Posts Tagged multiple sclerosis

[Systematic Review] Effectiveness of robotics in improving upper extremity functions among people with neurological dysfunction – Abstract

Publication CoverPurpose: the primary focus of this review was to find out the effectiveness of robotics in improving upper extremity functions among people with neurological problems in the arena of physical rehabilitation.

Material and Methods: Two reviewers independently scrutinized the included studies. The selected studies underwent quality assessment by PEDro scale. Randomized Controlled Trial (RCT) having a score of 4 or more were included in the review. A search was conducted in PUBMED, MEDLINE, CINAHL, EMBASE, PROQUEST, science direct, Cochrane Library, Physiotherapy Evidence Database (PEDro) and Google Scholar.

Results: A total of 202 studies were identified. After removal of duplication, inclusion and exclusion criteria’s n = 23 studies were included in the review process. For analysis, only the primary outcome measures of the studies were taken into account. Studies finally included in analysis were n= 21. The included studies were 19 in stroke, 1 in cerebral palsy (CP), and 1 study in multiple sclerosis (MS). No RCTs were reportedly found in spinal cord injury, Parkinson and motor neuron disease.

Conclusion: Studies related to stroke showed a clear definiteness in the improvement of upper extremity functions. Whereas on the contrary there still remains a need for quality trials in cerebral palsy, multiple sclerosis to establish the efficacy of robotics in upper extremity rehabilitation.

 

via Effectiveness of robotics in improving upper extremity functions among people with neurological dysfunction: A Systematic Review: International Journal of Neuroscience: Vol 0, No ja

, , , , , , , , , ,

Leave a comment

[ARTICLE] Identifying and Quantifying Neurological Disability via Smartphone – Full Text

Embedded sensors of the smartphones offer opportunities for granular, patient-autonomous measurements of neurological dysfunctions for disease identification, management, and for drug development. We hypothesized that aggregating data from two simple smartphone tests of fine finger movements with differing contribution of specific neurological domains (i.e., strength & cerebellar functions, vision, and reaction time) will allow establishment of secondary outcomes that reflect domain-specific deficit. This hypothesis was tested by assessing correlations of smartphone-derived outcomes with relevant parts of neurological examination in multiple sclerosis (MS) patients. We developed MS test suite on Android platform, consisting of several simple functional tests. This paper compares cross-sectional and longitudinal performance of Finger tapping and Balloon popping tests by 76 MS patients and 19 healthy volunteers (HV). The primary outcomes of smartphone tests, the average number of taps (per two 10-s intervals) and the average number of pops (per two 26-s intervals) differentiated MS from HV with similar power to traditional, investigator-administered test of fine finger movements, 9-hole peg test (9HPT). Additionally, the secondary outcomes identified patients with predominant cerebellar dysfunction, motor fatigue and poor eye-hand coordination and/or reaction time, as evidenced by significant correlations between these derived outcomes and relevant parts of neurological examination. The intra-individual variance in longitudinal sampling was low. In the time necessary for performing 9HPT, smartphone tests provide much richer and reliable measurements of several distinct neurological functions. These data suggest that combing more creatively-construed smartphone apps may one day recreate the entire neurological examination.

Introduction

Neurological examination measures diverse functions of the central (CNS) and peripheral nervous systems to diagnose neurological diseases and guide treatment decisions. Thorough neurological examination takes between 30 and 60 min to complete and years of training to master. This poses problem both for developing countries, which often lack neurologists, and for developed countries where cost-hikes and administrative requirements severely limit the time clinicians spend examining patients.

Additionally, clinical scales derived from traditional neurological examination are rather insensitive and prone to biases, which limits their utility in drug development. Therefore, non-clinician administered measurements of physical disability such as timed 25-foot walk (25FW) and 9-hole peg test (9HPT) or measurements of cognitive functions exemplified by paced auditory serial addition test (PASAT) and symbol digit modalities test (SDMT), are frequently used in clinical trials of neurological diseases such as multiple sclerosis (MS) (12). Especially combining these “functional scales” with clinician-based disability scales such as Expanded Disability Status Scale (EDSS)(3) into EDSS-plus (4) or Combinatorial weight-adjusted disability scale (CombiWISE) (5) enhances sensitivity of clinical trial outcomes. However, these sensitive combinatorial scales are rarely, if ever acquired in clinical practice due to time and expense constrains.

Measuring neurological functions by patients via smartphones (68) may pose a solution for all aforementioned problems, while additionally empowering patients for greater participation in their neurological care. We have previously found comparable sensitivity and specificity of simple, smartphone-amenable measurements of finger and foot taps to 9HPT and 25FW, respectively (9). In this study, we explored iterative development/optimization of smartphone-based measurements of neurological functions by: 1. Exploring clinical utility of new features that can be extracted from finger tapping; 2. Development of “balloon popping” smartphone test that builds on finger tapping by expanding neurological functions necessary for task completion to eye movements and cognitive skills, and 3. By decoding app-collected raw data into secondary (derived) features that may better reflect deficits in specific neurological functions.

 

Materials and Methods

Developing the Smartphone Apps

Tapping and Balloon popping tests were written using Java in the Android Studio integrated development environment. Both tests went through iterative development and optimization following beta testing with developers and then clinical trial testing with patients and healthy volunteers. Each of the individual tests are standalone applications and can be downloaded individually to the phone using an Android Package (APK) emailed to phones or directly installed through USB connection with Android Studio. Installation and initial testing of applications were completed on a variety of personal Android phones, with no particular specifications. Testing in the clinic with patients and longitudinal testing was completed on Google Pixel XL 2017 phones. Android 8.1 Oreo operating system was used for the most recent version of the application, with the intention of keeping the operating system the app runs on up to date with the most recent version released by Android.

For the purposes of this study, we created a front-end application that can flexibly incorporate a variety of test apps. The front-end prompts for user profiles where a testing ID, birth month and year, gender, and dominant hand may be entered so data collected is associated with the user profile. Through a cloud-based spreadsheet, “prescriptions” of test app configurations are set for each user such that they may have a unique combination of tests tailored to their disability level.

The tapping test goal was similar to previously validated non-smartphone administered tapping tests (9), where users had to tap as quickly as possible over a 10 s duration and the final score is the average of two attempts. The test uses touch recognition over a rectangular area covering the bottom half of a vertically oriented phone screen (Figure 1A). Users can tap anywhere in a marked off gray area. The total number of taps for each of two trials and the calculated average is displayed immediately afterwards on the screen. In addition to total taps over the duration of the test, the app also records the duration, Android system time, and pressure for each tap as background data. Pressure for app recording is interpreted from the size of the touch area on each tap, where larger tap area corresponds to a higher pressure reading. Because the pressure function was added later and therefore the data are missing for the majority of current cohort, this function is not investigated in current study.

FIGURE 1
www.frontiersin.orgFigure 1. Smartphone Apps. (A) Tapping Test where user can tap repeatedly anywhere in the gray rectangle over the bottom half of the screen. (B) Popping Test where the dark blue circle will disappear and simultaneously reappear randomly across the screen as soon as the user touches it.

The balloon popping test was conceptually envisioned as an extension of tapping test that expands neurological functions necessary for test completion from pure motoric, to motoric, visual, and cognitive (attention and reaction time). The primary goal for this test is to touch as many randomly generated dark blue circles (balloons) moving across the screen in succession over the 26-s test duration as possible. During optimization of the app we tested 3 sizes of the target balloon and a 100-pixel balloon was selected as optimal based on preliminary results. The analyses of the other two circle sizes are provided as part of sensitivity analyses (Supplementary Figure 1), as conclusions from these tests support data presented in the main text of the paper. There is only one balloon to pop on the screen at a time (Figure 1B) and as soon as the user touches anywhere on the circle, another circle will appear in a random location. The random generation of balloon locations was created by random number functions in Java for both the x and y coordinates of the center of the circle, with the constraint of the entire balloon having to be visible on the screen. If the user taps on a background location, the current balloon stays in the same location and is only moved to a new random location after accurately tapping on the balloon. Following app completion, the total number of balloons popped and calculated average (from two trials) is displayed on the phone for the user. The x and y coordinates of all balloon and background hits, the system time, duration, and pressure (in the same manner as tap pressure) for each tap are also recorded as background data and stored in cloud-based data system.

Following the completion of a tapping or balloon popping test trial, an intermediate message displayed on the screen asks if the users would like to submit their results or retake the most recent trial (Supplementary Videos 12). If the user selects the retake option the collected data for the trial is discarded locally on the phone and not sent to any cloud-based database. This was implemented to avoid noise associated with test interruptions or other unforeseen circumstances that affected test performance. Following selection of the submit option, the data is uploaded immediately to a cloud-based database if the smartphone is connected to WiFi. If the phone is not connected to WiFi, then the submitted test trial results are stored locally on the phone and uploaded to the database as soon as the phone is connected to WiFi.

The app development process is in continuation given user and clinician feedback in addition to integration of more tests into the front-end. User feedback, user’s ability to perform Apps in a “practice mode”, and training videos for individual tests (Supplementary Videos 12) are integrated into the front-end dashboard that manages different tests.[…]

Continue —->  Frontiers | Identifying and Quantifying Neurological Disability via Smartphone | Neurology

, , , , , , ,

Leave a comment

[WEB SITE] Learning stress-reducing techniques may benefit people with epilepsy

Learning techniques to help manage stress may help people with epilepsy reduce how often they have seizures, according to a study published in the February 14, 2018, online issue of Neurology®, the medical journal of the American Academy of Neurology.

“Despite all the advances we have made with new drugs for epilepsy, at least one-third of people continue to have seizures, so new options are greatly needed,” said study author Sheryl R. Haut, MD, of Montefiore Medical Center and the Albert Einstein College of Medicine in the Bronx, NY, and member of the American Academy of Neurology. “Since stress is the most common seizure trigger reported by patients, research into reducing stress could be valuable.”

The study involved people with seizures that did not respond well to medication. While all of the 66 participants were taking drugs for seizures, all continued to have at least four seizures during about two months before the study started.

During the three-month treatment period all of the participants met with a psychologist for training on a behavioral technique that they were then asked to practice twice a day, following an audio recording. If they had a day where they had signs that they were likely to have a seizure soon, they were asked to practice the technique another time that day. The participants filled out daily electronic diaries on any seizures, their stress level, and other factors such as sleep and mood.

Half of the participants learned the progressive muscle relaxation technique, a stress reduction method where each muscle set is tensed and relaxed, along with breathing techniques. The other participants were the control group-;they took part in a technique called focused attention. They did similar movements as the other group, but without the muscle relaxation, plus other tasks focusing on attention, such as writing down their activities from the day before. The study was conducted in a blinded fashion so that participants and evaluators were not aware of treatment group assignment.

Before the study, the researchers had hypothesized that the people doing the muscle relaxing exercises would show more benefits from the study than the people doing the focused attention exercises, but instead they found that both groups showed a benefit-;and the amount of benefit was the same.

The group doing the muscle relaxing exercises had 29 percent fewer seizures during the study than they did before it started, while the focused attention group had 25 percent fewer seizures, which is not a significant difference, Haut said. She added that study participants were highly motivated as was shown by the nearly 85 percent diary completion rate over a five-month period.

“It’s possible that the control group received some of the benefits of treatment in the same way as the ‘active’ group, since they both met with a psychologist and every day monitored their mood, stress levels and other factors, so they may have been better able to recognize symptoms and respond to stress,” said Haut. “Either way, the study showed that using stress-reducing techniques can be beneficial for people with difficult-to-treat epilepsy, which is good news.”

Haut said more research is needed with larger numbers of people and testing other stress reducing techniques like mindfulness based cognitive therapy to determine how these techniques could help improve quality of life for people with epilepsy.

, , , , , , , , , , , , , ,

Leave a comment

[Abstract] Is Pilates an effective rehabilitation tool? A systematic review 

Abstract

Background

Pilates is a system of exercise focusing upon controlled movement, stretching and breathing. Pilates is popular today not only for physical fitness but also for rehabilitation programs. This paper is a review of the literature on the effectiveness of Pilates as a rehabilitation tool in a wide range of conditions in an adult population.

Methods

A systematic literature review was carried out according to the PRISMA guidelines. Electronic databases were searched for cohort studies or randomised controlled trials (RCTs), and inclusion and exclusion criteria were applied. The final RCTs were assessed using the PEDro and CONSORT 2010 checklists.

Results

Twenty-three studies, published between 2005 and 2016, met the inclusion criteria. These papers assessed the efficacy of Pilates in the rehabilitation of low back pain, ankylosing spondylitis, multiple sclerosis, post-menopausal osteoporosis, non-structural scoliosis, hypertension and chronic neck pain. Nineteen papers found Pilates to be more effective than the control or comparator group at improving outcomes including pain and disability levels. When assessed using the CONSORT and PEDro scales, the quality of the papers varied, with more falling toward the upper end of the scale.

Conclusion

The majority of the clinical trials in the last five years into the use of Pilates as a rehabilitation tool have found it to be effective in achieving desired outcomes, particularly in the area of reducing pain and disability. It indicates the need for further research in these many areas, and especially into the benefits of particular Pilates exercises in the rehabilitation of specific conditions.

Source: Is Pilates an effective rehabilitation tool? A systematic review – Journal of Bodywork and Movement Therapies

, , , , , , , ,

Leave a comment

[WEB SITE] Cannabidiol shows promise to reduce seizures for people with difficult-to-treat epilepsy

Taking cannabidiol may cut seizures in half for some children and adults with Lennox-Gastaut syndrome (LGS), a severe form of epilepsy, according to new information released today from a large scale controlled clinical study that will be presented at the American Academy of Neurology’s 69th Annual Meeting in Boston, April 22 to 28, 2017. Cannabidiol is a molecule from the cannabis plant that does not have the psychoactive properties that create a “high.”

Nearly 40 percent of people with LGS, which starts in childhood, had at least a 50 percent reduction in drop seizures when taking a liquid form of cannabidiol compared to 15 percent taking a placebo.

When someone has a drop seizure, their muscle tone changes, causing them to collapse. Children and adults with LGS have multiple kinds of seizures, including drop seizures and tonic-clonic seizures, which involve loss of consciousness and full-body convulsions. The seizures are hard to control and usually do not respond well to medications. Intellectual development is usually impaired in people with LGS.

Although the drop seizures of LGS are often very brief, they frequently lead to injury and trips to the hospital emergency room, so any reduction in drop seizure frequency is a benefit.

“Our study found that cannabidiol shows great promise in that it may reduce seizures that are otherwise difficult to control,” said study author Anup Patel, MD, of Nationwide Children’s Hospital and The Ohio State University College of Medicine in Columbus and a member of the American Academy of Neurology.

For the randomized, double-blind, placebo-controlled study, researchers followed 225 people with an average age of 16 for 14 weeks. The participants had an average of 85 drop seizures per month, had already tried an average of six epilepsy drugs that did not work for them and were taking an average of three epilepsy drugs during the study.

Participants were given either a higher dose of 20 mg/kg daily cannabidiol, a lower dose of 10 mg/kg daily cannabidiol or placebo as an add-on to their current medications for 14 weeks.

Those taking the higher dose had a 42 percent reduction in drop seizures overall, and for 40 percent, their seizures were reduced by half or more.

Those taking the lower dose had a 37 percent reduction in drop seizures overall, and for 36 percent, seizures were reduced by half or more.

Those taking the placebo had a 17 percent reduction in drop seizures, and for 15 percent, seizures were reduced by half or more.

There were side effects for 94 percent of those taking the higher dose, 84 percent of those taking the lower dose and 72 percent of those taking placebo, but most side effects were reported as mild to moderate. The two most common were decreased appetite and sleepiness.

Those receiving cannabidiol were up to 2.6 times more likely to say their overall condition had improved than those receiving the placebo, with up to 66 percent reporting improvement compared to 44 percent of those receiving the placebo.

“Our results suggest that cannabidiol may be effective for those with Lennox-Gastaut syndrome in treating drop seizures,” said Patel. “This is important because this kind of epilepsy is incredibly difficult to treat. While there were more side effects for those taking cannabidiol, they were mostly well-tolerated. I believe that it may become an important new treatment option for these patients.”

There is currently a plan to submit a New Drug Application to the FDA later this year.

Source: Cannabidiol shows promise to reduce seizures for people with difficult-to-treat epilepsy

, , , , , , , , , , , , ,

Leave a comment

[Abstract] The treatment of fatigue by non-invasive brain stimulation

Summary

The use of non-invasive brain neurostimulation (NIBS) techniques to treat neurological or psychiatric diseases is currently under development. Fatigue is a commonly observed symptom in the field of potentially treatable pathologies by NIBS, yet very little data has been published regarding its treatment. We conducted a review of the literature until the end of February 2017 to analyze all the studies that reported a clinical assessment of the effects of NIBS techniques on fatigue. We have limited our analysis to repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). We found only 15 studies on this subject, including 8 tDCS studies and 7 rTMS studies. Of the tDCS studies, 6 concerned patients with multiple sclerosis while 6 rTMS studies concerned fibromyalgia or chronic fatigue syndrome. The remaining 3 studies included patients with post-polio syndrome, Parkinson’s disease and amyotrophic lateral sclerosis. Three cortical regions were targeted: the primary sensorimotor cortex, the dorsolateral prefrontal cortex and the posterior parietal cortex. In all cases, tDCS protocols were performed according to a bipolar montage with the anode over the cortical target. On the other hand, rTMS protocols consisted of either high-frequency phasic stimulation or low-frequency tonic stimulation. The results available to date are still too few, partial and heterogeneous as to the methods applied, the clinical profile of the patients and the variables studied (different fatigue scores) in order to draw any conclusion. However, the effects obtained, especially in multiple sclerosis and fibromyalgia, are really carriers of therapeutic hope.

Source: The treatment of fatigue by non-invasive brain stimulation

, , , , , , , , ,

Leave a comment

[Abstract] Breakthroughs in the spasticity management: Are non-pharmacological treatments the future?

Highlights

  • Spasticity can cause a severe disability and challenge the rehabilitation process.
  • A successful treatment of spasticity depends on a pathophysiologic assessment.
  • The main therapeutic options include physiotherapy and pharmacological treatments.
  • Non-pharmacologic approaches may reduce spasticity and improve quality of life.

Abstract

The present paper aims at providing an objective narrative review of the existing non-pharmacological treatments for spasticity. Whereas pharmacologic and conventional physiotherapy approaches result well effective in managing spasticity due to stroke, multiple sclerosis, traumatic brain injury, cerebral palsy and incomplete spinal cord injury, the real usefulness of the non-pharmacological ones is still debated. We performed a narrative literature review of the contribution of non-pharmacological treatments to spasticity management, focusing on the role of non-invasive neurostimulation protocols (NINM). Spasticity therapeutic options available to the physicians include various pharmacological and non-pharmacological approaches (including NINM and vibration therapy), aimed at achieving functional goals for patients and their caregivers. A successful treatment of spasticity depends on a clear comprehension of the underlying pathophysiology, the natural history, and the impact on patient’s performances. Even though further studies aimed at validating non-pharmacological treatments for spasticity should be fostered, there is growing evidence supporting the usefulness of non-pharmacologic approaches in significantly helping conventional treatments (physiotherapy and drugs) to reduce spasticity and improving patient’s quality of life. Hence, non-pharmacological treatments should be considered as a crucial part of an effective management of spasticity.

Source: Breakthroughs in the spasticity management: Are non-pharmacological treatments the future? – Journal of Clinical Neuroscience

, , , , , , ,

Leave a comment

[Abstract] Breakthroughs in the spasticity management: Are non-pharmacological treatments the future?

 

Highlights

    Spasticity can cause a severe disability and challenge the rehabilitation process.
    A successful treatment of spasticity depends on a pathophysiologic assessment.
    The main therapeutic options include physiotherapy and pharmacological treatments.
    Non-pharmacologic approaches may reduce spasticity and improve quality of life.

Abstract

The present paper aims at providing an objective narrative review of the existing non-pharmacological treatments for spasticity. Whereas pharmacologic and conventional physiotherapy approaches result well effective in managing spasticity due to stroke, multiple sclerosis, traumatic brain injury, cerebral palsy and incomplete spinal cord injury, the real usefulness of the non-pharmacological ones is still debated.

We performed a narrative literature review of the contribution of non-pharmacological treatments to spasticity management, focusing on the role of non-invasive neurostimulation protocols (NINM). Spasticity therapeutic options available to the physicians include various pharmacological and non-pharmacological approaches (including NINM and vibration therapy), aimed at achieving functional goals for patients and their caregivers. A successful treatment of spasticity depends on a clear comprehension of the underlying pathophysiology, the natural history, and the impact on patient’s performances.

Even though further studies aimed at validating non-pharmacological treatments for spasticity should be fostered, there is growing evidence supporting the usefulness of non-pharmacologic approaches in significantly helping conventional treatments (physiotherapy and drugs) to reduce spasticity and improving patient’s quality of life.

Hence, non-pharmacological treatments should be considered as a crucial part of an effective management of spasticity.

Source: Breakthroughs in the spasticity management: Are non-pharmacological treatments the future?

, , , , ,

Leave a comment

[ARTICLE] How Can We Improve Current Practice in Spastic Paresis? – Full Text

Abstract:

Spastic paresis can arise from a variety of conditions, including stroke, spinal cord injury, multiple sclerosis, cerebral palsy, traumatic brain injury and hereditary spastic paraplegia. It is associated with muscle contracture, stiffness and pain, and can lead to segmental deformity. The positive, negative and biomechanical symptoms associated with spastic paresis can significantly affect patients’ quality of life, by affecting their ability to perform normal activities. This paper – based on the content of a global spasticity interdisciplinary masterclass presented by the authors for healthcare practitioners working in the field of spastic paresis – proposes a multidisciplinary approach to care involving not only healthcare practitioners, but also the patient and their family members/carers, and improvement of the transition between specialist care and community services. The suggested treatment pathway comprises assessment of the severity of spastic paresis, early access to neurorehabilitation and physiotherapy and treatment with botulinum toxin and new technologies, where appropriate. To address the challenge of maintaining patients’ motivation over the long term, tailored guided self-rehabilitation contracts can be used to set and monitor therapeutic goals. Current global consensus guidelines may have to be updated, to include a clinical care pathway related to the encompassing management of spastic paresis.

Spastic paresis may be caused by a variety of conditions, including stroke, spinal cord injury, multiple sclerosis, retroviral and other infectious spinal cord disorders, cerebral palsy, traumatic brain injury and hereditary spastic paraplegia.1 The exact prevalence of spastic paresis (in which spasticity is the most commonly recognised manifestation) is not known. However, it is estimated that around 30% of stroke survivors are affected by significant spasticity2 and 50% who present to hospital with stroke develop at least one severe contracture.3

Spastic paresis is a complex condition that may be associated with soft tissue contracture, pain and limitations of day-to-day activities, which have a substantial impact on patients’ and caregivers’ quality of life.4 Although treatment guidelines have been developed for (focal) spasticity,5 there remains a lack of consensus on key aspects of diagnosis, approaches to care and the care pathway that would help healthcare practitioners to more fully understand and manage this condition.

To address some of these limitations, a group of physicians and a physiotherapist with expertise in the management of spastic paresis developed a global spasticity masterclass for healthcare practitioners working in this field in order to share best practices and to discuss issues and current trends in the management of patients with spasticity. The outputs of this masterclass are presented here.

Continue —> How Can We Improve Current Practice in Spastic Paresis? | Touch Neurology | Independent Insight for Medical Specialists

, , , , , , , , , ,

Leave a comment

[ARTICLE] How Can We Improve Current Practice in Spastic Paresis? – Full Text HTML

Abstract:

Spastic paresis can arise from a variety of conditions, including stroke, spinal cord injury, multiple sclerosis, cerebral palsy, traumatic brain injury and hereditary spastic paraplegia. It is associated with muscle contracture, stiffness and pain, and can lead to segmental deformity. The positive, negative and biomechanical symptoms associated with spastic paresis can significantly affect patients’ quality of life, by affecting their ability to perform normal activities. This paper – based on the content of a global spasticity interdisciplinary masterclass presented by the authors for healthcare practitioners working in the field of spastic paresis – proposes a multidisciplinary approach to care involving not only healthcare practitioners, but also the patient and their family members/carers, and improvement of the transition between specialist care and community services. The suggested treatment pathway comprises assessment of the severity of spastic paresis, early access to neurorehabilitation and physiotherapy and treatment with botulinum toxin and new technologies, where appropriate. To address the challenge of maintaining patients’ motivation over the long term, tailored guided self-rehabilitation contracts can be used to set and monitor therapeutic goals. Current global consensus guidelines may have to be updated, to include a clinical care pathway related to the encompassing management of spastic paresis.

Spastic paresis may be caused by a variety of conditions, including stroke, spinal cord injury, multiple sclerosis, retroviral and other infectious spinal cord disorders, cerebral palsy, traumatic brain injury and hereditary spastic paraplegia.1 The exact prevalence of spastic paresis (in which spasticity is the most commonly recognised manifestation) is not known. However, it is estimated that around 30% of stroke survivors are affected by significant spasticity2 and 50% who present to hospital with stroke develop at least one severe contracture.3

Spastic paresis is a complex condition that may be associated with soft tissue contracture, pain and limitations of day-to-day activities, which have a substantial impact on patients’ and caregivers’ quality of life.4 Although treatment guidelines have been developed for (focal) spasticity,5 there remains a lack of consensus on key aspects of diagnosis, approaches to care and the care pathway that would help healthcare practitioners to more fully understand and manage this condition.

To address some of these limitations, a group of physicians and a physiotherapist with expertise in the management of spastic paresis developed a global spasticity masterclass for healthcare practitioners working in this field in order to share best practices and to discuss issues and current trends in the management of patients with spasticity. The outputs of this masterclass are presented here.

Pathophysiology and definitions
Spastic paresis
Spasticity is one of several components of spastic paresis, also known as the upper motor neuron (UMN) syndrome. Spastic paresis is primarily characterised by a quantitative lack of command directed to agonist muscles involved in performing movements.1,6,7 In addition, hyperactive spinal reflexes mediate some of the positive phenomena seen in spastic paresis, while other positive symptoms are related to disordered control of voluntary movement in terms of an abnormal efferent drive or are caused

Continue —> How Can We Improve Current Practice in Spastic Paresis? | Touch Neurology | Independent Insight for Medical Specialists

, , , , , , , , , , ,

Leave a comment

%d bloggers like this: