Posts Tagged chronic stroke

[Abstract + References] Vibrotactile cueing using wearable computers for overcoming learned non-use in chronic stroke

ABSTRACT

Outpatient stroke rehabilitation is often lengthy and expensive due to patients’ lack of functional use of the impaired arm outside of the clinic caused by “learned non-use.” Learned non-use is detrimental to stroke recovery, often resulting in chronic disability. To overcome learned non-use, a wearable “personal assistant” solution is proposed that employs ubiquitous cueing to stimulate patient use of the paretic arm while outside of therapy sessions. A pilot user study is presented that evaluated stroke survivors’ tolerance and acceptance of cueing, and the usability of the proposed implementation.

References

  1. V. L. Roger et al., “Heart disease and stroke statistics—2012 update: A report from the American Heart Association,” Circulation, vol. 125, no. 1, pp. e2–e220, Jan. 2012.Google Scholar
  2. E. Taub, J. E. Crago, L. D. Burgio, T. E. Groomes, E. W. Cook, S. C. DeLuca, and N. E. Miller, “An operant approach to rehabilitation medicine: Overcoming learned nonuse by shaping,” J Exp Anal Behav, vol. 61, no. 2, pp. 281–293, Mar. 1994.Google ScholarCross Ref
  3. C. E. Lang et al., “Upper extremity use in people with hemiparesis in the first few weeks after stroke,” Journal of Neurologic Physical Therapy, vol. 31, no. 2, pp. 55–63, Jun. 2007.Google ScholarCross Ref
  4. W. S. Verplanck, “The operant conditioning of human motor behavior,” Psychological Bulletin, vol. 53, no. 1, pp. 70–83, 1956.Google ScholarCross Ref
  5. M. S. Cameirão, S. B. i Badia, E. Duarte, A. Frisoli, and P. F. M. J. Verschure, “The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke,” Stroke, vol. 43, no. 10, pp. 2720–2728, Oct. 2012.Google ScholarCross Ref
  6. J. Lieberman and C. Breazeal, “TIKL: Development of a wearable vibrotactile feedback suit for improved human motor learning,” IEEE Transactions on Robotics, vol. 23, no. 5, pp. 919–926, Oct. 2007. Google ScholarDigital Library
  7. P. Kapur, M. Jensen, L. J. Buxbaum, S. A. Jax, and K. J. Kuchenbecker, “Spatially distributed tactile feedback for kinesthetic motion guidance,” in IEEE Haptics Symposium, pp. 519–526, 2010. Google ScholarDigital Library
  8. T. Markow et al., “Mobile Music Touch: Vibration stimulus in hand rehabilitation,” in International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 1–8, 2010.Google Scholar
  9. P. Markopoulos, A. A. A. Timmermans, L. Beursgens, R. van Donselaar, and H. A. M. Seelen, “Us’em: The user-centered design of a device for motivating stroke patients to use their impaired arm-hand in daily life activities,” in Annual Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5182–5187, 2011.Google Scholar
  10. G. Uswatte, C. Giuliani, C. Winstein, A. Zeringue, L. Hobbs, and S. L. Wolf, “Validity of accelerometry for monitoring real-world arm activity in patients with subacute stroke: Evidence from the extremity constraint-induced therapy evaluation trial,” Archives of Physical Medicine and Rehabilitation, vol. 87, no. 10, pp. 1340–1345, Oct. 2006.Google ScholarCross Ref

via Vibrotactile cueing using wearable computers for overcoming learned non-use in chronic stroke | Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare

, , , , , , ,

Leave a comment

[WEB SITE] Vagal Nerve Stimulation Improves Arm Function After Stroke

By

HOUSTON, Texas — An implanted device that stimulates the vagus nerve has shown promising improvement of arm function in stroke patients in a second small clinical study.

While the primary endpoint — change in functional score after 6 weeks of therapy — was not significantly different between treatment groups, the improvement did appear to become significant after a further 60 days of treatment, as did responder rates.

Lead investigator, Jesse Dawson, MD, University of Glasgow, United Kingdom, reported that the group receiving active stimulation with the device showed a 9-point improvement in upper-limb Fugl-Meyer (UEFM) score at this time point.

Dr Jesse Dawson

“All in all, we feel this is quite promising,” Dr Dawson said. “A 9-point change in this scale is highly likely to be clinically significant.”

This magnitude of change would mean different things for different patients, depending on where they start, he said. “If they start at 20 — which is not much function at all — they might regain some grasp ability so they might be able to carry a plate, for example. If they were in the 30s to start with, they would probably already have the grasp function but they would be able to get back to do more specific tasks.”

The results were presented here at the International Stroke Conference (ISC) 2017.

“Spectacular” Results

Commenting on the study, American Heart Association/American Stroke Association spokesperson, Philip Gorelick, MD, MPH, medical director, Hauenstein Neuroscience Center, Grand Rapids, Michigan, described the results as “pretty spectacular.”

Dr Philip Gorelick

“It is always difficult to know what you are getting with these scales, but when you see jumps like this I think it’s safe to conclude that there is clinical significance. There is probably something real going on,” Dr Gorelick said.

“You must remember that these are chronic patients with moderate to severe arm weakness at 18 months down the line from their stroke,” he added. “We think these patients are finished — they are not going to be doing much with that arm. Obviously this study is exploratory, but this raises a lot of hope.”

A larger trial in 120 patients is now planned.

, , , , , ,

Leave a comment

[ARTICLE] Relearning functional and symmetric walking after stroke using a wearable device: a feasibility study – Full Text

Abstract

Background

Gait impairment is a common consequence of stroke and typically involves a hemiparetic or asymmetric walking pattern. Asymmetric gait patterns are correlated with decreased gait velocity and efficiency as well as increased susceptibility to serious falls and injuries.

Research Question

This paper presents an innovative device worn on a foot for gait rehabilitation post stroke. The device generates a backward motion to the foot, which is designed to exaggerate the existing step length asymmetry while walking over ground. We hypothesize this motion will decrease gait asymmetry and improve functional walking in individuals with chronic stroke.

Methods

Six participants with chronic stroke, more than one year post stroke, received four weeks of gait training with three sessions per week. Each session included 30 min of walking over ground using the wearable device. Gait symmetry and functional walking were assessed before and after training.

Results

All participants improved step length symmetry, and four participants improved double limb support symmetry. All participants improved on all three functional outcomes (gait velocity, Timed Up and Go Test, and 6-Minute Walk Test), and five participants improved beyond the minimal detectable change or meaningful change in at least one functional outcome.

Conclusion

The results indicate that the presented device may help improve stroke patients’ walking ability and warrant further study. A gait training approach using this new device may enable and expand long-term continuous gait rehabilitation outside the clinic following stroke.

Introduction

Each year approximately 800,000 Americans experience a new or recurrent stroke, and an estimated six million are living with gait impairments from a stroke [1]. One such disability is a ‘hemiparetic’ gait [2], which can be characterized by asymmetries in gait measures such as step length and support times [34]. Hemiparetic gait is correlated with decreased gait velocity [56], reduced walking efficiency [7], increased joint and bodily degradation [8], and increased susceptibility to injuries and falls [910].

While patients and health providers desire effective gait therapy, few effective long-term remedies have been identified. Treatments of gait commonly rely on traditional rehabilitation approaches, such as the Bobath method [1112] and lower limb strength training [1314], to re-train walking patterns. Unfortunately, results are inconsistent across patient populations with these treatment options, and there are not set devices facilitating these treatments. Some other gait correction methods currently being studied include Constraint Induced Movement Therapy [1516], body-weight support [17], robotic [18], functional electrical stimulation [19], transcranial magnetic stimulation [20], and full-body gait exoskeletons [21].

In this paper, we present a novel device (shown in Fig. 1) designed to help individuals post stroke re-learn how to walk with little to no therapeutic infrastructure needed. Unlike many of the existing gait rehabilitation devices, this device is passive, portable, wearable, and does not require any external energy. It functions by moving the nonparetic foot backward while the individual walks over ground [22]. The backward motion of the shoe is generated passively by redirecting the wearer’s downward force during stance phase [23]. Since the motion is generated by the wearer’s force, the person is in control, which allows easier adaptation to the motion, but this also causes the speed to vary slightly from person to person. The generated motion is demonstrated in Fig. 2. A height and weight matched shoe is attached to the paretic foot, but does not generate any motion.

figure1

Photo of the rehabilitative shoe that is worn on the nonparetic foot

[…]

Continue —-> Relearning functional and symmetric walking after stroke using a wearable device: a feasibility study | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , ,

Leave a comment

[ARTICLE] Clinical Practice Guideline to Improve Locomotor Function Following Chronic Stroke, Incomplete Spinal Cord Injury, and Brain Injury

Abstract

Background:

Individuals with acute-onset central nervous system (CNS) injury, including stroke, motor incomplete spinal cord injury, or traumatic brain injury, often experience lasting locomotor deficits, as quantified by decreases in gait speed and distance walked over a specific duration (timed distance). The goal of the present clinical practice guideline was to delineate the relative efficacy of various interventions to improve walking speed and timed distance in ambulatory individuals greater than 6 months following these specific diagnoses.

Methods:

A systematic review of the literature published between 1995 and 2016 was performed in 4 databases for randomized controlled clinical trials focused on these specific patient populations, at least 6 months postinjury and with specific outcomes of walking speed and timed distance. For all studies, specific parameters of training interventions including frequency, intensity, time, and type were detailed as possible. Recommendations were determined on the basis of the strength of the evidence and the potential harm, risks, or costs of providing a specific training paradigm, particularly when another intervention may be available and can provide greater benefit.

Results:

Strong evidence indicates that clinicians should offer walking training at moderate to high intensities or virtual reality–based training to ambulatory individuals greater than 6 months following acute-onset CNS injury to improve walking speed or distance. In contrast, weak evidence suggests that strength training, circuit (ie, combined) training or cycling training at moderate to high intensities, and virtual reality–based balance training may improve walking speed and distance in these patient groups. Finally, strong evidence suggests that body weight–supported treadmill training, robotic-assisted training, or sitting/standing balance training without virtual reality should not be performed to improve walking speed or distance in ambulatory individuals greater than 6 months following acute-onset CNS injury to improve walking speed or distance.

Discussion:

The collective findings suggest that large amounts of task-specific (ie, locomotor) practice may be critical for improvements in walking function, although only at higher cardiovascular intensities or with augmented feedback to increase patient’s engagement. Lower-intensity walking interventions or impairment-based training strategies demonstrated equivocal or limited efficacy.

Limitations:

As walking speed and distance were primary outcomes, the research participants included in the studies walked without substantial physical assistance. This guideline may not apply to patients with limited ambulatory function, where provision of walking training may require substantial physical assistance.

Summary:

The guideline suggests that task-specific walking training should be performed to improve walking speed and distance in those with acute-onset CNS injury although only at higher intensities or with augmented feedback. Future studies should clarify the potential utility of specific training parameters that lead to improved walking speed and distance in these populations in both chronic and subacute stages following injury.

Disclaimer:

These recommendations are intended as a guide for clinicians to optimize rehabilitation outcomes for persons with chronic stroke, incomplete spinal cord injury, and traumatic brain injury to improve walking speed and distance.

TABLE OF CONTENTS

INTRODUCTION AND METHODS

Summary of Action Statements………………………………………………..53

Levels of Evidence and Grade of Recommendations…………………54

Methods………………………………………………………………………………….57

ACTION STATEMENTS AND RESEARCH RECOMMENDATIONS

Action Statements…………………………………………………………………..63

Discussion…………………………………………………………………………….79

Conclusions…………………………………………………………………………..82

Summary of Research Recommendations……………………………….83

ACKNOWLEDGMENTS AND REFERENCES

Acknowledgments…………………………………………………………………84

References……………………………………………………………………………84

TABLES AND FIGURE

Table 1: Levels of Evidence for Studies……………………………………54

Table 2: Standard and Revised Definitions for Recommendations………………..54

Table 3: Example of PICO Search Terms for Strength Training………………….58

Table 4: Survey Results………………………………………………….59

Figure 1: Flow chart for article searches and appraisals…………………….60

Table 5: Final Recommendations for Clinical Practice Guideline on Locomotor Function…..79

APPENDIX: EVIDENCE TABLES

Appendix Table 1: Walking Training at Moderate to High Aerobic Intensities…….91

Appendix Table 2: Walking Training With Augmented Feedback/Virtual Reality…….92

Appendix Table 3: Strength Training……………………………………….93

Appendix Table 4: Cycling and Recumbent Stepping Training……………………94

Appendix Table 5: Circuit and Combined Exercise Training…………………….95

Appendix Table 6A: Balance Training: Sitting/Standing With Altered Feedback/Weight Shift……..96

Appendix Table 6B: Balance Training: Augmented Feedback With Vibration………..97

Appendix Table 6C: Balance Training: Augmented Visual Feedback……………….98

Appendix Table 7: Body Weight–Supported Treadmill Walking………………99

Appendix Table 8: Robotic-Assisted Walking Training………………………..100

[…]

 

Continue —-> Clinical Practice Guideline to Improve Locomotor Function Fo… : Journal of Neurologic Physical Therapy

, , , , , , , ,

Leave a comment

[ARTICLE] The effect of aquatic and treadmill exercise in individuals with chronic stroke – Full Text

ABSTRACT

We compared the effect of gait training on treadmill versus deep water on balance and gait in 12 ischemic stroke chronic survivors randomly sorted to the Pool or Treadmill Groups. Berg Scale (BBS) and timed up and go test (TUG) were applied before and after the interventions. Just one person applied all tests and she was blinded for the aims of the study. Surface EMG of the paretic and non-paretic (NP) side muscles were recorded during walking on a treadmill. Three 100-ms epochs were extracted from the EMG related to gait phases: weight acceptance; propulsion; and pre-strike. For each epoch, we calculated the RMS of the EMG signal. Participants did gait training for 9 weeks (3 times/week, 40 minutes/session). The Pool group did the deep-water walking with a swimming belt. The Treadmill group walked on the treadmill at the maximum speed they could stand. The Manova group compared the effect of training, group, side, muscles, and gait phase into the EMG. Anova was used to test the effect of training, group side, and gait phase into BBS, TUG and EMG variables. Pool and Treadmill had increased balance and agility. The highest EMG RMS occurred at the paretic side, for the Treadmill and after training. The mm. tibialis anterior, gastrocnemius lateralis, vastus lateralis, and biceps femoris presented the highest RMS for the NP side; while for mm. rectus femoris and semitendinosus, the paretic side presented the highest RMS. Thus, the both types of exercise lead to similar functional adaptations with different muscular activations during walking.

INTRODUCTION

Stroke is the second most common cause of death worldwide and the primary cause of chronic disability in adults1), (2. Without intense rehabilitation during the early days after the stroke, neural injuries gradually develop more pronounced motor impairments due to muscle weakness, spasticity and coordination loss3. Later, stroke survivors with chronic impairment become less independent to perform daily life activities, have less social interaction and are more concerned about their future4. Such dependent person with less social life can be considered as having lost motivation. This deprivation occurs because chronic stroke survivors have small resistance to fatigue4)- (6. They do not feel motivated to move continuously or for long periods since they get easily fatigued; as such, rehabilitation programs for such population should spare their activities between motor rehabilitation and increase in physical fitness in order to increase their resistance to fatigue.

In fact, about 80% of stroke survivors can walk without assistance; but their slow walk constrains their daily life activities7), (8. Walking speed is an important outcome for performance evaluation and for functional evaluation in stroke9), (10. The slow walking is due to the lower limb muscles spasticity11)- (14, muscle weakness, postural imbalance and fear of falling. Those clinical impairments also change the gait biomechanics15), (16, inducing asymmetrical, stereotyped and low ranged compensatory movements17. At the early stage of the rehabilitation program, efforts should be addressed to improve body functions in enhance resistance to fatigue.

The aerobic training applied to stroke people enhances physical ability and improves life independence and quality, reducing morbidity and mortality18. Standard aerobic training is usually developed with walking and running. Treadmill protocols to stroke people can recover impaired gait, improve gait parameters and reduce walking asymmetries19. On the other hand, water walking enhances the afferent sensory inflow and improves peak aerobic capacity and walking endurance, being able to affect gait kinematics in patients with stroke18), (20)- (22. It is not clear whether walking on water would provide the same or more benefits compared with the standard treadmill walking for chronic stroke people. In fact, little information is available to support a rehabilitation program for chronic stroke people with reduced mobility. The aim of this study was to compare the effect of aerobic training treadmill versus aerobic training in water for balance and gait in chronic stroke people. We expect that standard treadmill walking training and water walking training will not have similar biomechanical and functional results; therefore, both types of walking training will lead to similar functional results, but the electrical activity of lower limbs will show different behavior after training. Our first hypothesis is that treadmill gait training and deep-water gait training will lead to similar functional adaptations. Our second hypothesis is that treadmill gait training and deep-water gait training will induce different muscle adaptations that will provide different kinds of muscle activation during the walking test. We believe that training will improve participants’ overall fitness, but training specificity will lead to differing muscle activation during the gait test.[…]

Continue —–>  The effect of aquatic and treadmill exercise in individuals with chronic stroke

, , , , , ,

Leave a comment

[ARTICLE] Mirror Therapy Using Gesture Recognition for Upper Limb Function, Neck Discomfort, and Quality of Life After Chronic Stroke: A Single-Blind Randomized Controlled Trial – Full Text

Abstract

Background

Mirror therapy for stroke patients was reported to be effective in improving upper-extremity motor function and daily life activity performance. In addition, game-based virtual reality can be realized using a gesture recognition (GR) device, and various tasks can be presented. Therefore, this study investigated changes in upper-extremity motor function, quality of life, and neck discomfort when using a GR device for mirror therapy to observe the upper extremities reflected in the mirror.

Material/Methods

A total of 36 subjects with chronic stroke were randomly divided into 3 groups: GR mirror therapy (n=12), conventional mirror therapy (n=12), and control (n=12) groups. The GR therapy group performed 3D motion input device-based mirror therapy, the conventional mirror therapy group underwent general mirror therapy, and the control group underwent sham therapy. Each group underwent 15 (30 min/d) intervention sessions (3 d/wk for 5 weeks). All subjects were assessed by manual function test, neck discomfort score, and Short-Form 8 in pre- and post-test.

Results

Upper-extremity function, depression, and quality of life in the GR mirror therapy group were significantly better than in the control group. The changes of neck discomfort in the conventional mirror therapy and control groups were significantly greater than in the GR mirror therapy group.

Conclusions

We found that GR device-based mirror therapy is an intervention that improves upper-extremity function, neck discomfort, and quality of life in patients with chronic stroke.

Background

In patients with acute stroke that occurred >6 months previously, 85% have upper-limb disorders, and 55% to 75% have upper-limb disorders []. The upper-limb movement function is decreased due to weakening of upper-limb muscles, which is primarily caused by changes in the central nervous system and secondarily by weakness due to inactivity and reduced activity [,].

Activities of daily living are limited due to body dysfunction, and most stroke patients have limited social interaction; these disorders reduce the quality of life []. In addition, stroke patients may experience depression due to reduced motivation []. Depression results in loss of interest and joy, anxiety, fear, hostility, sadness, and anger, which negatively affect functional recovery and rehabilitation in stroke patients [].

Constraint-induced movement therapy, action observation training, and mirror therapy have been recently studied as therapies for upper-extremity motor function []. These interventions are used to increase the use of paralyzed limbs to overcome disuse syndromes, observe and imitate movement, and change the neural network involved in movement. Providing various tasks in upper-extremity rehabilitation is necessary and virtual reality is used as a method for providing various tasks [,].

Interventions using virtual reality require cognitive factors, such as judgment and memory, as the task progresses. It can use visual and auditory stimuli, and can induce interest and motivation, helping stroke patients to be mentally stable and motivated []. Gesture recognition (GR) is a topic that studies the reading of these movements using algorithms. These GR algorithms mainly focus on the movement of arm, hands, eyes, legs, and other body parts. The main idea is to capture body movements using capture devices and send the acquired data to a computer []. A remarkable example is shown in physical rehabilitation, where the low-cost hardware and algorithms accomplish outstanding results in therapy of patients with mobility issues. A 3D motion input device is required for upper-body rehabilitation in virtual reality. The Leap motion controller, a GR input device, has been recently released, which monitors hand and finger movements and reflects them on the monitor []. In addition, game-based virtual reality can be realized using a GR device, and various tasks can be presented.

Mirror therapy has been used as a therapeutic intervention for phantom pain in amputees. The painful and paralyzed body parts are covered with a mirror. The mirror is placed in the center of the body, and the movement of the paralyzed body is viewed through the mirror. The patient has a visual illusion that the paralyzed side is normally moving []. Mirror therapy for stroke patients was reported to be effective in upper-extremity motor function and daily life activity performance []. However, conventional mirror therapy methods require high concentration and can become tedious, making active participation difficult []. In addition, conventional mirror therapy differs from the actual situation wherein a mirror positioned at the center of the body should be viewed with the head sideways. Because patients are in a suboptimal posture, they may have neck discomfort after mirror therapy. The body has muscle strength disproportion when maintaining poor posture for a long time. This results in inadequate tension on adjacent muscles and joints, resulting in movement restriction, reduced flexibility, pain, and changes in bone and soft tissue [].

This study investigated the effect on upper-extremity motor function, quality of life, and neck discomfort by using GR device mirror therapy in patients with chronic stroke, and evaluated the efficacy of this technique.

[…]

 

Continue —>  Mirror Therapy Using Gesture Recognition for Upper Limb Function, Neck Discomfort, and Quality of Life After Chronic Stroke: A Single-Blind Randomized Controlled Trial

An external file that holds a picture, illustration, etc.Object name is medscimonit-25-3271-g002.jpg

Figure 2
(A) Gesture recognition mirror therapy group, (B) Conventional mirror therapy, (C) Control group.

, , , , , , , , ,

Leave a comment

[BLOG POST] PathMaker Neurosystems – Publication of First Clinical Trial Results for MyoRegulator® Device for Non-Invasive Treatment of Spasticity

PathMaker Neurosystems Inc. (“PathMaker”), a clinical-stage bioelectronic medicine company developing breakthrough non-invasive systems for the treatment of patients with spasticity and paralysis has announced the first publication of clinical trial results for its MyoRegulator® device for the non-invasive treatment of spasticity. Published in Bioelectronic Medicine, the results provide the first clinical evidence using MyoRegulator to treat upper extremity spasticity in subjects with chronic stroke. MyoRegulator is an investigational medical device and is limited by US Federal law to investigational use only.

Spasticity is a chronic condition characterised by painful muscle contractions and is common in patients suffering from stroke, cerebral palsy, multiple sclerosis, spinal cord injury, traumatic brain injury and other neurological disorders. Management of spasticity is a difficult challenge and is currently managed primarily by pharmacological agents and injected botulinum neurotoxins, and there is tremendous unmet medical need.  MyoRegulator is a first-in-class non-invasive device based on PathMaker’s proprietary DoubleStim™ technology (combining anodal trans-spinal direct current stimulation (tsDCS) and peripheral nerve direct current stimulation (pDCS)), which provides simultaneous non-invasive stimulation intended to suppress hyperexcitable spinal neurons involved with spasticity.

“Current pharmacological approaches to managing spasticity have, at best, short-term efficacy, are confounded by adverse effects, and are often unpleasant for the patient,” said co-author Zaghloul Ahmed, Ph.D., Professor and Chairman, Department of Physical Therapy and Professor, Center for Developmental Neuroscience, CUNY and Scientific Founder of PathMaker Neurosystems. “The initial study results demonstrate the potential of a novel, non-invasive treatment to reduce spasticity and improve functional recovery in patients with upper motor neuron syndrome after stroke.”

The publication, Non-Invasive Treatment of Patients with Upper Extremity Spasticity Following Stroke Using Paired Trans-spinal and Peripheral Direct Current Stimulation, was authored by researchers at Feinstein Institute for Medical Research at Northwell Health (Manhasset, NY) led by Bruce Volpe, M.D. The study included patients with upper limb hemiparesis and wrist spasticity at least 6 months after their initial stroke in a single-blind, sham-controlled, crossover design study to test whether MyoRegulator treatment reduces chronic upper-extremity spasticity.

Twenty subjects received five consecutive 20-minute daily treatments with sham stimulation followed by a 1-week washout period, then five consecutive 20-minute daily treatments with active stimulation. Subjects were told that the order of active or sham stimulation would be randomized. Clinical and objective measures of spasticity and motor function were collected before the first session of each condition (baseline), immediately following the last session of each condition, and weekly for 5 weeks after the completion of active treatments. The results demonstrated significant group mean reductions from baseline in both Modified Tardieu Scale scores (summed across the upper limb, P<0.05), and in objectively measured muscle resistance at the wrist flexor (P<0.05) following active treatment as compared to following sham treatment. Motor function also improved significantly (measured by the Fugl-Meyer and Wolf Motor Function Test; P<0.05 for both tests) after active treatment, even without additional prescribed activity or training. The effect of the active MyoRegulator treatment was durable for the 5-week follow-up period.

We are highly encouraged by these clinical results which demonstrate the potential of MyoRegulator to improve outcomes for patients suffering from spasticity, without the need for surgery or drugs. Building on these results and our ongoing clinical trial in Europe, we expect to initiate a US multi-center, pivotal, double-blind clinical trial supported by the National Institute of Neurological Disorders and Stroke (NINDS) in early 2020.

Nader Yaghoubi, M.D., Ph.D., President and Chief Executive Officer of PathMaker

 

About PathMaker Neurosystems Inc.

PathMaker Neurosystems is a clinical stage bioelectronic medicine company developing breakthrough non-invasive systems for the treatment of patients with chronic neuromotor conditions. With offices in Boston (US) and Paris (France), we are collaborating with world-class institutions to rapidly bring to market disruptive products for treating spasticity, paralysis and muscle weakness. In January 2019, we announced a collaboration and distribution agreement with WeHealth Digital Medicine to commercialise the MyoRegulator® device worldwide, excluding US and Japan territories retained by PathMaker.  More than 48 million patients in the US, Europe and China suffer disabilities due to stroke, cerebral palsy, multiple sclerosis, spinal cord injury, traumatic brain injury, Parkinson’s disease and other neurological disorders. At PathMaker, we are opening up a new era of non-invasive neurotherapy for patients suffering from chronic neuromotor conditions. For more information, please visit the company website at www.pmneuro.com.

Source: PathMaker Neurosystems Inc.

via PathMaker Neurosystems – Publication of First Clinical Trial Results for MyoRegulator® Device for Non-Invasive Treatment of Spasticity | ACNR | Online Neurology Journal

, , , , ,

Leave a comment

[WEB SITE] Research work in Neurotechnology directs efforts towards treating chronic stroke

Scientific work undertaken at Wyss Center for Bio and Neuroengineering in Geneva, Switzerland has developed a rehabilitation arm in order to improve recovery during severe chronic strokes in patients.

Stroke is regarded as one of the major health problems among people today. A common symptom observed among cases of stroke is the long-term impairment of upper arm function. This results in complications in daily life chores and hampers the quality of life.

The Neurotechnology includes a host of therapies, like robotics, brain stimulation, brain-machine interfaces, etc. According to experts, these will in return be fruitful in treating patients, centering on their individual needs. Moreover, the new study also sheds light on longitudinal clinical studies in order to understand the rehabilitation benefits of individual therapies. Furthermore, the study also focuses on various combinations of complementary therapies used over a period of time.

“Our findings show that neurotechnology-aided upper limb rehabilitation is promising for severe chronic stroke patients. However, we also found that the ‘one size fits all’ approach doesn’t lead to the best outcome. We suggest a move towards a personalized combination of neurotechnology-based stroke rehabilitation therapies, ideally in a home-based environment where prolonged therapy is more feasible than in a clinic. We believe that by sequentially introducing stroke therapies according to individual progress, we could allow patients to continue their recovery beyond what is possible today,” says Dr. Martina Coscia, lead author and Staff Engineer at Wyss Center.

As per experts, rehabilitation therapies show the best results within the first three months after the incidence of stroke. After the first three months, the scope of natural recovery is limited and patients are considered chronic, commonly observed scenario, especially among patients who are severely affected.

For the study, authors reportedly compared data from 64 cases of clinical studies based on upper limb neurotechnology treatments among stroke patients. The findings mainly centered on brain stimulation, electrical stimulation of muscles, and brain-computer interfaces, in addition to a combination of these.

Further reports suggest the team is directing efforts towards undertaking clinical traits in order to test the results. For the trial, experimental design such as robotics, functional electrical stimulation, brain-computer interfaces is used to monitor the after-effects of treatment in individual patients. Scientists believe to use a combination of neurotechnological and new personalized therapies in order to improve recovery among patients. The study published in the journal Brain alleges that the trial will begin in Switzerland in summer 2019.

via Research work in Neurotechnology directs efforts towards treating chronic stroke – Xaralite

, , , , , , , , , , , , ,

Leave a comment

[WEB PAGE] Results from MyoRegulator for Spasticity Trial Published

myoregulator

Results from a clinical trial testing the MyoRegulator device for the non-invasive treatment of spasticity, published recently in Bioelectronic Medicine, suggest evidence for using MyoRegulator to treat upper extremity spasticity in subjects with chronic stroke, PathMaker Neurosystems Inc announces.

PathMaker Neurosystems Inc is a clinical-stage bioelectronic medicine company that develops non-invasive systems for the treatment of patients with spasticity and paralysis. The MyoRegulator is an investigational medical device and is limited by US Federal law to investigational use only.

The device is based on PathMaker’s proprietary DoubleStim technology (combining anodal trans-spinal direct current stimulation (tsDCS) and peripheral nerve direct current stimulation (pDCS)), which provides simultaneous non-invasive stimulation intended to suppress hyperexcitable spinal neurons involved with spasticity, the company explains in a media release.

“Current pharmacological approaches to managing spasticity have, at best, short-term efficacy, are confounded by adverse effects, and are often unpleasant for the patient,” said co-author Zaghloul Ahmed, PhD, professor and chairman, Department of Physical Therapy and Professor, Center for Developmental Neuroscience, CUNY and Scientific Founder of PathMaker Neurosystems.

“The initial study results demonstrate the potential of a novel, non-invasive treatment to reduce spasticity and improve functional recovery in patients with upper motor neuron syndrome after stroke.”

The single-blind, sham-controlled, crossover design study, authored by researchers at Feinstein Institute for Medical Research at Northwell Health (and led by Bruce Volpe, MD, included patients with upper limb hemiparesis and wrist spasticity at least 6 months after their initial stroke to test whether MyoRegulator treatment reduces chronic upper-extremity spasticity.

Twenty subjects received five consecutive 20-minute daily treatments with sham stimulation followed by a 1-week washout period, then five consecutive 20-minute daily treatments with active stimulation. Subjects were told that the order of active or sham stimulation would be randomized.

Clinical and objective measures of spasticity and motor function were collected before the first session of each condition (baseline), immediately following the last session of each condition, and weekly for 5 weeks after the completion of active treatments.

The results demonstrated significant group mean reductions from baseline in both Modified Tardieu Scale scores (summed across the upper limb, P<0.05), and in objectively measured muscle resistance at the wrist flexor (P<0.05) following active treatment as compared to following sham treatment.

Motor function also improved significantly (measured by the Fugl-Meyer and Wolf Motor Function Test; P<0.05 for both tests) after active treatment, even without additional prescribed activity or training. The effect of the active MyoRegulator treatment was durable for the 5-week follow-up period, the release continues.

“We are highly encouraged by these clinical results which demonstrate the potential of MyoRegulator to improve outcomes for patients suffering from spasticity, without the need for surgery or drugs,” says Nader Yaghoubi, MD, PhD, president and chief executive officer of PathMaker.

“Building on these results and our ongoing clinical trial in Europe, we expect to initiate a US multi-center, pivotal, double-blind clinical trial supported by the National Institute of Neurological Disorders and Stroke (NINDS) in early 2020.”

[Source: PathMaker Neurosystems Inc]

 

via Results from MyoRegulator for Spasticity Trial Published – Rehab Managment

, , , , , , , , , ,

Leave a comment

[Abstract] Does hand robotic rehabilitation improve motor function by rebalancing interhemispheric connectivity after chronic stroke? Encouraging data from a randomised-clinical-trial.

Abstract

OBJECTIVE:

The objective of this study was the evaluation of the clinical and neurophysiological effects of intensive robot-assisted hand therapy compared to intensive occupational therapy in the chronic recovery phase after stroke.

METHODS:

50 patients with a first-ever stroke occurred at least six months before, were enrolled and randomised into two groups. The experimental group was provided with the Amadeo™ hand training (AHT), whereas the control group underwent occupational therapist-guided conventional hand training (CHT). Both of the groups received 40 hand training sessions (robotic and conventional, respectively) of 45 min each, 5 times a week, for 8 consecutive weeks. All of the participants underwent a clinical and electrophysiological assessment (task-related coherence, TRCoh, and short-latency afferent inhibition, SAI) at baseline and after the completion of the training.

RESULTS:

The AHT group presented improvements in both of the primary outcomes (Fugl-Meyer Assessment for of Upper Extremity and the Nine-Hole Peg Test) greater than CHT (both p < 0.001). These results were paralleled by a larger increase in the frontoparietal TRCoh in the AHT than in the CHT group (p < 0.001) and a greater rebalance between the SAI of both the hemispheres (p < 0.001).

CONCLUSIONS:

These data suggest a wider remodelling of sensorimotor plasticity and interhemispheric inhibition between sensorimotor cortices in the AHT compared to the CHT group.

SIGNIFICANCE:

These results provide neurophysiological support for the therapeutic impact of intensive robot-assisted treatment on hand function recovery in individuals with chronic stroke.

 

via Does hand robotic rehabilitation improve motor function by rebalancing interhemispheric connectivity after chronic stroke? Encouraging data from a … – PubMed – NCBI

, , , , , , , , , , ,

Leave a comment

%d bloggers like this: