Posts Tagged motor imagery

[Abstract] An Upper Limb Rehabilitation Training and Evaluation System for Stroke Patients


This system combines information technology and rehabilitation medicine. It adopts Motor Imagery (MI) intervention and mental rotation training mode in order to change the traditional inefficient mode of clinical stroke rehabilitation. We developed multi-functional side recognition rehabilitation and evaluation peripheral to evaluate the rehabilitation effect of stroke patients accurately and quantitatively. The healing effect, which reveals the degree of recovery to the patients, will no longer depend on the personal experience of the rehabilitation therapist. Based on the psychological hint and a client designed with Unity 3D, it makes the treatment less boring to stimulate the patients’ initiative during the training. This system confirms that the MI Intervention can to a certain degree improve function of limb motor and sensory feedback by analyzing 38 volunteer patients’ data in Huashan Hospital and Shanghai Jing’an District Central Hospital. Precise and quantitative evaluation results are given for the further treatment.

via An Upper Limb Rehabilitation Training and Evaluation System for Stroke Patients | ZHAO | DEStech Transactions on Computer Science and Engineering

, , , , , , , ,

Leave a comment

[Abstract] Motor Imagery Based Brain-Computer Interface Control of Continuous Passive Motion for Wrist Extension Recovery in Chronic Stroke Patients


  • Twenty-one patients successfully recovered active wrist extension.
  • Motor imagery based BCI control of wrist CPM training was applied.
  • Typical spatial and spectrum patterns of ERD/ERS formed after training.


Motor recovery of wrist and fingers is still a great challenge for chronic stroke survivors. The present study aimed to verify the efficiency of motor imagery based brain-computer interface (BCI) control of continuous passive motion (CPM) in the recovery of wrist extension due to stroke. An observational study was conducted in 26 chronic stroke patients, aged 49.0 ± 15.4 years, with upper extremity motor impairment. All patients showed no wrist extension recovery. A 24-channel highresolution electroencephalogram (EEG) system was used to acquire cortical signal while they were imagining extension of the affected wrist. Then, 20 sessions of BCI-driven CPM training were carried out for 6 weeks. Primary outcome was the increase of active range of motion (ROM) of the affected wrist from the baseline to final evaluation. Improvement of modified Barthel Index, EEG classification and motor imagery pattern of wrist extension were recorded as secondary outcomes. Twenty-one patients finally passed the EEG screening and completed all the BCI-driven CPM trainings. From baseline to the final evaluation, the increase of active ROM of the affected wrists was (24.05 ± 14.46)˚. The increase of modified Barthel Index was 3.10 ± 4.02 points. But no statistical difference was detected between the baseline and final evaluations (P > 0.05). Both EEG classification and motor imagery pattern improved. The present study demonstrated beneficial outcomes of MI-based BCI control of CPM training in motor recovery of wrist extension using motor imagery signal of brain in chronic stroke patients.


Graphical abstract

via Motor Imagery Based Brain-Computer Interface Control of Continuous Passive Motion for Wrist Extension Recovery in Chronic Stroke Patients – ScienceDirect


, , , , , , , , , , , , , , ,

Leave a comment

[Abstract] Motor imagery as a complementary technique for functional recovery after stroke: a systematic review.


Background: Stroke is the leading cause of disability in adults, producing a major personal and economic impact on those affected. The scientific evidence regarding the use of Motor Imagery (MI) as a preparatory process for motor control reinforces the need to explore this method as a complement to physical therapy.

Objectives: The objectives of this systematic review were to determine the effectiveness of MI for functional recovery after stroke and to identify a possible intervention protocol, according to the level of existing scientific evidence.

Methods: A comprehensive literature search was performed using Medline, Cochrane Library and PEDro databases. Studies were limited to those published between 2007 and 2017, and restricted to English and/or Spanish language publications.

Results: Thirteen randomized clinical trials that met the inclusion criteria were included. The methodological quality of studies was determined using the Critical Review Form for Quantitative Studies, obtaining scores of 9-13 points out of 15. The level of evidence and strength of recommendations were assessed using the U.S. Preventive Services Task Force (USPSTF) assessment, obtaining levels IA and II-B1. Significant improvements were found in outcome measures evaluating upper limb functionality, balance and kinematic gait parameters.

Conclusions: The use of MI combined with conventional rehabilitation is an effective method for the recovery of functionality after stroke. Due to the great heterogeneity in the scientific literature available, new lines of research are necessary, in order to include well-designed studies of good methodological quality and to establish a consensus regarding the most appropriate protocols.


via Motor imagery as a complementary technique for functional recovery after stroke: a systematic review. – PubMed – NCBI

, , , , , ,

Leave a comment

[WEB SITE] When it Comes to Stroke Recovery, Who You See Matters

(a) Top view of the experiment. A tablet monitor was placed over the participant’s right forearms on the desk in front of them. (b) Diagrammatic view of the experiment from the left. There is a space to open the hand, which made it easier to imagine the opening-clench hand movement. (Photo courtesy of Toshihisa Tanaka, TUAT)

For stroke patients, observing their own hand movements in a video-assisted therapy – as opposed to someone else’s hand – could enhance brain activity and speed up rehabilitation, according to researchers.

The scientists, from Tokyo University of Agriculture and Technology (TUAT), published their findings in IEEE Transactions on Neural Systems and Rehabilitation Engineering.

Brain plasticity, where a healthy region of the brain fulfills the function of a damaged region of the brain, is a key factor in the recovery of motor functions caused by stroke. Studies have shown that sensory stimulation of the neural pathways that control the sense of touch can promote brain plasticity, essentially rewiring the brain to regain movement and senses.

To promote brain plasticity, stroke patients may incorporate a technique called motor imagery in their therapy. Motor imagery allows a participant to mentally simulate a given action by imagining themselves going through the motions of performing that activity. This therapy may be enhanced by a brain-computer interface technology, which detects and records the patients’ motor intention while they observe the action of their own hand or the hand of another person, a media release from Tokyo University of Agriculture and Technology explains.

“We set out to determine whether it makes a difference if the participant is observing their own hand or that of another person while they’re imagining themselves performing the task,” says co-author Toshihisa Tanaka, a professor in the Department of Electrical and Electrical Engineering at TUAT in Japan and a researcher at the RIKEN Center for Brain Science and the RIKEN Center for Advanced Intelligent Project.

The researchers monitored brain activity of 15 healthy right-handed male participants under three different scenarios. In the first scenario, participants were asked to imagine their hand moving in synchrony with hand movements being displayed in a video clip showing their own hand performing the task, together with corresponding voice cues.

In the second scenario, they were asked to imagine their hand moving in synchrony with hand movements being displayed on a video clip showing another person’s hand performing the task, together with voice cues. In the third scenario, the participants were asked to open and close their hands in response to voice cues only.

Using electroencephalography (EEG), brain activity of the participants was observed as they performed each task.

The team found meaningful differences in EEG measurements when participants were observing their own hand movement and that of another person. The findings suggest that, in order for motor imagery-based therapy to be most effective, video footage of a patient’s own hand should be used.

“Visual tasks where a patient observes their own hand movement can be incorporated into brain-computer interface technology used for stroke rehabilitation that estimates a patient’s motor intention from variations in brain activity, as it can give the patient both visual and sense of movement feedback,” Tanaka explains.

[Source(s): Tokyo University of Agriculture and Technology, EurekAlert]

via When it Comes to Stroke Recovery, Who You See Matters – Rehab Managment

, , , , , , , , ,

Leave a comment

[Abstract] Efficacy of motor imagery additional to motor-based therapy in the recovery of motor function of the upper limb in post-stroke individuals: a systematic review

Background. Motor imagery (MI) consists of the mental simulation of repetitive movements with the intention of promoting the learning of a motor skill. It seems to be an additional useful tool for motor-based therapy to potentiate the rehabilitation of the upper limb function of post-stroke individuals.

Objective. To investigate whether MI combined with motor-based therapy is effective in recovering motor deficits of upper limbs from post-stroke individuals.

Method. A systematic review of the literature was performed in the PEDro, LILACS, Cochrane, SCOPUS, Medline/PubMed and SciELO databases. Randomized controlled trials (RCTs) investigating the efficacy of MI associated with motor-based therapy compared with isolated motor-based therapy were included. The included outcomes were gross motor function and functional activities of the upper limb of post-stroke individuals. The physiotherapy evidence database scale was applied for evaluation of methodological quality.

Results. Four RCTs were included, with a total of 104 participants, with methodological quality varying from moderate to high. There was a statistically significant improvement in upper limb motor function in all studies. Gross motor function was higher in MI associated with motor-based therapy compared to controls, but only in one study there was superiority in the results of functional activities of the upper limb.

Conclusion. There is evidence showing that MI associated with motor-based therapy is an effective tool in improving the motor function of upper limbs of post-stroke individuals. However, more studies are needed to establish criteria for frequency and duration of intervention, and what better type of MI should be used.

via Efficacy of motor imagery additional to motor-based therapy in the recovery of motor function of the upper limb in post-stroke individuals: a systematic review: Topics in Stroke Rehabilitation: Vol 0, No 0

, , , , , , , ,

Leave a comment

[Abstract] A novel neurocognitive rehabilitation tool in the recovery of hemiplegic hand grip after stroke: a case report.


Stroke has significant physical, psychological and social consequences. Recent rehabilitation approaches suggest that cognitive exercises with dual-task (sensory-motor) exercises positively influence the recovery and function of the hemiplegic hand grip. The purpose of this study was to describe a rehabilitation protocol involving the use of a new neurocognitive tool called “UOVO” for hand grip recovery after stroke. A 58-year-old right-handed male patient in the chronic stage of stroke, presenting with left-sided hemiparesis and marked motor deficits at the level of the left hand and forearm, was treated with the UOVO, a new rehabilitation instrument based on the neurocognitive rehabilitation theory of Perfetti. The patient was evaluated at T0 (before treatment), T1 (after treatment) and T2 (2 months of follow-up). At T2, the patient showed improvements of motor functions, shoulder, elbow and wrist spasticity, motility and performance. This case report explores the possibility of improving traditional rehabilitation through a neurocognitive approach with a dual-task paradigm (including motor and somato-sensory stimulation), specifically one involving the use of an original rehabilitation aid named UOVO, which lends itself very well to exercises proposed through the use of motor imagery. The results were encouraging and showed improvements in hemiplegic hand grip function and recovery. However, further studies, in the form of randomized controlled trials, will be needed to further explore and confirm our results.


via A novel neurocognitive rehabilitation tool in the recovery of hemiplegic hand grip after stroke: a case report. – PubMed – NCBI

, , , , , , , , , , , , ,

Leave a comment

[ARTICLE] The Effects of Combined Low Frequency Repetitive Transcranial Magnetic Stimulation and Motor Imagery on Upper Extremity Motor Recovery Following Stroke – Full Text

Objective: To investigate the effects of low frequency transcranial magnetic stimulation (LF-rTMS) combined with motor imagery (MI) on upper limb motor function during stroke rehabilitation.

Background: Hemiplegic upper extremity activity obstacle is a common movement disorder after stroke. Compared with a single intervention, sequential protocol or combination of several techniques has been proven to be better for alleviating motor function disorder. Non-invasive neuromodulation techniques such as repetitive transcranial magnetic stimulation (rTMS) and motor imagery (MI) have been verified to augment the efficacy of rehabilitation.

Methods:Participants were randomly assigned to 2 intervention cohorts: (1) experimental group (rTMS+MI group) was applied at 1 Hz rTMS over the primary motor cortex of the contralesional hemisphere combined with audio-based MI; (2) control group (rTMS group) received the same therapeutic parameters of rTMS combined with audiotape-led relaxation. LF-rTMS protocol was conducted in 10 sessions over 2 weeks for 30 min. Functional measurements include Wolf Motor Function Test (WMFT), the Fugl-Meyer Assessment Upper Extremity (UE-FMA) subscore, the Box and Block Test (BBT), and the Modified Barthel index (MBI) were conducted at baseline, the second week (week 2) and the fourth week (week 4).

Results: All assessments of upper limb function improved in both groups at weeks 2 and 4. In particular, significant differences were observed between two groups at end-intervention and after intervention (p < 0.05). In these findings, we saw greater changes of WMFT (p < 0.01), UE-FMA (p < 0.01), BBT (p < 0.01), and MBI (p < 0.001) scores in the experimental group.

Conclusions: LF-rTMS combined with MI had a positive effect on motor function of upper limb and can be used for the rehabilitation of upper extremity motor recovery in stroke patients.


Decreased mobility of hemiplegic upper limb is a common dyskinesia after stroke. At present, clinical researchers have established a number of treatments to improve upper extremity motor function (1). Compared with a single intervention, a combination approach of different techniques has been proven to be better for alleviating movement disorder (2). Lots of trials have shown that movement function improvement after stroke can be enhanced by non-invasive brain stimulation techniques combined with conventional clinical practice (36).

Repetitive transcranial magnetic stimulation (rTMS) is one of non-invasive brain stimulations, and could modulate cortical activity. Stroke is considered to be one possible reason for imbalance of interhemispheric cortical inhibition. rTMS could rebulid the interhemisphere balance by down-regulating the excitability of the non-lesioned hemisphere with low frequency stimulation or up-regulating the lesioned excitability by high frequency stimulation (6). Randomized controlled trials have shown that short courses of inhibitory, contralesional rTMS can improve the motor function of hemiplegia after stroke (78). Evidence suggested that maximum control of the lesioned hemisphere is associated with better function (910). Early damage affected the ability of upper motor neurons to compete with lateral neurons to dominate motor neurons (11). Inhibition of contralateral primary motor cortex (M1) with 1 Hz rTMS may enhance hemispheric motor function. This method has revealed efficacy in the stroke rehabilitation for adults although they do not share the same models (8). Recently, the positive effects of HF-rTMS and LF-rTMS on movement disorder after stroke have been supported by accumulating evidence (7). And LF-rTMS has been confirmed to be in correlation with improved function in patients with chronic stroke (1213). Nowadays, a meta-analysis by Zhang et al. evaluated the therapeutic potential of LF-rTMS on stroke-induced upper limb movement disorder and cortex plasticity. This research supported that, as an add-on therapy, LF-rTMS successfully alleviated the hemiplegic upper limb motor deficit and significantly promoted upper limb function improvement after stroke (14).

Another non-invasive neuromodulation technique-motor imagery (MI), has been validated to increase the efficacy of rehabilitation and improve the performance of tasks associated with MI in patients after stroke (1517). The functional recovery of most stroke patients occurred mainly in the first 3 months, and the functional gain obtained in the chronic phase was limited (18). A possible cause of limited functional recovery in the chronic phase is learned nouse. Patients with severe impairment cannot use their paretic limbs in daily activities may be the reason (19). MI is a dynamic state during which the subject mentally simulates a specific movement without any obvious movement (20). It means that MI has no strict restrictions on the patient’s upper limb motor function, so it can be applied to stroke patients with poor function in chronic phase. According to previous studies, MI and motor execution share the same neural networks related to motor function (172122). These findings support the idea that MI can be used as a substitute for physical exercise which is difficult for patients to do (23). MI training was assumed to enhance motor recovery in stroke rehabilitation (24). Based on traditional rehabilitation training, MI training is more effective than conventional training alone (17). For example, Kang et al. and Xu et al. demonstrated an increase in neural activity in the motor area during MI training (2526). And Kawakami et al. also investigated changes of cortex in reciprocal inhibition following MI in patients with chronic stroke, and reported positive plastic changes during mental practice with MI (27). In another pilot study, Mihara et al. demonstrated that NIRS-mediated neurofeedback MI could enhance the ipsilesional premotor area activation in correlation with MI training and could have significant effects on the motor deficit recovery in stroke patients. Besides these findings, they also found that the change of cortical activation was related to the recovery of the hand function (19).

In view of the fact that rTMS and MI have no strict restrictions on the limb function of patients with chronic stroke, this study intends to combine the two interventions to maximize the motor function recovery of patients. As the author know, few studies explore whether the effect of LF-rTMS can be enhanced by combining with MI on upper extremity activity. In this study, we hypothesize that combination therapy of LF-rTMS with MI training will promote recovery from upper limb movement disorder in patients after chronic stroke; we also predict that activities of daily living might improve accordingly.

Therefore, the objective was to investigate the effects of LF-rTMS combined with MI on improving motor functions of hemiplegic upper extremity in chronic stroke patients.[…]


Continue —>  Frontiers | The Effects of Combined Low Frequency Repetitive Transcranial Magnetic Stimulation and Motor Imagery on Upper Extremity Motor Recovery Following Stroke | Neurology

Figure 1. Flow Diagram of the Trial.

, , , , , , , ,

Leave a comment

[ARTICLE] Effect of the combination of motor imagery and electrical stimulation on upper extremity motor function in patients with chronic stroke: preliminary results – Full Text


The combination of motor imagery (MI) and afferent input with electrical stimulation (ES) enhances the excitability of the corticospinal tract compared with motor imagery alone or electrical stimulation alone. However, its therapeutic effect is unknown in patients with hemiparetic stroke. We performed a preliminary examination of the therapeutic effects of MI + ES on upper extremity (UE) motor function in patients with chronic stroke.

A total of 10 patients with chronic stroke demonstrating severe hemiparesis participated. The imagined task was extension of the affected finger. Peripheral nerve electrical stimulation was applied to the radial nerve at the spiral groove. MI + ES intervention was conducted for 10 days. UE motor function as assessed with the Fugl–Meyer assessment UE motor score (FMA-UE), the amount of the affected UE use in daily life as assessed with a Motor Activity Log (MAL-AOU), and the degree of hypertonia in flexor muscles as assessed with the Modified Ashworth Scale (MAS) were evaluated before and after intervention. To assess the change in spinal neural circuits, reciprocal inhibition between forearm extensor and flexor muscles with the H reflex conditioning-test paradigm at interstimulus intervals (ISIs) of 0, 20, and 100 ms were measured before and after intervention.

UE motor function, the amount of the affected UE use, and muscle hypertonia in flexor muscles were significantly improved after MI + ES intervention (FMA-UE: p < 0.01, MAL-AOU: p < 0.01, MAS: p = 0.02). Neurophysiologically, the intervention induced restoration of reciprocal inhibition from the forearm extensor to the flexor muscles (ISI at 0 ms: p = 0.03, ISI at 20 ms: p = 0.03, ISI at 100 ms: p = 0.01).

MI + ES intervention was effective for improving UE motor function in patients with severe paralysis.

Upper motor dysfunction is a common problem in patients with stroke and disrupts activities of daily living and eventually worsens quality of life.1,2 Recently, several rehabilitation approaches have been developed to improve upper extremity (UE) motor function. Previous research has shown that intensive use of the paretic upper limb contributes to improved motor function, even though the motor recovery period has already passed.36 However, intensive use of the paretic upper limb is impossible for patients with severe upper limb paralysis, because they cannot voluntarily control the paretic hand. Therefore, other rehabilitative approaches for severely impaired patients are needed. As an alternative approach, motor imagery (MI) can be applied to patients regardless of the degree of motor paralysis. MI is defined as a dynamic state during which the representation of a given motor act is internally rehearsed within working memory without any overt motor output.7 Functional imaging studies have revealed that brain activity during motor execution and MI is largely shared in motor networks, such as the primary motor area, supplementary motor area, and premotor area.810 Also, transcranial magnetic stimulation (TMS) studies reported that excitability of the corticospinal tract (CST) is significantly higher during MI in comparison with baseline.1115 Based on these observations, MI has been applied for rehabilitation of patients with hemiparetic stroke, and the positive therapeutic effects on UE motor function have been reported.1620 However, the effect size differs among the studies,19 and is lower with regard to motor recovery of the paretic hand.20 To obtain clinically significant improvement, ingenuity to strengthen the therapeutic effect of MI is thought to be necessary.

The combination of MI and afferent input with electrical stimulation (ES) is an approach to enhance the therapeutic effect of MI. The effectiveness of ES for modulation of the excitability of the CST and improvement of dexterity performance of the paretic hand has been reported in patients with mild to moderate paralysis.21,22 Moreover, the additive effect of MI and ES has been reported in healthy adults. Saito and colleagues reported that a combination of MI and peripheral nerve ES enhances the excitability of the CST compared with MI alone or ES alone.23 In addition, Kaneko and colleagues reported that the combination of MI and electrical muscular stimulation reproduces the excitability of the CST at levels similar to voluntary muscle contraction.24 However, its therapeutic effects for motor function in patients with stroke are unknown. Therefore, we performed a preliminary examination of the therapeutic effects of a combination of MI and peripheral nerve ES (MI + ES) on UE motor function in patients with severe paralysis. The aim of this study is to investigate the feasibility and potential of the therapeutic effect for future randomized controlled trials.[…]


Continue —> Effect of the combination of motor imagery and electrical stimulation on upper extremity motor function in patients with chronic stroke: preliminary results – Kohei Okuyama, Miho Ogura, Michiyuki Kawakami, Kengo Tsujimoto, Kohsuke Okada, Kazuma Miwa, Yoko Takahashi, Kaoru Abe, Shigeo Tanabe, Tomofumi Yamaguchi, Meigen Liu, 2018


Figure 1. The experimental setup of the intervention with combination of motor imagery and electrical stimulation (MI + ES).

, , , , , , , , , , ,

Leave a comment

[VIDEO] Post Concussion Syndrome – ReAttach and Mirror therapy – YouTube

This young lady had a contusio cerebri in 2014 and a concussion in 2016. In 2018 she suddenly showed sensorimotor problems after a relative small incident. This video shows the impressive improvement after one session of ReAttach to ( among others) improve the multiple sensory integration processing and to stimulate motor imagery and after the second session by means of mirror therapy.

via Post Concussion Syndrome – ReAttach and Mirror therapy – YouTube

, , ,

Leave a comment

[Abstract] Electromyography Based Orthotic Arm and Finger Rehabilitation System


Electromyography (EMG), a technique used to analyze and record electric current produced by skeletal muscles, has been used to control replacement limbs, and diagnose muscle irregularities. In this work, an EMG based system comprising of an orthotic arm and finger device to aid in muscle rehabilitation, is presented. As the user attempts to contract their bicep or forearm muscles, the system senses the change in the EMG signals and in turn triggers the motors to assist with flexion and extension of the arm and fingers. As brain is a major factor for muscle growth, mental training using motor imagery was incorporated into the system. Subjects underwent mental training to show the capability of muscle growth. The measured data reveals that the subjects were able to compensate for the loss of muscle growth, due to shorter physical training sessions, with mental training. Subjects were then tested using the orthotic arm and finger rehabilitation device with motor imagery. The findings also showed a positive increase in muscle growth using the rehabilitation system. Based on the experimental results, the EMG rehabilitation system presented in this paper has the potential to increase muscle strength and improve the recovery rate for muscle injuries, partial paralysis, or muscle irregularities.

via Electromyography Based Orthotic Arm and Finger Rehabilitation System – IEEE Conference Publication

, , , , , , , , , , ,

Leave a comment

%d bloggers like this: