Posts Tagged motor imagery

[Abstract] Motor imagery: a systematic review of its effectiveness in the rehabilitation of the upper limb following a stroke.



Motor imagery or mental practice of movement is a relatively new intervention that is being used on an increasingly more frequently basis in the treatment of stroke patients. It consists in the person evoking a movement or gesture in order to learn or improve its execution. Neuroimaging studies have shown that imagining movements activates neuronal patterns that are similar to those produced when they are actually performed.


A systematic review was conducted between January and June 2017 in the Web of Science, PubMed, CINHAL, PEDro and Scopus databases to select clinical trials carried out with stroke patients in whom this technique was used as rehabilitation. Thirteen randomised clinical trials were included. The characteristics of the studies and the measures of results were summarised and the evidence of their outcomes was described.


Most of the studies found significant differences in terms of improved motor rehabilitation of the upper limb among the subjects in the experimental groups. Only one of the studies failed to show any evidence of its effectiveness in isolation. None of them made any reference to its effectiveness in improving sensory alterations.


Motor imagery, combined with conventional therapy (physiotherapy or occupational therapy), seems to have positive effects on the motor rehabilitation of the upper limb following a stroke. Further research is needed to improve the heterogeneity of the interventions and to evaluate their effectiveness in the long term.


via [Motor imagery: a systematic review of its effectiveness in the rehabilitation of the upper limb following a stroke]. – PubMed – NCBI


, , , , , ,

Leave a comment

[ARTICLE] Effectiveness of Mirror Therapy in Rehabilitation of Hand Function in Sub-Acute Stroke – Full Text


Aim: Three quarters of strokes occur in the region supplied by the middle cerebral artery. As a consequence, the upper limb will be affected in a large number of patients. Purpose of the study is to examine the effectiveness of mirror therapy in rehabilitation of hand function in sub-acute stroke.

Methodology: An experimental study design, 30 subjects with sub-acute stroke with impaired hand function randomly allocated 15 subjects into each experimental group and conventional group. Both groups received conventional physiotherapy. The experimental group in addition, received Mirror Therapy program of 30 repetition of each exercises per day for 5 days in a week for 4 weeks (total = 20 sessions). Hand functions were measured using Upper extremity motor activity log (UE MAL) and Action research arm test (ARAT) before and after 4 week of intervention.

Results: Results of the study suggested that both the experimental and conventional group had a significant improvement in hand function (AROM, functional task with objects, object manipulation), however experimental group showed significantly more improvement than conventional group, providing Mirror Therapy with conventional treatment is more effective than conventional treatment alone.

Conclusion: Mirror therapy with conventional physiotherapy brings more improvement in hand function than conventional physiotherapy alone.


World Health Organization [WHO; Stroke; 1989] defines the clinical syndrome of stroke as ‘rapidly developed clinical signs of focal (or global) distribution of cerebral function with symptoms lasting more than 24 hours or longer or leading to death, with no apparent cause other than vascular origin’.

Prevalence rates reported for stroke or CerebroVascular Accident (CVA) worldwide vary between 500 to 800 per 100,000 population [N.K. Sehi et al 2007] with about 20 million people suffer from stroke each year; out of that 5 million will die as a consequences and 15 million will survive with long term disabilities of varied spectrum. Many surviving stroke patients will often depends on other people‘s continuous support to survive.

Stroke is the most common cause of chronic disability [1]. Of survivors, an estimated one third will be functionally dependent after 1 year experiencing difficulty with activities of daily living (ADL), ambulation, speech, and so forth [2]. Cognitive impairment occurs frequently after stroke, commonly involving memory, orientation, language, and attention. The presence of cognitive impairment in patients with stroke has important functional consequences, independent of the effects of physical impairment (T K Tatemichi et al 1994).

Recovery of function after stroke may occur, but it is unclear whether interventions can improve function beyond the spontaneous process. In particular, recovery of hand function plateaus in about 1 year, and common knowledge is that the patient will remain at that level for the rest of his or her life [3,4]. Typically in such situations, upper arm function is better than that in the hand [5]. An emerging concept in neural plasticity is that there is competition among body parts for territory in the brain [6-11].

Several studies have been conducted to examine the recovery of the hemiplegic arm in stroke patients. Up to 85% of patients show an initial deficit in the arm. Three to six months later, problems remain in 55% to 75% of patients [12-15]. While recovery of arm function is poor in a significant number of patients. Three quarters of strokes occur in the region supplied by the middle cerebral artery [16]. As a consequence, the upper limb will be affected in a large number of patients. Functional recovery of the arm includes grasping, holding, and manipulating objects, which requires the recruitment and complex integration of muscle activity from shoulder to fingers.

Functional brain imaging studies of healthy subjects suggest that excitability of the primary motor cortex ipsilateral to a unilateral hand movement is facilitated by viewing a mirror reflection of the moving hand [17]. Reorganization of motor functions immediately around the stroke site (ipsilesional) is likely to be important in motor recovery after stroke, and a contribution of other brain areas in the affected hemisphere is also possible. Activation when a subject is doing motor tasks can also occur in the bilateral inferior parietal area, the supplementary motor area, and in the premotor cortex. Furthermore, central adaptations occur in networks controlling the paretic as well as the nonparetic lower limb after stroke [18].

The aim of this study is to find the effect of mirror therapy in rehabilitation of hand function in sub-acute stroke. […]


Continue —> Effectiveness of Mirror Therapy in Rehabilitation of Hand Function in Sub-Acute Stroke

, , , , , , , , , ,

Leave a comment

[Abstract] Motor Imagery Training After Stroke: A Systematic Review and Meta-analysis of Randomized Controlled Trials


Background and Purpose: A number of studies have suggested that imagery training (motor imagery [MI]) has value for improving motor function in persons with neurologic conditions. We performed a systematic review and meta-analysis to assess the available literature related to efficacy of MI in the recovery of individuals after stroke.

Methods: We searched the following databases: PubMed, Web of Knowledge, Scopus, Cochrane, and PEDro. Two reviewers independently selected clinical trials that investigated the effect of MI on outcomes commonly investigated in studies of stroke recovery. Quality and risk of bias of each study were assessed.

Results: Of the 1156 articles found, 32 articles were included. There was a high heterogeneity of protocols among studies. Most studies showed benefits of MI, albeit with a large proportion of low-quality studies. The meta-analysis of all studies, regardless of quality, revealed significant differences on overall analysis for outcomes related to balance, lower limb/gait, and upper limb. However, when only high-quality studies were included, no significant difference was found. On subgroup analyses, MI was associated with balance gains on the Functional Reach Test and improved performance on the Timed Up and Go, gait speed, Action Research Arm Test, and the Fugl-Meyer Upper Limb subscale.

Discussion and Conclusions: Our review reported a high heterogeneity in methodological quality of the studies and conflicting results. More high-quality studies and greater standardization of interventions are needed to determine the value of MI for persons with stroke.

Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1,

Source: Motor Imagery Training After Stroke: A Systematic Review an… : Journal of Neurologic Physical Therapy


, , , ,

Leave a comment

[WEB SITE] ‘Games’ could help stroke, traumatic brain injury survivors regain mobility

This is a call to survivors of stroke and/or traumatic brain injury to consider demonstrating our newest ‘games’ innovations. We at 3DPreMotorSkill Technologies, LLC research and develop special video game-like technology for survivors.

We have completed two clinical trials with 47 survivors. No survivor was harmed in any way and we do not sell or charge anything for participating in our research.

Our ‘games’ benefit from a natural ability we all have: motor imagery. Motor imagery implies visualizing body movements. If you can ‘think’ of your impaired limb  making movements, our ‘games’ present virtual, controllable limbs you can use to act out your ‘thinking.’

Our first clinical trial was published in the Journal of Rehabilitation Research and Development, JRRD Volume 51, Number 3, 2014 Pages 377–390: “Pilot study: Computer-based virtual anatomical interactivity for rehabilitation of individuals with chronic acquired brain injury.”

Our second clinical trial was reported at a conference in The Netherlands (poster sections below). Our full report is under peer review by the journal Frontiers in Human Neuroscience.

Our mission is to help survivors to help themselves by ‘playing’ our self-movement-management ‘games’, called  Pre-Action Games & Exercises (PAGEs).

PAGEs are easy and fun to play. First, you see a realistic virtual limb on a computer screen. The virtual limb represents your impaired limb. You control it to make realistic physical movements. A standard computer mouse is used to point the cursor to all or part of the virtual limb and click and drag it to simulate unimpaired movements.

While controlling the virtual limb a signal is automatically sent to a wearable hand movement device (WHMD). The WHMD physically and mildly manipulates your impaired left hand. The result is mental and physical feedback to you.

A limited number of survivors (approximately five) of stroke and/or traumatic brain injury will be selected to play PAGEs games. All games are free to volunteers and will take about 30 minutes to complete, here in Tallahassee.

Candidates should:

  • be 21 years of age or older
  • have a moderate to mildly impaired (hemiparetic) left hand
  • have consulted your physician, therapist and family and be in sub-acute or less intense therapy
  • be responsible for their own consent and transportation to and from a location within Tallahassee
  • be willing to try-out for selection (approximately 15 minutes).
  • All we need for the selection try-out is you and an aide, if you like. Please email interest to and be sure to add “WHMD” to the “Subject:” line, so that your response is read. Send any details you wish, such as left hand impairment and date of brain injury. 

Source: ‘Games’ could help stroke, traumatic brain injury survivors


, , , , ,

1 Comment

[ARTICLE] Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial – Full Text

Repeated use of brain-computer interfaces (BCIs) providing contingent sensory feedback of brain activity was recently proposed as a rehabilitation approach to restore motor function after stroke or spinal cord lesions. However, there are only a few clinical studies that investigate feasibility and effectiveness of such an approach. Here we report on a placebo-controlled, multicenter clinical trial that investigated whether stroke survivors with severe upper limb (UL) paralysis benefit from 10 BCI training sessions each lasting up to 40 min. A total of 74 patients participated: median time since stroke is 8 months, 25 and 75% quartiles [3.0; 13.0]; median severity of UL paralysis is 4.5 points [0.0; 30.0] as measured by the Action Research Arm Test, ARAT, and 19.5 points [11.0; 40.0] as measured by the Fugl-Meyer Motor Assessment, FMMA. Patients in the BCI group (n = 55) performed motor imagery of opening their affected hand. Motor imagery-related brain electroencephalographic activity was translated into contingent hand exoskeleton-driven opening movements of the affected hand. In a control group (n = 19), hand exoskeleton-driven opening movements of the affected hand were independent of brain electroencephalographic activity. Evaluation of the UL clinical assessments indicated that both groups improved, but only the BCI group showed an improvement in the ARAT’s grasp score from 0 [0.0; 14.0] to 3.0 [0.0; 15.0] points (p < 0.01) and pinch scores from 0.0 [0.0; 7.0] to 1.0 [0.0; 12.0] points (p < 0.01). Upon training completion, 21.8% and 36.4% of the patients in the BCI group improved their ARAT and FMMA scores respectively. The corresponding numbers for the control group were 5.1% (ARAT) and 15.8% (FMMA). These results suggests that adding BCI control to exoskeleton-assisted physical therapy can improve post-stroke rehabilitation outcomes. Both maximum and mean values of the percentage of successfully decoded imagery-related EEG activity, were higher than chance level. A correlation between the classification accuracy and the improvement in the upper extremity function was found. An improvement of motor function was found for patients with different duration, severity and location of the stroke.


Motor imagery (Page et al., 2001), or mental practice, attracted considerable interest as a potential neurorehabilitation technique improving motor recovery following stroke (Jackson et al., 2001). According to the Guidelines for adult stroke rehabilitation and recovery (Winstein et al., 2016), mental practice may proof beneficial as an adjunct to upper extremity rehabilitation services (Winstein et al., 2016). Several studies suggest that motor imagery can trigger neuroplasticity in ipsilesional motor cortical areas despite severe paralysis after stroke (Grosse-Wentrup et al., 2011Shih et al., 2012Mokienko et al., 2013bSoekadar et al., 2015).

The effect of motor imagery on motor function and neuroplasticity has been demonstrated in numerous neurophysiological studies in healthy subjects. Motor imagery has been shown to activate the primary motor cortex (M1) and brain structures involved in planning and control of voluntary movements (Shih et al., 2012Mokienko et al., 2013a,bFrolov et al., 2014). For example, it was shown that motor imagery of fist clenching reduces the excitation threshold of motor evoked potentials (MEP) elicited by transcranial magnetic stimulation (TMS) delivered to M1 (Mokienko et al., 2013b).

As motor imagery results in specific modulations of brain electroencephalographic (EEG) signals, e.g., sensorimotor rhythms (SMR) (Pfurtscheller and Aranibar, 1979), it can be used to voluntarily control an external device, e.g., a robot or exoskeleton using a brain-computer interface (BCI) (Nicolas-Alonso and Gomez-Gil, 2012). Such system allowing for voluntary control of an exoskeleton moving a paralyzed limb can be used as an assistive device restoring lost function (Maciejasz et al., 2014). Besides receiving visual feedback, the user receives haptic and kinesthetic feedback which is contingent upon the imagination of a specific movement.

Several BCI studies involving this type of haptic and kinesthetic feedback have demonstrated improvements in clinical parameters of post-stroke motor recovery (Ramos-Murguialday et al., 2013Ang et al., 20142015Ono et al., 2014). The number of subjects with post-stroke upper extremity paresis included in these studies was, however, relatively low [from 12 (Ono et al., 2014) to 32 (Ramos-Murguialday et al., 2013) patients]. As BCI-driven external devices, a haptic knob (Ang et al., 2014), MIT-Manus (Ang et al., 2015), or a custom-made orthotic device (Ramos-Murguialday et al., 2013Ono et al., 2014) were used. Furthermore, several other studies reported on using BCI-driven exoskeletons in patients with post-stroke hand paresis (Biryukova et al., 2016Kotov et al., 2016Mokienko et al., 2016), but these reports did not test for clinical efficacy and did not include a control group. While very promising, it still remains unclear whether BCI training is an effective tool to facilitate motor recovery after stroke or other lesions of the central nervous system (CNS) (Teo and Chew, 2014).

Here we report a randomized and controlled multicenter study investigating whether 10 sessions of BCI-controlled hand-exoskeleton active training after subacute and chronic stroke yields a better clinical outcome than 10 sessions in which hand-exoskeleton induced passive movements were not controlled by motor imagery-related modulations of brain activity. Besides assessing the effect of BCI training on clinical scores such as the ARAT and FMMA, we tested whether improvements in the upper extremity function correlates with the patient’s ability to generate motor imagery-related modulations of EEG activity.[…]

Continue —> Frontiers | Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial | Neuroscience


Figure 1. The subject flow diagram from recruitment through analysis (Consolidated Standards of Reporting Trials flow diagram).


, , , , , ,

Leave a comment

[ARTICLE] Role of Practice And Mental Imagery on Hand Function Improvement in Stroke Survivors – Full Text


Objective: The purpose of this study was to evaluate the Role of Practice and Mental Imagery on Hand function improvement in stroke survivors

Method: We conducted systematic review of the previous studies and searched electronic databases for the years 1995 to 2016, studies were selected according to inclusion criteria, and critical appraisal was done for each study and summarized the use of mental practice for the improvement in hand function in stroke survivors.

Results: Studies differed in the various aspects like intervention protocols, outcome measures, design, and patient’s characteristics. The total number of practice hours to see the potential benefits from mental practice varied widely. Results suggest that mental practice has potential to improve the upper extremity function in stroke survivors.

Conclusion: Although the benefits of mental practice to improve upper extremity function looks promising, general guidelines for the clinical use of mental practice is difficult to make. Future research should explore the dosage, factors affecting the use of Mental Practice, effects of Mental Therapy alone without in combination with other interventions.


Up to 85% stroke survivors experience hemi paresis resulting in impaired movement of the arm, and hand as reported by Nakayama et al. Loss of arm function adversely affects quality of life and functional motor recovery in affected upper extremity.

Sensorimotor deficits in the upper limb, such as weakness, decreased speed of movement, decreased angular excursion and impaired temporal coordination of the joints impaired upper-limb and trunk coordination.

Treatment interventions such as materials-based occupations constraint-induced movement therapy modified constraint-induced movement therapy and task-related or task-specific training are common training methods for remediating impairments and restoring function in the upper limb.

For the improvement of upper and lower functions, physical therapy provides training for functional improvement and fine motor. For most patients such rehabilitation training has many constraints of time, place and expense, accordingly in recent studies, clinical methods such as mental practice for improvement of the upper and lower functions have been suggested.

Mental practice is a training method during which a person cognitively rehearses a physical skill using motor imagery in the absence of overt, physical movements for the purpose of enhancing motor skill performance. For example, a review of the duration of mental movements found temporal equivalence for reaching; grasping; writing; and cyclical activities, such as walking and running.

Evidence for the idea that motor imagery training could enhance the recovery of hand function comes from several lines of research: the sports literature; neurophysiologic evidence; health psychology research; as well as preliminary findings using motor imagery techniques in stroke patients.

Much interest has been raised by the potential of Motor Practice of Motor task, also called “Motor Imagery” as a neuro rehabilitation technique to enhance Motor Recovery following Stroke.

Mental Practice is a training method during which a person cognitively rehearsals a physical skill using Motor Imagery in the absence of Physical movements for the purpose of enhancing Motor skill performance.

The merits of this intervention are that the patient concentration and motivation can be enhanced without regard to time and place and the training is possible without expensive equipment.

Researchers have speculated about its utility in neurorehabilitation. In fact, several review articles examining the impact of mental practice have been published. Two reviews examined stroke outcomes in general and did not limit their review to upper-extremity–focused outcomes. Both articles included studies that were published in 2005 or earlier.

Previous reviews, however, did not attempt to rate the studies reviewed in terms of the level of evidence. Thus, in this review, we determined whether mental practice is an effective intervention strategy to remediate impairments and improve upper-limb function after stroke by examining and rating the current evidence. […]

Continue –>  Role of Practice And Mental Imagery on Hand Function Improvement in Stroke Survivors | Insight Medical Publishing


, , , , , , , , , , , , ,

Leave a comment

[Abstract+References] High-Intensity Chronic Stroke Motor Imagery Neurofeedback Training at Home: Three Case Reports 

Motor imagery (MI) with neurofeedback has been suggested as promising for motor recovery after stroke. Evidence suggests that regular training facilitates compensatory plasticity, but frequent training is difficult to integrate into everyday life. Using a wireless electroencephalogram (EEG) system, we implemented a frequent and efficient neurofeedback training at the patients’ home. Aiming to overcome maladaptive changes in cortical lateralization patterns we presented a visual feedback, representing the degree of contralateral sensorimotor cortical activity and the degree of sensorimotor cortex lateralization. Three stroke patients practiced every other day, over a period of 4 weeks. Training-related changes were evaluated on behavioral, functional, and structural levels. All 3 patients indicated that they enjoyed the training and were highly motivated throughout the entire training regime. EEG activity induced by MI of the affected hand became more lateralized over the course of training in all three patients. The patient with a significant functional change also showed increased white matter integrity as revealed by diffusion tensor imaging, and a substantial clinical improvement of upper limb motor functions. Our study provides evidence that regular, home-based practice of MI neurofeedback has the potential to facilitate cortical reorganization and may also increase associated improvements of upper limb motor function in chronic stroke patients.

1. Jones TA, Adkins DL. Motor system reorganization after stroke: stimulating and training toward perfection. Physiology (Bethesda). 2015;30:358370. Google Scholar Medline
2. Murray CJL, Vos T, Lozano R, . Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:21972223. Google Scholar CrossRef, Medline
3. Hankey GJ, Jamrozik K, Broadhurst RJ, Forbes S, Anderson CS. Long-term disability after first-ever stroke and related prognostic factors in the Perth Community Stroke Study, 1989-1990. 2002;33:10341040. Google Scholar
4. Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage. 2001;14:103109. Google Scholar CrossRef, Medline
5. Cicinelli P, Marconi B, Zaccagnini M, Pasqualetti P, Filippi MM, Rossini PM. Imagery-induced cortical excitability changes in stroke: a transcranial magnetic stimulation study. Cereb Cortex. 2006;16:247253. Google Scholar CrossRef, Medline
6. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8:741754. Google Scholar CrossRef, Medline
7. Page SJ, Levine P, Leonard AC. Effects of mental practice on affected limb use and function in chronic stroke. Arch Phys Med Rehabil. 2005;86:399402. Google Scholar CrossRef, Medline
8. Crosbie JH, McDonough SM, Gilmore DH, Wiggam MI. The adjunctive role of mental practice in the rehabilitation of the upper limb after hemiplegic stroke: a pilot study. Clin Rehabil. 2004;18:6068. Google Scholar Link
9. Liu KP, Chan CC, Lee TM, Hui-Chan CW. Mental imagery for promoting relearning for people after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2004;85:14031408. Google Scholar CrossRef, Medline
10. Grosse-Wentrup M, Mattia D, Oweiss K. Using brain-computer interfaces to induce neural plasticity and restore function. J Neural Eng. 2011;8:025004. Google Scholar CrossRef
11. Buch E, Weber C, Cohen LG, . Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke. 2008;39:910917. Google Scholar CrossRef, Medline
12. Broetz D, Braun C, Weber C, Soekadar SR, Caria A, Birbaumer N. Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabil Neural Repair. 2010;24:674679. Google Scholar Link
13. Caria A, Weber C, Brötz D, . Chronic stroke recovery after combined BCI training and physiotherapy: a case report. Psychophysiology. 2011;48:578582. Google Scholar CrossRef, Medline
14. Ramos-Murguialday A, Broetz D, Rea M, . Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013;74:100108. Google Scholar CrossRef, Medline
15. Shindo K, Kawashima K, Ushiba J, . Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study. J Rehabil Med. 2011;43:951957. Google Scholar CrossRef, Medline
16. Pichiorri F, Morone G, Petti M, . Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol. 2015;77:851865. Google Scholar CrossRef, Medline
17. Zich C, Debener S, Kranczioch C, Bleichner MG, Gutberlet I, De Vos M. Real-time EEG feedback during simultaneous EEG-fMRI identifies the cortical signature of motor imagery. Neuroimage. 2015;114:438447. Google Scholar CrossRef, Medline
18. Debener S, Minow F, Emkes R, Gandras K, De Vos M. How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology. 2012;49:16171621. Google Scholar CrossRef, Medline
19. Kranczioch C, Zich C, Schierholz I, Sterr A. Mobile EEG and its potential to promote the theory and application of imagery-based motor rehabilitation. Int J Psychophysiol. 2014;91:1015. Google Scholar CrossRef, Medline
20. De Vos M, Kroesen M, Emkes R, Debener S. P300 speller BCI with a mobile EEG system: comparison to a traditional amplifier. J Neural Eng. 2014;11:036008. Google Scholar CrossRef
21. Debener S, Emkes R, De Vos M, Bleichner M. Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Sci Rep. 2015;5:16743. Google Scholar CrossRef, Medline
22. Renard Y, Lotte F, Gibert G, . OpenViBE : an open-source software platform to design, test, and use brain-computer interfaces in real and virtual. Presence. 2010;19:3553. Google Scholar CrossRef
23. Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ. Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain. 2003;126:14301448. Google Scholar CrossRef, Medline
24. Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain. 2003;126:24762496. Google Scholar CrossRef, Medline
25. Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7:1331. Google Scholar Medline
26. Pandyan AD, Johnson GR, Price CI, Curless RH, Barnes MP, Rodgers H. A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity. Clin Rehabil. 1999;13:373383. Google Scholar Link
27. Johansen-Berg H, Rushworth MFS, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM. The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A. 2002;99:1451814523. Google Scholar CrossRef, Medline
28. Feydy A, Carlier R, Roby-Brami A, . Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke. 2002;33:16101617. Google Scholar CrossRef, Medline
29. Cramer SC, Nelles G, Benson RR, . A functional MRI study of subjects recovered from hemiparetic stroke. Stroke. 1997;28:25182527. Google Scholar CrossRef, Medline
30. Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS. The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol. 1991;29:6371. Google Scholar CrossRef, Medline
31. Caramia MD, Iani C, Bernardi G. Cerebral plasticity after stroke as revealed by ipsilateral responses to magnetic stimulation. Neuroreport. 1996;7:17561760. Google Scholar CrossRef, Medline
32. Calautti C, Leroy F, Guincestre JY, Marié RM, Baron JC. Sequential activation brain mapping after subcortical stroke: changes in hemispheric balance and recovery. Neuroreport. 2001;12:38833886. Google Scholar CrossRef, Medline
33. Zich C, De Vos M, Kranczioch C, Debener S. Wireless EEG with individualized channel layout enables efficient motor imagery training. Clin Neurophysiol. 2015;126:698710. Google Scholar CrossRef, Medline
34. Blankertz B, Losch F, Krauledat M, Dornhege G, Curio G, Müller K-R. The Berlin brain-computer interface: accurate performance from first-session in BCI-naïve subjects. IEEE Trans Biomed Eng. 2008;55:24522462. Google Scholar CrossRef, Medline
35. Blokland Y, Spyrou L, Thijssen D, . Combined EEG-fNIRS decoding of motor attempt and imagery for brain switch control: an offline study in patients with tetraplegia. IEEE Trans Neural Syst Rehabil Eng. 2014;22:222229. Google Scholar CrossRef, Medline
36. Zich C, Debener S, Kranczioch C, Chen L-C, De Vos M. Lateralization patterns for movement execution and imagination investigated with concurrent EEG-fMRI and EEG-fNRIS. In: Müller-Putz GR, Huggins JE, Steyrl D, eds. Proceedings of the Sixth International Brain-Computer Interface Meeting: BCI Past, Present, and Future, Pacific Grove, California, USA. Graz, Austria: Verlag der Technischen Universität Graz; 2016:101. Google Scholar
37. Zich C, Debener S, Thoene A-K, Chen L-C, Kranczioch C. Simultaneous EEG-fNIRS reveals how age and feedback affect motor imagery signatures. Neurobiol Aging. 2017;49:183197. Google Scholar CrossRef, Medline

Source: High-Intensity Chronic Stroke Motor Imagery Neurofeedback Training at Home: Three Case ReportsClinical EEG and Neuroscience – Catharina Zich, Stefan Debener, Clara Schweinitz, Annette Sterr, Joost Meekes, Cornelia Kranczioch, 2017


, , , , , , , , ,

Leave a comment

[BOOK] Chapter 9: Neuroscience-Based Rehabilitation for Stroke Patients

The Book: Neuroscience-Based Rehabilitation for Stroke Patients | InTechOpen, Published on: 2017-05-10. Authors: Takayuki Kodama and Hideki Nakano

Chapter 9: Neuroscience-Based Rehabilitation for Stroke Patients


Hitherto, physical therapy for rehabilitating patients with cerebral dysfunction has focused on acquiring and improving compensatory strategies by using the remaining functions; it has been presumed that once neural functions have been lost, they cannot be restored. However, neuroscience-based animal research and neuroimaging research since the 1980s have demonstrated that recovery arises from plastic changes in the central nervous system and reconstruction of neural networks; this research is ushering in a new age of neuroscience-based rehabilitation as a treatment for cerebral dysfunction (such as stroke). In this paper, in regard to mental practices using motor imagery and kinaesthetic illusion, we summarize basic discoveries and theories relating to motor function therapy based on neuroscientific theory; in particular, we outline a novel rehabilitation method using kinaesthetic illusion induced by vibrational stimulus, which the authors are currently attempting in stroke patients.

1. Introduction

Conventional physical therapy (PT) for the rehabilitation of patients with brain dysfunction focuses on the acquisition of function through alternative means by using and improving the patients’ existing functions, and it is based on the assumption that once a neutral function is lost, it can never be recovered [1]. However, animal neuroscience studies [24] that were conducted after the 1980s and neuroimaging studies [5, 6] have shown that recovery can occur as a result of plastic changes in the nervous system or reorganization of the neural network, and rehabilitation (neuroscience-based rehabilitation, NBR) after cerebral dysfunction (e.g. stroke) has reached a new era in treatment. These observations suggest that the plasticity that is observed in patients is related to the characteristic that the more the patient receives therapy in specific parts of their body, the more that the brain areas that control these parts will be functionally as well as anatomically extended.

Functional recovery originally referred to a patient’s recovery from limitations in their behavior, movements, and/or activity [7]. Therefore, the purpose of NBR is not only to induce the reorganization of brain functions through neural plasticity mechanisms but also recover comprehensive bodily motor functions and brain functions for autonomous and active social behavior. What type of treatment strategy is required so that patients feel positively engaged by it, gradually understand its effects, and work toward a goal? Previous studies have revealed important factors in the effects of NBR treatment, such as the amount of therapy [8, 9], rehabilitation implementation environment [10], and performance of neurocognitive rehabilitation [11] through mental practice techniques, such as motor imagery (MI) [12]. Among these factors, treatments involving MI are strongly recommended because MI contributes to the reorganization of neural functions. MI, which is an approach that is based on neuroscientific data and the motor learning theory, is defined as the capacity to internally mimic physical movements without any associated motor output [13]. The cognitive process that occurs during the imagination of movements involves various components, such as mutual understandings between oneself and others (environment), observations of movements, mental manipulations of objects, and psychological time and movement planning. Instead of repeating simple physical movements to receive feedback on outcome in the actual therapy, the practice of voluntary and skill-requiring movements that are geared toward task completion induces the functional recovery [14]. Thus, an important element of the patients’ engagement in the therapy is that it occurs in an active and top-down fashion through the use of MI. However, because MI has a task-specific nature, cognitive functions and memories of motor experiences that equip the patients to perform the task are required. Patients with neurofunctional states that make motor execution (ME) difficulty may suffer not only from impairments in motor-related brain areas but also from modifications in their intracerebral body representations (e.g. somatoparaphrenia) [15, 16]. In such cases, the exploitation of kinaesthetic illusions [1720], which can be induced in the brain by extraneous stimuli, such as vibratory stimulations, becomes important for inputting appropriate motor-sensory information into the brain in a passive and bottom-up fashion. Therefore, the implementation of a mental practice to determine the criteria for adequate treatment according to the states of the patient’s cognitive functions and motor functions is important in order to select and implement the best therapy. Thus, this paper summarizes the basic understanding and theories of mental practices that use MI or kinaesthetic illusion and discusses, in particular, research results concerning kinaesthetic illusions that are induced by vibratory stimulations, which we are currently attempting on stroke patients.

2. What is neuroscience-based rehabilitation?

NBR involves a series of processes that are selected for the intervention according to the current brain function theories that have been revealed by neuroscience and other similar studies and verification of its outcomes. For example, the selection of a NBR strategy for a stroke patient requires a combination of deep clinical reasoning, the experience of the therapist, and a vast understanding of the evidence obtained by studies from wide-ranging academic fields on the factors that support recovery mechanisms and produce particular outcomes. First, the neural basis of brain cell reorganization will be presented.

2.1. Neural basis of brain cell reorganization

The current understanding of neural reorganization after dysfunction is not that the neurons themselves recover after their axons are damaged but rather that damaged functional networks recover due to several processes that induce the recovery of motor and cognitive functions. Cajal [1], who was a proponent of neuron theory, stated that the central nervous system (brain and spinal cord) of adult mammals would not recover once it is damaged. However, studies that have been conducted since the 1980s and that have shown that alterations in the peripheral nervous system, such as denervation and amputation, change somatic sensations and the representations of body parts while they are in motion have revealed that the brain has plasticity. In 1998, Eriksson et al. [21] reported the new formation of neurons in the central nervous system of human beings. These findings raised the question of whether the plastic changes and functional reorganization that occur in subjects with cranial nerve disorders originate from an ischemic state, such as a cerebrovascular disturbance. The underlying mechanisms of the plasticity that occurs after a cortical deficit are thought to involve (i) the redundancy of neuronal connections in the central nervous system, (ii) morphological changes in the neurons, and (iii) changes in synaptic information transmission [22]. If neurons are damaged, astrocytes begin to divide due to the activity of microglia. These glial cells then reinforce the areas that have been damaged by brain lesions and release neurotrophic factors, such as nerve growth factor, to promote neuronal sprouting (it takes around two weeks for synapses to grow after nerve damage [23]). The sprouted neurons are then connected to an existing neural network, which forms a new network. In other words, if neurons are damaged, new neurons begin to reorganize themselves in order to compensate for it. Adequate NBR stimulates the neural network with the neurofunction that is most similar to the predamaged functional state of the neural network, even though the new network is not located in the damaged region. If strong inputs enter the network multiple times, the synaptic connections will be reinforced. However, plasticity will not be induced in synapses with little information (input specificity), and the synapses will be excluded from the network formation [24, 25].

These findings have been confirmed by several famous studies. Nudo et al. [8] caused artificial cerebral infarcts in monkeys in the region of the primary motor cortex (M1) that corresponds to fingers and then forced the monkeys to use fingers with motor deficits. Thus, they reported that the brain region that previously controlled the shoulders and elbows prior to the therapy then controlled the fingers and more distal body parts (Figure 1). Merzenich et al. [26] surgically sutured the fingers of monkeys and then compared the pre- and post-surgical somatotopies of Brodmann area (BA) 3b, which corresponds to the sensorimotor area (SMA). Microelectrodes were used to record the responses in BA3b to finger stimuli. The third and fourth fingers were then surgically sutured, and the responses were recorded again a month later. Thus, the boundary between the third and fourth fingers became unclear. In addition, the results of a study that was conducted in human beings suggested that the plasticity of brain cells depends on sensory input. The results of a magnetoencephalography study that compared the somatotopies of the first and fifth fingers of string players to normal controls showed that a broader cerebral cortical area was activated for string players compared to the controls [6].


Figure 1. Representation of the distal forelimb in cortical area 4 derived from pre- and post-training mapping procedures [8].

These findings suggest that the size of the intracerebral somatotopic representation, which is vital to ME, is determined by the degree of use of the region. If you try to induce plasticity in specific parts of the bodies of stroke patients, as mentioned above, the induction of neural plasticity in a pathway that allows highly efficient information processing by repeating movements in a pattern like the normal pattern should be possible, provided the patient has retained their motor functions to a certain degree. However, if a patient has the functional level of almost not able to perform movement or is only able to perform the movement in an abnormal pattern, the stimulation of the plasticity for the formation of a neural network that is required to be able to regain normal motor function may not be possible. Ward et al. [27] chronologically examined the relationships between motor function recovery scores and task-related brain activities for approximately 12 months after the onset of stroke with functional magnetic resonance imaging. They found a negative correlation between motor function recovery scores and a decline in the hyperactivity of brain areas in the damaged and undamaged hemispheres (M1, premotor cortex; PMC, supplementary motor cortex; SMC, cerebellum). These findings suggest that a better recovery of motor function is associated with better connectivity between the functional systems of multiple brain regions and that a continuous and long-term approach is required to study the changes in the morphologies and networks of neurons. Thus, a qualitative and continuous approach [28] is required in studies of the recovery of the entire neural system (e.g. transcortical network, M1-PMC neural network [29]) in order to be able to perform movement rather than merely establishing quantitative interventions of movement. Thus, next, we will discuss the current understanding of what is required in interventions for stroke patients.[…]

Continue —> Neuroscience-Based Rehabilitation for Stroke Patients | InTechOpen


, , , , ,

Leave a comment

[Abstract] Effect of motor imagery on walking function and balance in patients after stroke: A quantitative synthesis of randomized controlled trials



  • Motor imagery (MI) is a beneficial intervention for stroke rehabilitation.
  • MI shows superior to routine methods of treatment or training in improving walking and motor function.
  • Effects of MI on walking and motor function are not affected by treatment duration.



This study aimed to evaluate effects of motor imagery (MI) on walking function and balance in patients after stroke.


Related randomized controlled trials (RCTs) were searched in 12 electronic databases (Cochrane Central Register of Controlled Trials, PubMed, Science Direct, Web of Science, Allied and Complementary Medicine, Embase, Cumulative Index to Nursing and Allied Health Literature, PsycINFO, China National Knowledge Infrastructure, Chinese Biomedical Literature Database, WanFang, and VIP) from inception to November 30, 2016, and Review Manager 5.3 was used for meta-analysis. References listed in included papers and other related systematic reviews on MI were also screened for further consideration.


A total of 17 studies were included. When compared with “routine methods of treatment or training,” meta-analyses showed that MI was more effective in improving walking abilities (standardized mean difference [SMD] = 0.69, random effect model, 95% confidence interval [CI] = 0.38 to 1.00, P < 0.0001) and motor function in stroke patients (SMD = 0.84, random effect model, 95% CI = 0.45 to 1.22, P < 0.0001), but no statistical difference was noted in balance (SMD = 0.78, random effect model, 95% CI = −0.07 to 1.62, P = 0.07). Statistically significant improvement in walking abilities was noted between short-term (0 to < six weeks) (SMD = 0.83, fixed effect model, 95% CI = 0.24 to 1.42, P = 0.006) and long-term (≥six weeks) durations (SMD = 0.45, fixed effect model, 95% CI = 0.25 to 0.64, P < 0.00001). Subgroup analyses results suggested that MI had a positive effect on balance with short-term duration (0 to < six weeks) (SMD = 4.67, fixed effect model, 95% CI = 2.89 to 6.46, P < 0.00001), but failed to improve balance (SMD = 0.82, random effect model, 95% CI = −0.27 to 1.90, P = 0.14) with long-term (≥six weeks) duration.


MI appears to be a beneficial intervention for stroke rehabilitation. Nonetheless, existing evidence regarding effectiveness of MI in stroke patients remains inconclusive because of significantly statistical heterogeneity and methodological flaws identified in the included studies. More large-scale and rigorously designed RCTs in future research with sufficient follow-up periods are needed to provide more reliable evidence on the effect of MI on stroke patients.

Source: Effect of motor imagery on walking function and balance in patients after stroke: A quantitative synthesis of randomized controlled trials – Complementary Therapies in Clinical Practice


, , , , , , , ,

Leave a comment

[Abstract] A motor rehabilitation BCI with multi-modal feedback in chronic stroke patients (P5.300)


Objective: Apply BCI technology to improve stroke rehabilitation therapy

Background: Brain-computer interfaces (BCI) measure brain activity to generate control signals for external devices in real-time. BCIs are especially well suited for motor rehabilitation. Motor imagery BCIs can analyze patients’ sensorimotor regions and control conditionally gated feedback devices that allow the patient to regain motor functions.

Design/Methods: Patients with sub-acute stroke were trained for 25 30-minute sessions in which they imagined left or right hand movement. A computer avatar indicated which hand the patient should imagine moving (80 trials left hand; 80 trials right). The BCI system analyzed EEG in real time, deciphered intention for left or right hand movement, and triggered functional electrical stimulation that elicited movement in the corresponding hand and in the computer avatar only when the patient produced the correct corresponding EEG pattern. Motor function improvements were assessed with a 9-hole PEG test.

Results: In a chronic stroke patient the 9-hole PEG test showed an improvement in affected left hand movement from 1 min 30 seconds to 52 sec after 24 training sessions (healthy right hand: 26 sec). BCI accuracy increased from 70% to 98.5 % across sessions. Mean accuracy for the first 3 sessions was 81%; 88% for the last 3. Before training, the patient could not lift his affected arm. After training the patient could reach his mouth to feed himself.

Conclusions: BCI accuracy is an objective marker of a patient’s participation in the task; 50% means that patient doesn’t follow (or cannot follow) the task. This patient’s continued improvement and high final accuracy indicates motivated participation. Most importantly, there was objective improvement in motor function within only 25 training sessions. We attribute these results to the conditionally gated reward from the BCI (inducing Hebbian plasticity), and mirror neuron system activation by the avatar.

Disclosure: Dr. Guger has received personal compensation for activities with g.tec Medical Engineering GmbH as an employee. Dr. Coon has nothing to disclose. Dr. Swift has nothing to disclose.

Source: A motor rehabilitation BCI with multi-modal feedback in chronic stroke patients (P5.300)


, , , ,

Leave a comment

%d bloggers like this: