (18) and has been shown to be important in recovery of hand function after CST damage (19, 20). One study showed that increased white matter integrity in bilateral red nucleus (RN) correlated with worse clinical outcomes in humans with chronic stroke (21); however, the RubST has been reported as relatively insignificant in humans (22, 23). The evidence for whether the RetST and the RubST contribute to abnormal joint coupling and hand impairment in humans poststroke still remains indirect and inconclusive.

We used high-resolution diffusion tensor imaging (DTI) (24) tract-based spatial statistics (TBSS) (25) to perform a voxel-wise comparison of white matter microstructure between stroke and control individuals. We analyzed fractional anisotropy (FA), a measurement typically associated with tract integrity, as well as axial diffusivity (AD) and radial diffusivity (RD), which represent diffusion parallel and perpendicular to the principle direction of diffusion, respectively. Because previous studies have reported altered diffusion properties in lesioned tissue (2628), we excluded potential lesion-compromised voxels from our TBSS analysis to assess changes in normal-appearing white matter. We used the TBSS-derived white matter skeleton to investigate whether microstructural tissue properties within specific regions of the brainstem (CST, RetST, RubST) and subcortical white matter within CL motor areas [primary motor area (M1), premotor area (PM), supplementary motor area (SMA), body of the corpus callosum] are sensitive to upper extremity (UE) motor impairment in chronic stroke individuals.

We evaluated UE motor impairment using the Fugl-Meyer Assessment (FMA), a stroke-specific, performance-based motor impairment index, which measures impairments, such as loss of independent joint function, stretch reflex hyper-excitability, and altered sensation (29). It is one of the most widely used clinical scales of motor impairment poststroke (30). While previous studies have looked at diffusion MRI metrics in relation to the entire FMA score (31, 32), we used only the UE measurements of arm synergies and hand function to determine whether microstructural properties in specific white matter regions of interest (ROIs) were correlated.

In the present study, we hypothesized that microstructural integrity in specific regions of the extrapyramidal brainstem would be increased in chronic stroke in a manner sensitive to synergy and hand-related impairment severity. We demonstrate a significant decrease in FA in bilateral corona radiata and body of the corpus callosum in chronic stroke when compared to controls; however, within stroke subjects, specific brainstem regions show the highest FA in individuals with the most synergy-driven arm and hand impairment. More precisely, we describe the relation between CL RetST integrity and both expression of synergy and hand impairment and between ipsilesional (IL) RubST integrity and hand impairment in chronic hemiparetic stroke individuals.[…]

Continue —> Frontiers | Upper Extremity Motor Impairments and Microstructural Changes in Bulbospinal Pathways in Chronic Hemiparetic Stroke | Neurology

Figure 1. Region of interest masks in Montreal Neurological Institute’s space. (A) Primary motor area (red), supplementary motor area (green), premotor area (blue), (B) body of the corpus callosum (light blue), (C) horizontal midbrain cross-section showing cerebral peduncle (CP) portion of the corticospinal tract (yellow) and red nucleus (RN) (red), (D) horizontal pontine cross-section showing reticular formation (RF) (green), and (E) sagittal brainstem showing RF including reticulospinal (green) and RN including rubrospinal tracts (red).

, , , , , , , , ,

Leave a comment

[Abstract] Feasibility and efficacy of wearable devices for upper limb rehabilitation in patients with chronic stroke: a randomized controlled pilot study

Wearable devices based on inertial measurement units through wireless sensor networks have many applications such as real-time motion monitoring and functional outcome assessment of stroke rehabilitation. However, additional investigations are warranted to validate their clinical value, particularly in detecting the synergy patterns of movements after stroke.To explore the feasibility and efficacy of wearable devices for upper limb rehabilitation in patients with chronic stroke and to compare the intervention effects (e.g., neurological recovery, active range of motion, and deviation angle) with those in a control group.A single-blind, randomized-controlled pilot study.Rehabilitation ward.A total of 18 patients with chronic stroke were randomly distributed into a device group and control group. Both groups received conventional rehabilitation; nevertheless, the device group was additionally subjected to 15 daily sessions at least three times a week for 5 weeks. The outcome measures included the upper extremity subscores of the Fugl-Meyer assessment, active range of motion, and deviation angle. These measurements were performed pre- and post-treatment.All five Fugl-Meyer assessment subscores improved in both the device and control groups after intervention; in particular, the “shoulder/elbow/forearm” subscore (p = 0.02, 0.03) and “total score” (p = 0.03, 0.03) substantially improved. The active range of motion of shoulder flexion and abduction substantially improved at pre-post treatment in both the device (p = 0.02, 0.03) and control (p = 0.02, 0.03) groups. The deviation angle of shoulder external rotation during shoulder abduction substantially improved in the device group (p = 0.02), but not in the control group.The designed wearable devices are practical and efficient for use in chronic patients with stroke.Wearable devices are expected to be useful for future internet-of-things rehabilitation clinical trials at home and in long-term care institutions.

Source: Feasibility and efficacy of wearable devices for upper limb rehabilitation in patients with… – Abstract – Europe PMC

, , , , ,

Leave a comment

[Abstract] A Longitudinal EMG Study of Complex Upper-limb Movements in Post-stroke Therapy: 2 Changes in Co-ordinated Muscle Activation

Fine motor control is achieved through the co-ordinated activation of groups of muscles, or ‘muscle synergies’. Muscle synergies change after stroke as a consequence of the motor deficit. We investigated the pattern and longitudinal changes in upper-limb muscle synergies during therapy in a largely unconstrained movement in patients with a broad spectrum of post-stroke residual voluntary motor capacity.Electromyography (EMG) was recorded using wireless telemetry from 6 muscles acting on the more-affected upper body in 24 stroke patients at early- and late-therapy during formal Wii-based Movement Therapy sessions, and in a subset of 13 patients at 6-month follow-up. Patients were classified with low, moderate or high motor-function. The Wii-baseball swing was analysed using a non-negative matrix factorisation (NMF) algorithm to extract muscle synergies from EMG recordings based on the temporal activation of each synergy and the contribution of each muscle to a synergy. Motor-function was clinically assessed immediately pre- and post-therapy and at 6-month follow-up using the Wolf Motor Function Test, upper-limb motor Fugl-Meyer Assessment and Motor Activity Log Quality of Movement scale.Clinical assessments and game performance demonstrated improved motor-function for all patients at post-therapy (p0.05). NMF analysis revealed fewer muscle synergies (mean±SE) for patients with low motor-function (3.38±0.2) than those with high motor-function (4.00±0.3) at early-therapy (p=0…

Source: A Longitudinal EMG Study of Complex Upper-limb Movements in Post-stroke Therapy: 2 Changes in Co-ordinated Muscle Activation

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Functional Electrical Stimulation with Augmented Feedback Training Improves Gait and Functional Performance in Individuals with Chronic Stroke: A Randomized Controlled Trial – Full Text PDF


Purpose: The purpose of this study was to compare the effects of the FES-gait with augmented feedback training to the FES alone on the gait and functional performance in individuals with chronic stroke.

Methods: This study used a pretest and posttest randomized control design. The subjects who signed the agreement were randomly divided into 12 experimental groups and 12 control groups. The experimental groups performed two types of augmented feedback training (knowledge of performance and knowledge of results) together with FES, and the control group performed FES on the TA and GM without augmented feedback and then walked for 30 minutes for 40 meters. Both the experimental groups and the control groups received training five times a week for four weeks.

Results: The groups that received the FES with augmented feedback training significantly showed a greater improvement in single limb support (SLS) and gait velocity than the groups that received FES alone. In addition, timed up and go (TUG) test and six minute walk test (6MWT) showed a significant improvement in the groups that received FES with augmented feedback compared to the groups that received FES alone.

Conclusion: Compared with the existing FES gait training, augmented feedback showed improvements in gait parameters, walking ability, and dynamic balance. The augmented feedback will be an important method that can provide motivation for motor learning to stroke patients.

Full Text PDF

, , , ,

Leave a comment

[ARTICLE] Update on cell therapy for stroke – Full Text


Ischaemic stroke remains a leading cause of death and disability. Current stroke treatment options aim to minimise the damage from a pending stroke during the acute stroke period using intravenous thrombolytics and endovascular thrombectomy; however, there are no currently approved treatment options for reversing neurological damage once a stroke is completed. Preclinical studies suggest that cell therapy may be safe and effective in improving functional outcomes. Several recent clinical trials have reported safety and some improvement in outcomes following cell therapy administration in ischaemic stroke, which are reviewed. Cell therapy may provide a promising new treatment for stroke reducing stroke-related disability. Further investigation is needed to determine specific effects of cell therapy and to optimise cell delivery methods, cell dosing, type of cells used, timing of delivery, infarct size and location of infarct that are likely to benefit from cell therapy.


Until recently, intravenous recombinant tissue plasminogen activator was the only proven effective treatment for acute stroke. Endovascular thrombectomy has now been added to our arsenal for acute stroke treatment following the publication of five randomised trials demonstrating highly significant treatment effects favouring endovascular therapy.1–6 Outcome data support advancements in acute stroke care and neurorehabilitation with a significant increase in stroke survivors over time.7 However, despite these advancements, stroke remains a leading cause of long-term disability.8 For patients with residual deficits after stroke, we have no currently approved therapy for restoring function.

Cell therapy is one approach to enhancing recovery after stroke. In animal models, delivery of several different types of stem cells reduce infarct size and improve functional outcomes.9 Clinical trials of cell therapy completed in the 2000s mostly treating small cohorts of patients with chronic stroke demonstrated adequate safety and a suggestion of efficacy with the use of cell therapy. Kondziolka and colleagues used N-Tera 2 cells derived from a lung metastasis of a human testicular germ cell tumour that when treated with retinoic acid generate postmitotic neurons that maintain a fetal neuronal phenotype indefinitely in vitro (LBS neurons). LBS neurons were stereotactically implanted around the stroke bed of chronic subcortical ischaemic stroke. This study demonstrated safety and feasibility of stereotactic cell implantation, although there was no significant improvement in functional outcomes.10 11 Using a similar stereotactic approach implanting cells into the basal ganglia, Savitz and colleagues transplanted LGE cells (fetal porcine striatum-derived cells, Genvec) in five patients. Two patients showed improvements, but two patients experienced adverse effects including delayed worsening of neurological symptoms and seizure resulting in early termination of the study.12 Bang and colleagues reported the safety and feasibility of intravenous infusion of autologous mesenchymal stem cells (MSCs) with no reported adverse effects in five patients treated with intravenous MSCs. Although they reported some initial motor improvements, at 12 months, there was no significant difference in motor scores.13 These early clinical trials mostly focused on chronic subcortical strokes, but more recent trials are now investigating cell therapy for treatment of both cortical and subcortical infarcts. This review discusses the considerations for design of cell therapy trials and summarises the results of more recent studies.

Continue —> Update on cell therapy for stroke | Stroke and Vascular Neurology

Table 1

Summary of recent human cell therapy trials for stroke

Clinical trial/sponsor Age Time after stroke Additional selection criteria Cell type Route Stroke location Patients (n) Safety results Efficacy results
MASTERS/Athersys 18–83 24–48 hours NIHSS 8–20, infarct 5-100cc, premorbid mRS 0–1 Multistem adult-derived stem cell product Intravenous Cortical 129 Similar SAE at 1 year 22(34%) versus 24 (39%) placebo,
Lower mortality—5 deaths (8%) versus 9deaths (15%) in placebo19
No effect on 90-day Global Stroke Recovery Assessment (mRS 0–2, NIHSS increase by 75%, Barthel Index >95) but trend towards improved outcome with earlier delivery of cells19
InveST/Department of Biotechnology, India 18–75 7–29 days NIHSS >7, GCS >8, BI <50, paretic arm or leg stable >48 hours Autologous marrow-derived stem cells Intravenous 120
(58 cell therapy)
61 AE (33%) and eight deaths versus 60 AEs (36%) and five deaths placebo22 No effect on 180-day Barthel Index Score, mRS shift or score >3, NIHSS, change of infarct volume22
RECOVER-Stroke/Aldagen 30–75 13–19 days NIHSS 7–22, mRS >3 ALDHbrautologous marrow-derived stem cells Intracarotid infusion distal to ophthalmic Anterior circulation ± subcortical 29 IA, 19 sham 12 SAE IA, 11 SAE sham; 0 cell-related SAE23 No difference in mRS, Barthel, NIHSS at 90 days or 1 year
PISCES-II/ReNeuron 40–89 2–13 months Paretic arm with NIHSS motor arm score 2–3 CTX0E03 DP allogeneic human fetal neural stem cells Stereotaxic infusion into ipsilateral putamen 21 Pending Pending
Sanbio 18–75 6–60 months NIHSS>7, mRS 3–4, stable symptoms>3 weeks SB623 allogeneic marrow-derived stem cells transiently transfected with plasmid encoding Notch122 Stereotaxic infusion peri-infarct Subcortical ± cortical component24 18 28 SAE, 0 cell-related SAE25 Improved ESS at 6 months (p<0.01) and 12 months (p<0.001)
Improved NIHSS at 6 months (p<0.01) and 12 months(p<0.001)
Improved Fugl-Meyer at 6 months (p<0.001) and 12 months(p<0.001)25
PISCES/ReNeuron >60, male only 6–60 months Persistent hemiparesis, Stable NIHSS over 4 weeks (Pt 2 CTX0E03 DP allogeneic human neural stem cells Stereotaxic infusion into putamen Subcortical 11 16 SAE (in nine patients), 0 cell-related SAE28 Improved NIHSS at 2 years (p=0.002), No change, Barthel Index, MMSE, Ashworth, mRS28 29
  • AE, Adverse Event; ARAT, Action Research Arm Test; BI, Barthel Index; DP, drug product; ESS, European Stroke Scale; IA, intra-arterially; MASTERS, Multistem Administration for Stroke Treatment and Enhanced Recovery Study; MMSE, Mini-Mental Status Examination; mRS, modified Rankin Score; NIHSS, National Institutes of Health Stroke Scale; PISCES, Pilot Investigation of Stem Cells in Stroke; SAE, Serious aAverse Events.

, , , , , , , ,

Leave a comment

[ARTICLE] Exercising daily living activities in robot-mediated therapy – Full Text PDF


[Purpose] Investigation of the efficacy of robot-mediated therapy of the upper limb in patients with chronic stroke, in task-oriented training activities of daily living in real environment.

[Subjects and Methods] 20 patients, each more than one year post-stroke (13–71 months) received 20 sessions of upper limb robot-mediated therapy. No other treatment was given. Each therapy session consisted of a passive motion and an active task therapy. During the active therapy, subjects exercised 5 activities of daily living. Assessments of the subjects were blind, and conducted one month prior to, at the start, at the end, and three months after the therapy course. The following outcome measures were recorded: Fugl-Meyer Scale—upper extremity subsection, Modified Ashworth Scale, Action Research Arm Test, Functional Independence Measure, Barthel Index.

[Results] Significant improvements were observed between the start and the end of the therapy, except for Modified Ashworth Scale and Barthel Index. Results still held up at the follow-up visit three months later.

[Conclusion] Practicing activities of daily living in real environment with robot-mediated physical therapy can improve the motor and functional ability of patients, even with relatively good initial functions, and even years post-stroke.

Full Text Pdf

, , , , , , ,

Leave a comment

[Abstract] Functional Brain Stimulation in a Chronic Stroke Survivor With Moderate Impairment  


OBJECTIVE. To determine the impact of transcranial direct current stimulation (tDCS) combined with repetitive, task-specific training (RTP) on upper-extremity (UE) impairment in a chronic stroke survivor with moderate impairment.

METHOD. The participant was a 54-yr-old woman with chronic, moderate UE hemiparesis after a single stroke that had occurred 10 yr before study enrollment. She participated in 45-min RTP sessions 3 days/wk for 8 wk. tDCS was administered concurrent to the first 20 min of each RTP session.

RESULTS. Immediately after intervention, the participant demonstrated marked score increases on the UE section of the Fugl–Meyer Scale and the Motor Activity Log (on both the Amount of Use and the Quality of Movement subscales).

CONCLUSION. These data support the use of tDCS combined with RTP to decrease impairment and increase UE use in chronic stroke patients with moderate impairment. This finding is crucial, given the paucity of efficacious treatment approaches in this impairment level.

Related Articles
Related Topics

Source: Functional Brain Stimulation in a Chronic Stroke Survivor With Moderate Impairment | American Journal of Occupational Therapy

, , , , , , , , , ,

Leave a comment

[ARTICLE] Influence of physician empathy on the outcome of botulinum toxin treatment for upper limb spasticity in patients with chronic stroke: A cohort study – Full Text


Objective: To examine the relationship between patient-rated physician empathy and outcome of botulinum toxin treatment for post-stroke upper limb spasticity.

Design: Cohort study.

Subjects: Twenty chronic stroke patients with upper limb spasticity.

Methods: All patients received incobotulinumtoxinA injection in at least one muscle for each of the following patterns: flexed elbow, flexed wrist and clenched fist. Each treatment was performed by 1 of 5 physiatrists with equivalent clinical experience. Patient-rated physician empathy was quantified with the Consultation and Relational Empathy Measure immediately after botulinum toxin treatment. Patients were evaluated before and at 4 weeks after botulinum toxin treatment by means of the following outcome measures: Modified Ashworth Scale; Wolf Motor Function Test; Disability Assessment Scale; Goal Attainment Scaling.

Results: Ordinal regression analysis showed a significant influence of patient-rated physician empathy (independent variable) on the outcome (dependent variables) of botulinum toxin treatment at 4 weeks after injection, as measured by Goal Attainment Scaling (p < 0.001).

Conclusion: These findings support the hypothesis that patient-rated physician empathy may influence the outcome of botulinum toxin treatment in chronic stroke patients with upper limb spasticity as measured by Goal Attainment Scaling.


Stroke is a leading cause of adult disability (1, 2). Damage to the descending tracts and sensory-motor networks results in the positive and negative signs of the upper motor neurone syndrome (UMNS) (1–3). The upper limb is commonly involved after stroke, with up to 69% of patients having arm weakness on admission to hospital (4). Recovery of upper limb function has been found to correlate with the degree of initial paresis and its topical distribution according to the cortico-motoneuronal representation of arm movements (5–9).

Spasticity is a main feature of UMNS. It is defined as a state of increased muscle tone with exaggerated reflexes characterized by a velocity-dependent increase in resistance to passive movement (10). Upper limb spasticity has been found to be associated with reduced arm function, low levels of independence and high burden of direct care costs during the first year post-stroke (11). It affects nearly half of patients with initial impaired arm function, with a prevalence varying from 17% to 38% of all patients at one year post-stroke (11). Up to 13% of patients with stroke need some form of spasticity treatment (drug therapy, physical therapy or other rehabilitation approaches) within 6–12 months post-onset (11, 12). Botulinum toxin type A (BoNT-A) has been proven safe and effective for reducing upper limb spasticity and improving arm passive function in adult patients (13, 14). While current literature reports highly patient-specific potential gains in function after BoNT-A treatment, there is inadequate evidence to determine the efficacy of BoNT-A in improving active function associated with adult upper limb spasticity (13).

Empathy refers to the ability to understand and share the feelings, thoughts or attitudes of another person (15). It is an essential component of the physician-patient relationship and a key dimension of patient-centred care (15, 16). This is even more important in rehabilitation medicine, where persons with disabilities often report encountering attitudinal and environmental barriers when trying to obtain rehabilitative care and express the need for better communication with their healthcare providers (17).

To the best of our knowledge, no previous research has investigated the influence of physician empathy on patient outcome after spasticity treatment. The aim of this study was to examine the relationship between patient-rated physician empathy and clinical outcome of BoNT-A treatment for upper limb spasticity due to chronic stroke. […]

Continue —> Journal of Rehabilitation Medicine – Influence of physician empathy on the outcome of botulinum toxin treatment for upper limb spasticity in patients with chronic stroke: A cohort study – HTML


, , , , , , , , ,

Leave a comment

%d bloggers like this: