Posts Tagged elbow

[Abstract] An extended kinematic model for arm rehabilitation training and assessment


In the rehabilitation training and assessment of upper limbs, the conventional kinematic model treats the arm as a serial manipulator and maps the rotations in the joint space to movements in the Cartesian space. While this model brings simplicity and convenience, and thus has been overwhelming used, its accuracy is limited, especially for the distal parts of the upper limb that execute dexterous movements.

In this paper, a novel kinematic model of the arm has been proposed, which has been inspired by the biomechanical analysis of the forearm and wrist anatomy. One additional parameter is introduced into the conventional arm model, and then both the forward and inverse kinematic models of five parameters are derived for the motion of upper arm medial/lateral rotation, elbow flexion/extension, forearm pronation/supination, wrist flexion/extension and ulnar/radial deviation. Then, experiments with an advanced haptic interface have been designed and performed to examine the presented arm kinematic model. Data analysis revealed that accuracy and robustness can be significantly improved with the new model.

This extended arm kinematic model will help device development, movement training and assessment of upper limb rehabilitation.

Published in: Advanced Robotics and Mechatronics (ICARM), International Conference on

Source: An extended kinematic model for arm rehabilitation training and assessment – IEEE Xplore Document

, , , , , , , , , , , , ,

Leave a comment

[Abstract] Kinect V2 as a tool for stroke recovery: Pilot study of motion scale monitoring


This paper investigates Kinect device application during rehabilitation of people with an ischemic stroke. There are many similar application using Kinect as a tool during rehabilitation. This paper is focused on measurement of Kinect’s spatial accuracy and proposition of body states and exercises according to the Motor assessment scale for stroke (MAS). The system observes the whole rehabilitation process and objectively compares ranges of movement during each exercise. Angles between limbs are computed in the skeletal body joints projection to three anatomical planes, which enables a better insight to subject performance. The system is easily implemented with a consumer-grade computer and a low-cost Kinect device. Selected exercises are presented together with the angles evolution, body states recognition and the MAS Scale after the stroke classification.

Source: Kinect V2 as a tool for stroke recovery: Pilot study of motion scale monitoring – IEEE Xplore Document

, , , , , , , , , ,

Leave a comment

[Abstract] Accurate upper body rehabilitation system using kinect


The growing importance of Kinect as a tool for clinical assessment and rehabilitation is due to its portability, low cost and markerless system for human motion capture. However, the accuracy of Kinect in measuring three-dimensional body joint center locations often fails to meet clinical standards of accuracy when compared to marker-based motion capture systems such as Vicon. The length of the body segment connecting any two joints, measured as the distance between three-dimensional Kinect skeleton joint coordinates, has been observed to vary with time. The orientation of the line connecting adjoining Kinect skeletal coordinates has also been seen to differ from the actual orientation of the physical body segment. Hence we have proposed an optimization method that utilizes Kinect Depth and RGB information to search for the joint center location that satisfies constraints on body segment length and as well as orientation. An experimental study have been carried out on ten healthy participants performing upper body range of motion exercises. The results report 72% reduction in body segment length variance and 2° improvement in Range of Motion (ROM) angle hence enabling to more accurate measurements for upper limb exercises.

I. Introduction

Body joint movement analysis is extremely essential for health monitoring and treatment of patients with neurological disorders and stroke. Chronic hemiparesis of the upper extremity following a stroke causes major hand movement limitations. There is possibility of permanent reduction in muscle coactivation and corresponding joint torque patterns due to stroke [1]. Several studies suggest that abnormal coupling of shoulder adductors with elbow extensors and shoulder abductors with elbow flexors often leads to some stereotypical movement characteristics exhibited by severe stroke patients [2]. Therefore continuous and effective rehabilitation therapy is absolutely essential to monitor and control such abnormalities. There is a substantial need for home-based rehabilitation post-clinical therapy.

Source: Accurate upper body rehabilitation system using kinect – IEEE Xplore Document

, , , , , , , , , , , , , , , , , ,

Leave a comment

[Abstract] Trial operation of a cloud service-based three-dimensional virtual reality tele-rehabilitation system for stroke patients


We developed a tele-rehabilitation system to improve community rehabilitation for patients who are discharged early from hospital. The developed tele-rehabilitation system consists of devices designed to reduce the physical and economic burden on users while promoting optimum user movement. A Backend-as-a-Service cloud computing service was used for the communication between terminals. A non-contact sensor, Kinect, was used to measure movement. In addition, we used a three-dimensional (3D) display to present 3D images using binocular parallax, to encourage smooth movement of patients. We used this system for stroke patients and found improvements in task-performance time, smoothness of movements, and range of motion in all patients. No major issues occurred during the tele-rehabilitation. These results demonstrated the high operability and efficacy of our cloud service-based 3D virtual reality tele-rehabilitation system.

Source: IEEE Xplore Document – Trial operation of a cloud service-based three-dimensional virtual reality tele-rehabilitation system for stroke patients

, , , , , , , , ,

Leave a comment

[ARTICLE] Development and validation of a novel questionnaire for self-determination of the range of motion of wrist and elbow – Full Text



The aim of this study was to develop and validate a novel self-administered questionnaire for assessing the patient’s own range of motion (ROM) of the wrist and the elbow.


In a prospective clinical study from January 2015 to June 2015, 101 consecutive patients were evaluated with a novel, self-administered, diagram-based, wrist motion assessment score (W-MAS) and elbow motion assessment score (E-MAS). The questionnaire was statistically evaluated for test-retest reliability, patient-physician agreement, comparison with healthy population, and influence of covariates (age, gender, affected side and involvement in workers’ compensation cases).


Assessment of patient-physician agreement demonstrated almost perfect agreement (k > 0.80) with regard to six out of eight items. There was substantial agreement with regard to two items: elbow extension (k = 0.76) and pronation (k = 0.75). The assessment of the test-retest reliability revealed at least substantial agreement (k = 0.70). The questionnaire revealed a high discriminative power when comparing the healthy population with the study group (p = 0.007 or lower for every item). Age, gender, affected side and involvement in workers’ compensation cases did not in general significantly influence the patient-physician agreement for the questionnaire.


The W-MAS and E-MAS are valid and reliable self-administered questionnaires that provide a high level of patient-physician agreement for the assessments of wrist and elbow ROM.

Level of evidence: Diagnostic study, Level II


Assessing the patient’s outcome and satisfaction is important in modern orthopedic practice [1, 2, 3]. Using questionnaires to evaluate patients with wrist and elbow disorders is widespread and has been shown to be valid and reproducible [4, 5, 6, 7, 8, 9]. Self-reported outcome measures allow outcomes to be assessed from the patient’s perspective and do not require time in clinic or medical staff for data collection.

Common self-administered questionnaires for the determination of hand- and upper limp specific results of the wrist (e.g. patient-rated wrist evaluation, PRWE [8]) and of the elbow (e.g. The American Shoulder and Elbow Surgeons-Elbow, ASES-E [1]) enable the patient to assess the functional impairment of the joint, but they do not formally assess the range of motion, and patients have to attend clinic for this to be measured [10]. Therefore important data regarding the ROM would be lost in patients who are unable or unwilling to come to the outpatient clinic at the regular follow-up or for clinical research.

To our knowledge no validated self-assessment questionnaire for the ROM of the wrist or the elbow exists, which compares the agreement of the patient’s outcome with the examination by a physician.

Therefore, the aim of the current study was to develop a self-administered, diagram-based wrist motion assessment score (W-MAS) and elbow motion assessment score (E-MAS) to enable the patients to assess their own ROM of the wrist and the elbow. We further evaluated validity and reliability of this novel questionnaire with respect to the accuracy of self-determination of the wrist and elbow ROM.

Continue —>  Development and validation of a novel questionnaire for self-determination of the range of motion of wrist and elbow | BMC Musculoskeletal Disorders | Full Text

, , , , , , ,

Leave a comment

 [WEB SITE] HB Hands: Upper Extremity Home Exercise Program

HB Hands

Source: HB Hands

, , , , , , , , , ,

Leave a comment

[WEB SITE] How Effective is Botox in Improving UE Function? – Saebo

Shannon Scott, OTR/L, is the Clinical Assistant Professor at Stony Brook University Southampton. She is a graduate of the University of British Columbia in Vancouver, Canada and is currently pursuing her doctorate in OT through Quinnipiac University. She has over 23 years of clinical experience, specializing in Neurorehabilitation. She is Level One Brain Injury Certified and is NDT trained. Shannon was one of the first 10 therapists trained in the use of Saebo. Prior to teaching at Stony Brook, Shannon was the Director of Clinical Services at Saebo.Muscle spasticity is a negative symptom which can occur following a central nervous system disorder (Kinnear, 2012). The use of Botulinum Toxin Type A (BTX-A), commonly referred to as Botox, is used extensively in the treatment of muscle spasticity following stroke and other neurological conditions. Following BTX-A injections, physical and occupational therapy are typically provided and include stretching, casting, splinting, strengthening, and functional movement retraining (Kinnear, 2012).

Having provided the above types of occupational therapy interventions with numerous individuals who have received Botox injections to the UE, I have formulated my own opinions as to the functional benefits of Botox injections in the UE.  I recently did a literature review to find out what the research reports.

Van Kuijk, Geurts, Bevaart, and van Limbeek (2002) completed a systematic review of studies published from January 1996 through to October 2000. The results of the review support the efficacy of BTX-A on tone reduction and on improving passive range of motion which results in improved positioning and care of the involved UE.  One study indicated that clients reported that their arm was more relaxed with ambulation after receiving BTX-A injections to the elbow flexors, however, there was no clear effectiveness as to the impact on improved functional hand use with BTX-A.

The results of the above systematic review support my own observations. With therapy following BTX-A injections, increased passive range of motion, improved positioning, decreased pain, and improved ability to care for the UE were achieved, but I did not see specific improved hand function with BTX-A injections to the extrinsic or intrinsic hand muscles.

The above systematic review indicated that one study found superior outcomes utilizing BTX-A in combination with electrical stimulation and the authors recommended that larger controlled studies to compare the effectiveness of different and/or combined treatment interventions for spasticity was warranted.

Two studies were found that assessed the effectiveness of BTX-A in the elbow, wrist, and hand in combination with modified constraint induced movement therapy (mCIMT). All participants were required to meet the minimum wrist and finger active extension requirements before participating in the study. Sun, Hsu, Sun, Hwang, Yang, and Wang (2010) compared the effectiveness of BTX-A with mCIMT versus BTX-A with NDT. Wolf, Milton, Reiss, Easley, Shenvi, and Clark (2012) compared the effectiveness of mCIMT with and without BTX-A. Results of both studies indicated that all those who received the BTX-A had less spasticity.  Wolf, Milton, Reiss et al. (2012) concluded that BTX-A results in decreased tone, pain, and improved positioning but a combination of BTX-A with mCIMT versus mCIMT alone does not contribute to increased UE function in chronic stroke survivors. Sun, Hsu, Sun et al. (2010) reported no differences in spasticity between the two groups at one and 3 months, but the experimental group, who received BTX-A and mCIMT, continued to have decreased tone in the elbow, wrist, and hand as well as increased scores on the Action Research Arm Test (ARAT) and Motor Activity Log (MAL) and increased use of the UE at a 6 month follow compared to the group that received BTX-A and NDT. Sun, Hsu, Sun, et al. (2010) also identified the need to assess other potential treatment combinations.

One study has been found that compares the effectiveness of the combined use of BTX-A and manual therapy both with and without the adjunctive use of dynamic splinting on the elbow (Lai, Francisco, & Willis, 2009). Active elbow range of motion and tone, as measured by the Modified Ashworth Score, were measured. The results indicated that the experimental group with the combined the use of adjunctive dynamic splinting, demonstrated a mean 33.5% improvement in AROM and a mean 9.3% improvement on the MAS scores as compared to 18.7% and 8.6% respectively in the control group who did not utilize adjunctive dynamic splinting.

All studies have indicated that BTX-A is effective in managing tone and improving range of motion, however, adjunctive treatments are also necessary to optimize functional improvements with electrical stimulation, dynamic splinting, and repetitive, functional retraining (mCIMT) showing more promising results. All studies recommended categorizing participants based on impairment severity level in order to assess the ability to predict who would benefit most from what type of interventions.

Though no formal study has been completed to date on the use of BTX-A in combination with dynamic hand splinting, you can view a single session video of an individual incorporating the use of the SaeboFlex dynamic hand orthoses after having received BTX-A in the extrinsic finger flexors 7-10 days prior by clicking the following link:

Source: How Effective is Botox in Improving UE Function? – SaeboSaebo

, , , , , , , , , ,

Leave a comment

[BOOK] Advanced Robotics for Medical Rehabilitation: Current State of the Art and Recent Advances – Google Books


, , , , , ,

Leave a comment

[ARTICLE] Static and dynamic characterization of the LIGHTarm exoskeleton for rehabilitation


This paper presents LIGHTarm, a passive gravity compensated exoskeleton for upper-limb rehabilitation suitable for the use both in the clinical environment and at home. Despite the low-cost and not actuated design, LIGHTarm aims at providing remarkable back-drivability in wide portions of the upper-limb workspace. The weight-support and back-drivability features are experimentally investigated on three healthy subjects through the analysis of the EMG activity recorded in static conditions and during functional movements. Kinematics is also monitored. Preliminary results suggest that LIGHTarm sharply reduces muscular effort required for limb support, quite uniformly in the workspace, and that remarkable back-drivability is achieved during the execution of functional movements.

Source: IEEE Xplore Abstract (Abstract) – Static and dynamic characterization of the LIGHTarm exoskeleton for rehabilitation


, , , , , , , , , , , , , , ,

Leave a comment



This thesis describes the development of a wearable mechatronic brace for upper limb rehabilitation that can be used at any stage of motion training after surgical reconstruction of brachial plexus nerves. The results of the mechanical design and the work completed towards finding the best torque transmission system are presented herein. As part of this mechatronic system, a customized control system was designed, tested and modified. The control strategy was improved by replacing a PID controller with a cascade controller. Although the experiments have shown that the proposed device can be successfully used for muscle training, further assessment of the device, with the help of data from the patients with brachial plexus injury (BPI), is required to improve the control strategy. Unique features of this device include the combination of adjustability and modularity, as well as the passive adjustment required to compensate for the carrying angle.

Full Text PDF

, , , , , , , , ,

Leave a comment

%d bloggers like this: