Posts Tagged Transcranial magnetic stimulation

[Abstract] Publication trends in transcranial magnetic stimulation: A 30-year panorama

Highlights

  • This study uses a systematic, bibliometric approach to assess the TMS literature base.
  • Annual TMS research output has increased dramatically over the period 1988–2017.
  • The top disease entities studied to date have been stroke and depression.

 

Abstract

Background

Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulatory technique that has broad diagnostic and therapeutic potential across a range of neurological and psychiatric diseases.

Objective

This study utilises a bibliometric approach to systematically and comprehensively evaluate the literature on TMS from the last three decades.

Methods

The Scopus citation database was used to identify all peer-reviewed journal articles concerning TMS over the period 1988–2017. Frequency-distribution, cross-tabulation and keyword analyses were performed to determine the most prolific researchers, institutions, nations, journals and the foremost studied disease entities within the TMS field. Given recent heightened awareness of gender bias across many fields of biomedicine, female representation among the most prolific authors was determined. Open-access publication rates and types of study design utilised were also quantified.

Results

17,492 TMS-related articles were published during the study period 1988–2017. The annual TMS research output has increased dramatically over this time, despite a recent levelling-off of publications per year. The most prolific institutions were based in the United Kingdom, the United States and Canada. The top disease entities studied were stroke, depression and Parkinson’s disease. Only 4/52 of the most productive researchers during the study period were female. A minority (4.81%) of publications were published as gold open-access.

Conclusion

This study implemented a systematic, bibliometric approach to quantitively assess the breadth of the TMS literature base and identify temporal publication and authorship trends. Drawing on these insights may aid understanding of historical progress in TMS over the last 30 years and help identify into unmet needs and opportunities to improve scientific and publishing practices to contribute to the future health of the field. These findings are likely to be relevant to researchers, clinicians, funders, industry collaborators and other stakeholders.

 

via Publication trends in transcranial magnetic stimulation: A 30-year panorama – Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation

, , , , , ,

Leave a comment

[WEB SITE] Transcranial Magnetic Stimulation for the Recovery of Gait and Balance in Stroke Patients – BrainPost

Post by Thomas Brown

What’s the science?

The permanent brain damage which occurs following ischemic stroke makes functional recovery difficult. While physiotherapy can result in improved voluntary motor recovery, the improvement of balance and gait can be harder. Issues with balance pose a safety risk for stroke patients, who may be more likely to fall. Ultimately, problems with balance can mean reduced independence for patients. The cerebellum, a structure located at the back of the brain, is known to regulate movement, gait and balance. Deficits to the cerebellum often result in ataxia and widened gaits, making this area a prime target for functional recovery analysis. This week in JAMA Neurology Koch and colleagues demonstrate in a phase IIa clinical trial, an increase in gait and balance in hemiparetic stroke patients, up to three weeks after physiotherapy supplemented with transcranial magnetic stimulation of the cerebellum.

How did they do it?

A group of 36 hemiparetic (one side affected) stroke patients were randomly assigned to one of two age-matched groups; control or experimental. The experimental group was treated with intermittent theta-burst magnetic stimulation (TBS) of the cerebellar region ipsilateral (same side) to their motor issues. Intermittent TBS is a process by which bursts of magnetic energy are applied to the scalp over an area of interest. TBS was administered in conjunction with physiotherapy to the experimental group for three weeks. The control group still received physiotherapy, but received sham (fake) TBS. Patients were assessed using a wide range of balance and gait analysis tests to determine the degree of recovery. The authors relied primarily on the Berg Balance Scale, which is a series of 14 tests that determine the ability of an individual to balance without aid. Gait analysis was also performed, in which patients were asked to walk while a machine measured their gait (the space between each foot while walking). Neural activity was measured with electroencephalography while transcranial magnetic stimulation was applied simultaneously (EEG-TMS). This technique was used to measure neural activity changes in motor regions of the brain following activation of the motor cortex using a different TMS paradigm than the one used for treatment.

What did they find?

The authors found that after three weeks of the last treatment with either sham or cerebellar TBS, there was an average increase in the Berg Balance Scale score in those treated with TBS compared to controls. They also showed a reduction in gait width; a wide gait is often associated with the body’s attempt to compensate for problems with balance. This finding was supported by correlational analysis which found that a reduction is step width was associated with an improvement in Berg Balance Scale score. Interestingly, three weeks after treatment there was also an increase in neural activity in the motor (M1) region of the brain in the hemispheres affected by the stoke, in treated patients compared to controls. This area of the cortex is associated with the movement execution. Altogether these findings suggest that there were significant balance, gait and motor cortex activity improvements following treatment with TBS. Critically, no adverse effects were observed following treatment with TBS during the clinical trial.

stroke_image.png

What’s the impact?

These findings suggest that theta-burst stimulation may be an effective way of supplementing physiotherapy in those suffering with balance and gait deficits following stroke. Theta-burst stimulation in conjunction with physiotherapy, was able to improve both balance and gait in stroke patients. Treatment with theta-burst stimulation could reduce the chance of falling and improve independence in stroke patients.

stroke_quote.png

Koch et al. Effect of Cerebellar Stimulation on Gait and Balance Recovery
in Patients With Hemiparetic Stroke. JAMA Neurology (2018).Access the original scientific publication here

 

via Weekly BrainPost — BrainPost

, , , , , , , , ,

Leave a comment

[ARTICLE] Noninvasive Brain Stimulation to Enhance Functional Recovery After Stroke: Studies in Animal Models – Full Text

Background. Stroke is the leading cause of adult disability, but treatment options remain limited, leaving most patients with incomplete recovery. Patient and animal studies have shown potential of noninvasive brain stimulation (NIBS) strategies to improve function after stroke. However, mechanisms underlying therapeutic effects of NIBS are unclear and there is no consensus on which NIBS protocols are most effective.

Objective. Provide a review of articles that assessed effects and mechanisms of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) in animal stroke models.

Methods. Articles were searched in PubMed, including cross-references.

Results. Nineteen eligible studies reporting effects of rTMS or tDCS after stroke in small rodents were identified. Seventeen of those described improved functional recovery or neuroprotection compared with untreated control or sham-stimulated groups. The effects of rTMS could be related to molecular mechanisms associated with ischemic tolerance, neuroprotection, anti-apoptosis, neurogenesis, angiogenesis, or neuroplasticity. Favorable outcome appeared most effectively when using high-frequency (>5 Hz) rTMS or intermittent theta burst stimulation of the ipsilesional hemisphere. tDCS effects were strongly dependent on stimulation polarity and onset time. Although these findings are promising, most studies did not meet Good Laboratory Practice assessment criteria.

Conclusions. Despite limited data availability, animal stroke model studies demonstrate potential of NIBS to promote stroke recovery through different working mechanisms. Future studies in animal stroke models should adhere to Good Laboratory Practice guidelines and aim to further develop clinically applicable treatment protocols by identifying most favorable stimulation parameters, treatment onset, adjuvant therapies, and underlying modes of action.

Globally, stroke is a devastating neurological disorder and a leading cause of death and acquired disability.1 The majority of stroke patients experience motor impairment, which affects movement of the face, leg, and/or arm on one side of the body.2 Upper limb motor deficiencies are often persistent and disabling, affecting independent functional activities of daily living.3 Unfortunately, most stroke patients recover incompletely after stroke, despite intensive rehabilitation strategies.3,4 Although there is a diverse range of interventions (for overview, see review by Pollock and colleagues4) aimed at improving motor outcome after stoke, there is still a pressing need for novel treatment therapies and continued research to reduce disability and improve functional recovery after stroke.

Noninvasive brain stimulation (NIBS) techniques, such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), have shown promising therapeutic potential in stroke patient studies.5,6 The rationale behind rTMS or tDCS therapy is to modulate cortical excitability, increase neural plasticity, and improve functional motor outcome. For many studies, this approach has been based on the interhemispheric competition model.7 The interhemispheric competition model suggests that functional recovery in stroke patients is hindered due to reduced output from the affected hemisphere and excessive transcallosal inhibition from the unaffected hemisphere.8 Therefore, improvement in motor deficits may be obtained with NIBS strategies that facilitate excitability in the affected hemisphere or suppress inhibitory activity from the unaffected hemisphere.9,10 Depending on the type and duration of the stimulation protocol, both rTMS and tDCS can be used to increase (>5 Hz rTMS; intermittent theta burst stimulation; anodal tDCS) or decrease (⩽1 Hz rTMS; continuous theta burst stimulation; cathodal tDCS) cortical excitability, with potentially lasting effects beyond the stimulation period, promoting mechanisms of synaptic plasticity.11 Evidence suggests that rTMS and tDCS techniques are able to induce changes in cortical excitability associated with facilitation or long-term potentiation like plasticity via glutamatergic neurotransmission, or inhibition and long-term depression via GABAergic neurotransmission.12,13 Furthermore, effects of rTMS and tDCS are not restricted to the target region of stimulation, but also affect distantly connected cortical areas, allowing for the modulation of large-scale neural networks.14

However, despite accumulating evidence of the potential of NIBS, the precise therapeutic mechanisms of action of rTMS and tDCS are largely unidentified and there is no consensus about standardized treatment protocols. Moreover, when deciding on treatment after stroke with either rTMS or tDCS, the poststroke time and lesion status should be considered, and stimulation intensity and duration must be fine-tuned to prevent further tissue damage or the interruption of beneficial plastic changes.15,16 These uncertainties emphasize the critical need for basic understanding of the (patho)physiological processes that are influenced by rTMS and tDCS paradigms after stroke, which may ideally be explored in well-controllable and reproducible experimental animal models.

In animal models of stroke, similar to the human condition, there is a variable degree of spontaneous functional improvement after stroke, associated with a complex cascade of cellular and molecular processes that are activated within minutes after the insult, both in perilesional tissue and remote brain regions.17,18 These events include changes in genetic transcriptional and translational processes, alterations in neurotransmitter interactions, altered secretion of growth factors, gliosis, vascular remodeling, and structural changes in axons, dendrites, and synapses.19,20 Therefore, assessment of the effects of NIBS on endogenous recovery processes in animal stroke models offer excellent opportunities for the exploration of neuroplastic and neuromodulatory mechanisms, which could aid in the optimization of treatment protocols for clinical applications.

Our goal was to provide an overview of studies that assessed functional outcomes and potential mechanisms of action of rTMS and tDCS in animal models of stroke, which may guide future studies that aim to improve mechanistic insights and therapeutic utilization of NIBS effects after stroke.[…]

 

Continue —->  Noninvasive Brain Stimulation to Enhance Functional Recovery After Stroke: Studies in Animal Models – Julia Boonzaier, Geralda A. F. van Tilborg, Sebastiaan F. W. Neggers, Rick M. Dijkhuizen, 2018

 

, , , , , , ,

Leave a comment

[WEB SITE] New technique looks inside the brain to understand more about epilepsy

Created:7 September 2018

 

Dr Simona Balestrini is about to begin a three year project using a pioneering technique to look at the activity of the brain in people with epilepsy. Here she explains what she hopes to achieve in her work with Transcranial Magnetic Stimulation (TMS) used in conjunction with electroencephalography (EEG).

We are at a very exciting time in our research into epilepsy. Genetic sequencing is beginning to generate large amounts of information with the potential to help us understand more about the causes of epilepsy and how we can best treat the condition.

When we sequence a person’s DNA, we look at the three billion letters that are packaged within almost every cell of the body. This can help to clarify whether that person’s epilepsy has a genetic contribution. But to make sense of that information, we also need to use other tools to interpret that information.

Genomics toolkit

TMS is a sophisticated tool that is part of our genomics toolkit. It is a means of looking inside a person’s brain without using needles or electrodes and can be used to interpret information gained through genetic sequencing.

TMS uses a strong magnet, similar to the one used in the MRI scanner, to induce very brief electric currents in the brain. We can measure the response of cortical circuits in the brain  to TMS and generate a direct profile of brain activity and function.

Put simply, TMS can establish a link between brain activity and different types of sensory, motor and cognitive functions. We can then establish whether a specific genetic change is impacting on the function of the brain.

How our muscles react

For some time we have been looking at the brain using TMS together with electromyogram (EMG). This allows us to measure electrical activity of muscles and their reaction time. But this technique has only allowed us to look at the motor cortex in the brain.

Now with TMS-EEG ( we are able to look at brain activity across the whole of the cortical part of the brain. It can extend the area of the brain that is being investigated, guiding and monitoring potential treatment options.

By repeating the test over a period of time, TMS can be used to show the course of epilepsy in the brain and whether different medications lead to an improvement or a decline in the condition.

Individual drug response

It is hoped that in the future TMS will be used to predict the way a person will respond to individual anti-epileptic medications. We also hope that it may help us to predict outcome in epilepsy, including the risk of SUDEP (Sudden Unexpected Death in Epilepsy).

I am really excited about this project. I feel it will help us to gain a greater understanding of the causes of epilepsy and translate clinical research into clinical care. I really hope to make a difference to the lives of the people I see in clinic every day. If we can improve seizure control for people, we can improve their quality of life.

Epilepsy Society is the best example of transformational research being translated into care for people with epilepsy.

Find out more

TMS used to measure motor cortex excitability in alternating hemiplegia.

Long-interval intracortical inhibition as biomarker for epilepsy: A transcranial magnetic stimulation study

 

Author: Nicola Swanborough

via New technique looks inside the brain to understand more about epilepsy

, , ,

Leave a comment

[WEB SITE] What effect does transcranial magnetic stimulation have on the brain?

The procedure facilitates reorganization of connections between neurons which could be useful for therapies

Date: June 5, 2018
Source: Ruhr-University Bochum
Summary:
Researchers have gained new insights on the question of how transcranial magnetic stimulation (TMS) effects functional interconnectivity of neurons. For visualization, they employed fluorescent dyes which provide information on the activity of neurons by light. Using this technique, they showed in an animal model that TMS predisposes neuronal connections in the visual cortex of the brain for processes of reorganization.
 
FULL STORY

Researchers of the Ruhr-Universität Bochum have gained new insights on the question of how transcranial magnetic stimulation (TMS) effects functional interconnectivity of neurons. For visualisation, they employed fluorescent dyes which provide information on the activity of neurons by light. Using this technique, they showed in an animal model that TMS predisposes neuronal connections in the visual cortex of the brain for processes of reorganisation.

TMS is being used as a treatment for a number of brain diseases such as depression, Alzheimer’s disease and schizophrenia, but there has been little research on how exactly TMS works. The team of associate professor Dr Dirk Jancke of the Optical Imaging Lab in Bochum describes its new discoveries in the journal Proceedings of the National Academy of Science (PNAS).

Examining the effects on cortical maps in the visual cortex

The researchers have investigated how TMS affects the organisation of so-called orientation maps in the visual part of the brain. Those maps are partly genetically determined and partly shaped by the interaction with our surroundings. In the visual cortex, for example, neurons respond to contrast edges of certain orientations, which typically constitute boundaries of objects. Neurons that preferably respond to edges of a specific orientation are closely grouped while clusters of neurons with other orientation preferences are gradually located further away, altogether forming a systematic map across all orientations.

The team employed high frequency TMS and compared the behaviour of neurons to visual stimuli with a specific angular orientation before and after the procedure. The result: After the magnetic stimulation the neurons responded more variable, that is, their preference for a particular orientation was less pronounced than before the TMS. “You could say that after the TMS the neurons were somewhat undecided and hence, potentially open to new tasks,” explains Dirk Jancke. “Therefore, we reasoned that the treatment provides us with a time window for the induction of plastic processes during which neurons can change their functional preference.”

A short visual training remodels the maps

The team then looked into the impact of a passive visual training after TMS treatment. 20-minutes of exposure to images of a specific angular orientation led to enlargement of those areas of the brain representing the trained orientation. “Thus, the map in the visual cortex has incorporated the bias in information content of the preceding visual stimulation by changing its layout within a short time,” says Jancke. “Such a procedure — that is a targeted sensory or motor training after TMS to modify the brain’s connectivity pattern — might be a useful approach to therapeutic interventions as well as for specific forms of sensory-motor training,” explains Dirk Jancke.

Methodological challenges

Transcranial magnetic stimulation is a non-invasive painless procedure: A solenoid is being positioned above the head and the brain area in question can be activated or inhibited by means of magnetic waves. So far little is known about the impact of the procedure on a cellular network level, because the strong magnetic field of the TMS superimposes signals that are used by researchers in order to monitor the neuronal effects of the TMS. The magnetic pulse interferes in particular with electrical measurement techniques, such as EEG. In addition, other procedures used in human participants, e.g. functional magnetic resonance imaging, are too slow or their spatial resolution is too low.

Dirk Jancke’s team used voltage dependent fluorescent dyes, embedded in the membranes of the neurons, in order to measure the brain’s activity after the TMS with high spatiotemporal resolution. As soon as a neuron’s activity is modulated, the dye molecules change emission intensity. Light signals therefore provide information about immediate changes in activity of groups of neurons.

Story Source: Materials provided by Ruhr-University BochumNote: Content may be edited for style and length.


Journal Reference:

  1. Vladislav Kozyrev, Robert Staadt, Ulf T. Eysel, Dirk Jancke. TMS-induced neuronal plasticity enables targeted remodeling of visual cortical mapsProceedings of the National Academy of Sciences, 2018; 201802798 DOI: 10.1073/pnas.1802798115

 

via What effect does transcranial magnetic stimulation have on the brain? The procedure facilitates reorganization of connections between neurons which could be useful for therapies — ScienceDaily

, ,

Leave a comment

[Abstract+References] Brain Plasticity and Modern Neurorehabilitation Technologies

Abstract

In recent decades, interest in studies on basic and applied aspects of how the nervous system functions has been growing rapidly around the world. The recovery of lost functions rests on processes of neuroplasticity, which is determined by the ability of the brain to transform its structures in response to injury. The effects of both routine and state-of-the-art neurorehabilitation technologies are ensured by synaptic plasticity— long-term potentiation and long-term depression, which influence learning and the preservation of new knowledge and skills obtained during rehabilitation. The introduction of new methods of neuroimaging, neurophysiology, and mathematical statistics have powerfully stimulated the development of the neuroplasticity doctrine. It has become clear that the main role in the recovery of injured functions is played by the reorganization of cortical nets and not by tissue reparation as such. The Research Center of Neurology has accumulated significant experience in the use of innovative treatment methods based on modern neurorehabilitation principles. Some of them are used for acute stroke; among other things, their effectiveness and safety have been shown with regard to patients in intensive care units (cyclic robotic mechanotherapy) and patients with severe motor deficit and an associated somatic pathology (stimulation of plantar support zones). Opportunities to assess neuroplasticity under various rehabilitation methods using fMRI and navigated transcranial magnetic stimulation (TMS) are revealed. The center also studies the fundamentals of consciousness using original neuroimaging and neurophysiological protocols for the sake of its recovery. The center is actively introducing its data into the practice of domestic clinics specializing in recovery medicine and neurorehabilitation.

References

  1. 1.
    C. H. Rankin, T. Abrams, R. J. Barry, et al., “Habituation revisited: An updated and revised description of the behavioral characteristics of habituation,” Neurobiol. Learn. Mem. 92 (2), 135–138 (2009).CrossRefGoogle Scholar
  2. 2.
    I. Jin, E. R. Kandel, and R. D. Hawkins, “Whereas short-term facilitation is presynaptic, intermediateterm facilitation involves both presynaptic and postsynaptic protein kinases and protein synthesis,” Learn. Mem. Cold Spring Harb. 18, 96–102 (2011).CrossRefGoogle Scholar
  3. 3.
    C. Lüscher, R. A. Nicoll, R. C. Malenka, and D. Muller, “Synaptic plasticity and dynamic modulation of the postsynaptic membrane,” Nat. Neurosci., No. 3, 545–550 (2000).CrossRefGoogle Scholar
  4. 4.
    M. Lenz, A. Vlachos, and N. Maggio, “Ischemic longterm-potentiation (iLTP): Perspectives to set the threshold of neural plasticity toward therapy,” Neural Regen. Res., No. 10, 1537–1539 (2015).CrossRefGoogle Scholar
  5. 5.
    N. Hardingham, J. Dachtler, and K. Fox, “The role of nitric oxide in pre-synaptic plasticity and homeostasis,” Front Cell Neurosci., No. 7, 1–19 (2013).CrossRefGoogle Scholar
  6. 6.
    S. D. Bury and T. A. Jones, “Unilateral sensorimotor cortex lesions in adult rats facilitate motor skill learning with the ‘unaffected’ forelimb and training-induced dendritic structural plasticity in the motor cortex,” J. Neurosci. Off. J. Soc. Neurosci. 22, 8597–8606 (2002).CrossRefGoogle Scholar
  7. 7.
    R. J. Nudo, “Postinfarct cortical plasticity and behavioral recovery,” Stroke 38, 840–845 (2007).CrossRefGoogle Scholar
  8. 8.
    A. Arvidsson, T. Collin, D. Kirik, et al., “Neuronal replacement from endogenous precursors in the adult brain after stroke,” Nat. Med. 8, 963–970 (2002).CrossRefGoogle Scholar
  9. 9.
    Y. Bach and P. Rita, “Central nervous system lesions: Sprouting and unmasking in rehabilitation,” Arch. Phys. Med. Rehabil. 62, 413–417 (1981).Google Scholar
  10. 10.
    W. T. Greenough, H. M. Hwang, and C. Gorman, “Evidence for active synapse formation or altered postsynaptic metabolism in visual cortex of rats reared in complex environments,” Proc. Natl. Acad. Sci. U. S. A. 82, 4549–4552 (1985).CrossRefGoogle Scholar
  11. 11.
    J. Liepert, H. Bauder, H. R. Wolfgang, et al., “Treatment-induced cortical reorganization after stroke in humans,” Stroke J. Cereb. Circ. 31, 1210–1216 (2000).CrossRefGoogle Scholar
  12. 12.
    Y. Sagi, I. Tavor, S. Hofstetter, et al., “Learning in the fast lane: New insights into neuroplasticity,” Neuron 73, 1195–1203 (2012).CrossRefGoogle Scholar
  13. 13.
    E. Auriel, B. L. Edlow, Y. D. Reijmer, et al., “Microinfarct disruption of white matter structure: A longitudinal diffusion tensor analysis,” Neurology 83, 182–188 (2014).CrossRefGoogle Scholar
  14. 14.
    L. A. Chernikova, M. A. Piradov, N. A. Suponeva, et al., “High-tech methods of neurorehabilitation in nervous system diseases,” in Neurology of the 21st Century: Diagnostic, Treatment, and Research Technologies: Manual for Doctors, Ed. by M. A. Piradov, S. N. Illarioshkin, and M. M. Tanashyan (ATMO, Moscow, 2015) [in Russian].Google Scholar
  15. 15.
    L. G. Tarasova, L. A. Chernikova, and A. S. Chubukov, “Hand motion recovery in poststroke hemiparesis patients by the method of intensive training of the paretic upper limb,” Lech. Fizkul’t. Sport. Med., No. 8, 34–39 (2008).Google Scholar
  16. 16.
    P. R. Prokazova, M. A. Piradov, Yu. V. Ryabinkina, et al., “Robotic mechanotherapy using the Motomed Letto 2 simulator in complex early stroke rehabilitation in the resuscitation and intensive care unit,” Annaly Klinich. Eksp. Nevrolog., No. 2, 11–15 (2013).Google Scholar
  17. 17.
    A. A. Belkin, I. A. Avdyunina, N. A. Varako, et al., “Intensive care rehabilitation: Clinical recommendations,” Vestn. Vosstanov. Med., No. 2, 139–143 (2017).Google Scholar
  18. 18.
    K. Ustinova, N. Epstein, L. Chernikova, et al., “Effect of robotic locomotor training in an individual with Parkinson’s disease: A case report,” Disab. Rehab.: Assist. Technol. 6 (1), 77–85 (2011).Google Scholar
  19. 19.
    S. N. Morozova, E. A. Zmeykina, R. N. Konovalov, et al., “Changes in functional connectivity of motor zones in the course of treatment with a Regent multimodal complex exoskeleton in neurorehabilitation of poststroke patients.” Hum. Physiol., No. 1, 54–60 (2016).Google Scholar
  20. 20.
    E. I. Kremneva, L. A. Chernikova, R. N. Konovalov, et al., “Assessing supraspinal control of locomotion in norm and in pathology using a passive motor fMRT paradigm,” Annaly Klinich. Eksp. Nevrol., No. 1, 31–37 (2012).Google Scholar
  21. 21.
    L. A. Chernikova, E. I. Kremneva, A. V. Chervyakov, et al., “New approaches in the study of the neuroplasticity process in patients with central nervous system lesions,” Hum. Physiol., No. 3, 272–277 (2013).CrossRefGoogle Scholar
  22. 22.
    O. V. Glebova, M. Yu. Maksimova, and L. A. Chernikova, “Mechanical stimulation of plantar support zones during acute moderate and severe stroke,” Vestn. Vosstanov. Med., No. 1, 71–75 (2014).Google Scholar
  23. 23.
    I. V. Saenko, S. N. Morozova, E. A. Zmeikina, et al., “Change in functional connectivity of motor zones using the Regent multimodal exoskeleton complex in stroke patients,” Fiziol. Chel., No. 1, 64–72 (2016).Google Scholar
  24. 24.
    M. A. Piradov, S. N. Illarioshkin, A. O. Gushcha, et al., “State-of-the-art neuromodulation technologies,” in Neurology of the 21st Century: Diagnostic, Treatment, and Research Technologies: Manual for Doctors, Ed. by M. A. Piradov, S. N. Illarioshkin, and M. M. Tanashyan (ATMO, Moscow, 2015), pp. 46–98 [in Russian].Google Scholar
  25. 25.
    N. A. Suponeva, I. S. Bakulin, A. G. Poidasheva, and M. A. Piradov, “Safety of transcranial magnetic stimulation: A review of international recommendations and new data,” Nervno-Myshech. Bol., No. 2, 21–36 (2017).Google Scholar
  26. 26.
    M. A. Piradov, M. V. Krotenkova, R. N. Konovalov, et al., “Neuroimaging technologies,” in Neurology of the 21st Century: Diagnostoc, Treatment, and Research Technologies: Manual for Doctors, Ed. by M. A. Piradov, S. N. Illarioshkin, and M. M. Tanashyan (ATMO, Moscow, 2015), pp. 11–82 [in Russian].Google Scholar
  27. 27.
    L. A. Legostaeva, E. A. Zmeikina, A. G. Poidasheva, et al., “Navigated transcranial magnetic stimulation under fMRT resting control during rehabilitation of patients with chronic consciousness disorders: Blind intervention study,” in VI Baltic Congress on Child Neurology: A Collection of Abstracts, (St. Petersburg, 2016), pp. 221–222 [in Russian].Google Scholar
  28. 28.
    O. A. Mokienko, R. K. Lyukmanov, L. A. Chernikova, et al., “Brain–computer interface: The first experience of clinical use in Russia,” Hum. Physiol., No. 1, 24–31 (2016).CrossRefGoogle Scholar
  29. 29.
    O. A. Mokienko, A. V. Chervyakov, S. Kulikova, et al., “Increased motor cortex excitability during motor imagery in brain–computer interface trained subjects,” Front. Comput. Neurosci. 7, 168 (2013).CrossRefGoogle Scholar
  30. 30.
    A. G. Poidasheva, G. A. Aziatskaya, A. Yu. Chernyavskii, et al., “Dynamics of cortical motor representation of the common digital extensor when teaching motor imaging using the brain–computer interface: A controlled study,” Zh. Vyssh. Nerv. Deyat. im. I.P. Pavlova, No. 4, 473–484 (2017).Google Scholar

via Braind Modern Neurorehabilitation Technologies | SpringerLink

, , , , , , , , ,

Leave a comment

[Review] Current evidence on transcranial magnetic stimulation and its potential usefulness in post-stroke neurorehabilitation: Opening new doors to the treatment of cerebrovascular disease – Full Text

Abstract

Introduction

Repetitive transcranial magnetic stimulation (rTMS) is a therapeutic reality in post-stroke rehabilitation. It has a neuroprotective effect on the modulation of neuroplasticity, improving the brain’s capacity to retrain neural circuits and promoting restoration and acquisition of new compensatory skills.

Development

We conducted a literature search on PubMed and also gathered the latest books, clinical practice guidelines, and recommendations published by the most prominent scientific societies concerning the therapeutic use of rTMS in the rehabilitation of stroke patients. The criteria of the International Federation of Clinical Neurophysiology (2014) were followed regarding the inclusion of all evidence and recommendations.

Conclusions

Identifying stroke patients who are eligible for rTMS is essential to accelerate their recovery. rTMS has proven to be safe and effective for treating stroke complications. Functional brain activity can be optimised by applying excitatory or inhibitory electromagnetic pulses to the hemisphere ipsilateral or contralateral to the lesion, respectively, as well as at the level of the transcallosal pathway to regulate interhemispheric communication. Different studies of rTMS in these patients have resulted in improvements in motor disorders, aphasia, dysarthria, oropharyngeal dysphagia, depression, and perceptual-cognitive deficits. However, further well-designed randomised controlled clinical trials with larger sample size are needed to recommend with a higher level of evidence, proper implementation of rTMS use in stroke subjects on a widespread basis.

Introduction

Stroke patients should receive early neurorehabilitation after convalescence. For many years, researchers have aimed to identify new therapeutic targets to hasten recovery from stroke. However, we continue to lack a universally accepted, approved pharmacological therapy for these patients.1234 ;  5 After stroke, organisational changes in brain interneuronal activity in the affected area and the surrounding healthy tissue may on occasion promote functional recovery. Neurorehabilitation may help achieve this aim. Unfortunately, there are also occasions when neural reorganisation is suboptimal; in these cases, the problem persists and becomes chronic. In this context, transcranial magnetic stimulation (TMS) emerged as a tool for studying the brain and has been used since the mid-1980s to treat certain neuropsychiatric disorders. Neurorehabilitation is based on the idea that the brain is a dynamic entity able to adapt to internal and external homeostatic changes. This adaptive capacity, called neuroplasticity, is also present in patients with acquired brain injuries. The degree of recovery and the functional prognosis of these patients depend on the extent of neuroplastic changes.12345 ;  6 When performed by experienced physicians, TMS is a safe, non-invasive technique which enables the organisation of these neural changes (Fig. 1). The technique’s applications are expanding rapidly.12345678 ;  9

Modern TMS device.

Figure 1.

Modern TMS device.

We present the results of a literature review of the most relevant articles, manuals, and clinical practice guidelines addressing TMS (background information, diagnostic and therapeutic uses, and especially its usefulness for stroke neurorehabilitation) and published between 1985 (when the technique was first used) and 2015.

 

Development

The organisation of language in the brain

The left hemisphere of the brain is the anatomo-functional seat of language in 96% of right-handed and 70% of left-handed individuals. Language processing in the left hemisphere involves certain anatomical pathways for language comprehension, repetition, and production (Fig. 2). Positron emission tomography and functional magnetic resonance imaging (fMRI) studies conducted during multiple language tasks have shown brain activation not only in the main language centres (lesions to these areas may cause Broca aphasia, Wernicke aphasia, etc.) (Fig. 3) but also in many other locations, such as the thalamus (alertness), the basal ganglia (motor modulation), and the limbic system (affect and memory). Language is the perfect model for understanding how the central nervous system works as a whole.10 ;  11

Figure 2. The functional pathways involved in comprehension, repetition, and production of written, gesture, and spoken language, according to the Wernicke-Geschwind model. Within the left hemisphere, language organisation follows certain anatomical pathways for language comprehension, repetition, and production. Sounds are processed by the bilateral auditory cortex, in the superior temporal gyrus (primary auditory area), and decoded in the posterior area of the left temporal cortex (Wernicke area); the latter is connected to other cortical areas or networks which assign meaning to words. During reading, output from the primary visual area (bilaterally) travels to other parieto-occipital association areas for word and phrase recognition (especially the left fusiform gyrus, located in the inferior surface of the temporal lobe, where there is a key word recognition centre) and reaches the angular gyrus, which processes language-related visual and auditory information. In spontaneous language repetition and production, auditory information must travel through the arcuate fasciculus towards the left inferior frontal region (Broca area), which is responsible for language production; this area is also known to be involved in such other functions as action comprehension (mirror neurons). To produce written or spoken language, output from the Wernicke area, the Broca area, and nearby association areas must reach the primary motor cortex.10 ;  11
Adapted with permission from Bear et al.10

[…]

Continue —> Current evidence on transcranial magnetic stimulation and its potential usefulness in post-stroke neurorehabilitation: Opening new doors to the treatment of cerebrovascular disease

, , , , ,

Leave a comment

[Abstract] Transcranial and spinal cord magnetic stimulation in treatment of spasticity: a literature review and meta-analysis

INTRODUCTION: Spasticity is associated with various diseases of the nervous system. Current treatments such as drug therapy, botulinum toxin injections, kinesitherapy, and physiotherapy are not sufficiently effective in a large number of patients. Transcranial magnetic stimulation (TMS) can be considered as an alternative method of treatment. The purpose of this article was to conduct a systematic review and meta-analysis of all available publications assessing the efficacy of repetitive TMS in treatment of spasticity.

EVIDENCE ACQUISITION: Search for articles was conducted in databases PubMed, Willey, and Google. Keywords included “TMS”, “spasticity”, “TMS and spasticity”, “non-invasive brain stimulation”, and “non-invasive spinal cord stimulation”. The difference in scores according to the Modified Ashworth Scale (MAS) for one joint before and after treatment was taken as the effect size.
EVIDENCE SYNTHESIS: We found 26 articles that examined the TMS efficacy in treatment of spasticity. Meta-analysis included 6 trials comprising 149 patients who underwent real stimulation or simulation. No statistically significant difference in the effect of real and simulated stimulation was found in stroke patients. In patients with spinal cord injury and spasticity, the mean effect size value and the 95% confidence interval were -0.80 and (-1.12, -0.49), respectively, in a group of real stimulation; in the case of simulated stimulation, these parameters were 0.15 and (-0.30, -0.00), respectively. Statistically significant differences between groups of real stimulation and simulation were demonstrated for using high-frequency repetitive TMS or iTBS mode for the M1 area of the spastic leg (P=0.0002).
CONCLUSIONS: According to the meta-analysis, the statistically significant effect of TMS in the form of reduced spasticity was demonstrated only for the developed due to lesions at the brain stem and spinal cord level. To clarify the amount of the antispasmodic effect of repetitive TMS at other lesion levels, in particular in patients with hemispheric stroke, further research is required.

via Transcranial and spinal cord magnetic stimulation in treatment of spasticity: a literature review and meta-analysis – European Journal of Physical and Rehabilitation Medicine 2018 February;54(1):75-84 – Minerva Medica – Journals

, , , , ,

Leave a comment

[ARTICLE] Effects of High-Frequency Repetitive Transcranial Magnetic Stimulation Combined with Task-Oriented Mirror Therapy Training on Hand Rehabilitation of Acute Stroke Patients – Full Text PDF

BACKGROUND: Impairments of hand function make it difficult to perform daily life activities and to return to work. The aim of this study was to investigate the effect of high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) combined with task-oriented mirror therapy (TOMT) on hand rehabilitation in acute stroke patients.
MATERIAL AND METHODS: Twenty subacute stroke patients in the initial stages (<3 months) participated in the study. Subjects were allocated to 2 groups: the experimental group received HF-rTMS + TOMT and the control group received HF-rTMS. TOMT training was conducted in 10 sessions over 2 weeks for 30 min. rTMS was applied at a 20 Hz frequency over the hand motor area in the cortex of the affected hemisphere for 15 min. Outcomes, including motor-evoked potential (MEP), pinch grip, hand grip, and box and block test, were measured before and after training.
RESULTS: Significant improvements in the MEP and hand function variables were observed in both groups (p<0.05). In particular, hand functions (pinch grip and box and block test) were significantly different between the 2 groups (p<0.05).
CONCLUSIONS: HF-rTMS combined with TOMT had a positive effect on hand function and can be used for the rehabilitation of precise hand movements in acute stroke patients.

Link to Full Text PDF —>  Get your full text copy in PDF | Medical Science Monitor

 

Related Articles

Saad M. Bindawas, Vishal Vennu, Hussam Mawajdeh, Hisham M. Alhaidary, Emad Moftah

Med Sci Monit 2018; 24:207-214  ::  DOI: 10.12659/MSM.907452

Published: 2018-01-11,      Viewed (120), Downloaded (22), Related (14), Cited (0)



Rodolphe Nenert, Jane B. Allendorfer, Amber M. Martin, Christi Banks, Angel Ball, Jennifer Vannest, Aimee R. Dietz, Jerzy P. Szaflarski

Med Sci Monit 2017; 23:3489-3507  ::  DOI: 10.12659/MSM.902301

Published: 2017-07-18,      Viewed (607), Downloaded (279), Related (11), Cited (0)



Bukunmi Michael Idowu, Oluwagbemiga Oluwole Ayoola, Victor Adebayo Adetiloye, Morenikeji Adeyoyin Komolafe

Pol J Radiol 2017; 82:141-148  ::  DOI: 10.12659/PJR.899684

Published: 2017-03-13,      Viewed (387), Downloaded (40), Related (3), Cited (0)



Jaeeun Kim, Jongeun Yim

Med Sci Monit 2017; 23:5402-5409  ::  DOI: 10.12659/MSM.904723

Published: 2017-11-13,      Viewed (316), Downloaded (60), Related (17), Cited (0)



Wonjae Choi, Donghun Han, Junesun Kim, Seungwon Lee

Med Sci Monit 2017; 23:4918-4925  ::  DOI: 10.12659/MSM.904474

Published: 2017-10-14,      Viewed (409), Downloaded (104), Related (14), Cited (0)



Haifa Alabri, Whitfield D. Lewis, Sunil Manjila, Ayham M. Alkhachroum, Michael A. De Georgia

Am J Case Rep 2017; 18:1302-1308  ::  DOI: 10.12659/AJCR.904395

Published: 2017-12-07,      Viewed (193), Downloaded (43), Related (13), Cited (0)



Erik J. Nelson, Jennifer Y. Wu

Am J Case Rep 2017; 18:60-63  ::  DOI: 10.12659/AJCR.901402

Published: 2017-01-17,      Viewed (528), Downloaded (470), Related (1), Cited (0)



Mariusz Drużbicki, Agnieszka Guzik, Grzegorz Przysada, Andrzej Kwolek, Agnieszka Brzozowska-Magoń, Marek Sobolewski

Med Sci Monit 2016; 22:4859-4868  ::  DOI: 10.12659/MSM.898420

Published: 2016-12-11,      Viewed (1470), Downloaded (1465), Related (11), Cited (0)



Taesung In, Kyeongjin Lee, Changho Song

Med Sci Monit 2016; 22:4046-4053  ::  DOI: 10.12659/MSM.898157

Published: 2016-10-28,      Viewed (1983), Downloaded (2728), Related (14), Cited (0)



Meheroz H. Rabadi

Med Sci Monit 2011; 17(2): RA25-43  ::  DOI: 10.12659/MSM.881382

Published: 2011-02-01,      Viewed (4785), Downloaded (5613), Related (11), Cited (28)



Yaron Sacher, Nachum Soroker, Marina Motin, Iuly Treger, Haim Ring, Ben-Ami Sela

Med Sci Monit 2003; 9(6): CR201-207  ::  ID: 12710

Published: 2003-06-25,      Viewed (4905), Downloaded (1409), Related (4), Cited (0)



via Get your full text copy in PDF | Medical Science Monitor

, , , , , ,

Leave a comment

[Abstract] Long-lasting effects of transcranial static magnetic field stimulation on motor cortex excitability

Abstract

Background

Transcranial static magnetic field stimulation (tSMS) was recently added to the family of inhibitory non-invasive brain stimulation techniques. However, the application of tSMS for 10–20 min over the motor cortex (M1) induces only short-lasting effects that revert within few minutes.

Objective

We examined whether increasing the duration of tSMS to 30 min leads to long-lasting changes in cortical excitability, which is critical for translating tSMS toward clinical applications.

Methods

The study comprised 5 experiments in 45 healthy subjects. We assessed the impact of 30-min-tSMS over M1 on corticospinal excitability, as measured by the amplitude of motor evoked potentials (MEPs) and resting motor thresholds (RMTs) to single-pulse transcranial magnetic stimulation (TMS) (experiments 1–2). We then assessed the impact of 30-min-tSMS on intracortical excitability, as measured by short-interval intracortical facilitation (SICF) and short-interval intracortical inhibition (SICI) using paired-pulse TMS protocols (experiments 2–4). We finally assessed the impact of 10-min-tSMS on SICF and SICI.

Results

30-min-tSMS decreased MEP amplitude compared to sham for at least 30 min after the end of the stimulation. This long-lasting effect was associated with increased SICF and reduced SICI. 10-min-tSMS –previously reported to induce a short-lasting decrease in MEP amplitude– produced the opposite changes in intracortical excitability, decreasing SICF while increasing SICI.

Conclusions

These results suggest a dissociation of intracortical changes in the consolidation from short-lasting to long-lasting decrease of corticospinal excitability induced by tSMS. The long-lasting effects of 30-min-tSMS open the way to the translation of this simple, portable and low-cost technique toward clinical trials.

via Long-lasting effects of transcranial static magnetic field stimulation on motor cortex excitability – Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation

, , , , , , , ,

Leave a comment

%d bloggers like this: