Posts Tagged ADL

[Abstract] Commercial video games in the rehabilitation of patients with sub-acute stroke: a pilot study

Abstract

INTRODUCTION:

Stroke generates dependence on the patients due to the various impairments associated. The use of low-cost technologies for neurological rehabilitation may be beneficial for the treatment of these patients.

AIM:

To determine whether combined treatment using a semi-immersive virtual reality protocol to an interdisciplinary rehabilitation approach, improve balance and postural control, functional independence, quality of life, motivation, self-esteem and adherence to intervention in stroke patients in subacute stage.

PATIENTS AND METHODS:

A longitudinal prospective study with pre and post-intervention evaluation was carried out. Fourteen were recruited at La Fuenfria Hospital (Spain) and completed the intervention. Experimental intervention was performed during eight weeks in combination with conventional treatment of physiotherapy and occupational therapy. Each session was increased in time and intensity, using commercial video games linked to Xbox 360° videoconsole and Kinect sensor.

RESULTS:

There were statistical significant improvements in modified Rankin scale (p = 0.04), baropodometry (load distribution, p = 0.03; support surface, p = 0.01), Barthel Index (p = 0.01), EQ-5D Questionnaire (p = 0.01), motivation (p = 0.02), self-esteem (p = 0.01) and adherence to the intervention (p = 0.02).

CONCLUSIONS:

An interdisciplinary rehabilitation approach supplemented with semi-immersive virtual reality seems to be useful for improving balance and postural control, functional independence in basic activities of daily living, quality of life, as well as motivation and self-esteem, with excellent adherence. This intervention modality could be adopted as a therapeutic tool in neurological rehabilitation of stroke patients in subacute stage.

 

via [Commercial video games in the rehabilitation of patients with sub-acute stroke: a pilot study]. – PubMed – NCBI

, , , , ,

Leave a comment

[Abstract] The wearable hand robot: supporting impaired hand function in activities of daily living and rehabilitation

Abstract

Our hands are very important in our daily life. They are used for non-verbal communication and sensory feedback, but are also important to perform both fine (e.g. picking up paperclips) and gross (e.g. lifting heavy boxes) motor tasks. Decline of hand function in older adults as a result of age-related loss of muscle mass (i.e. sarcopenia) and/or age-related diseases such as stroke, rheumatoid arthritis or osteoarthritis, is a common problem worldwide. The decline in hand function, in particular grip strength, often results in increased difficulties in performing activities of daily living (ADL), such as carrying heavy objects, doing housework, (un)dressing, preparing food and eating.
New developments, based on the concept of wearable soft-robotic devices, make it possible to support impaired hand function during the performance of daily activities and intensive task-specific training. The ironHand and HandinMind systems are examples of such novel wearable soft-robotic systems that have been developed in the ironHand and HandinMind projects. Both systems are developed to provide grip support during a wide range of daily activities. The ironHand system consists of a 3-finger wearable soft-robotic glove, tailored to older adults with a variety of physical age-related hand function limitations. The HandinMind system consists of a 5-finger wearable soft-robotic glove, dedicated towards application in stroke. In both cases, the wearable soft-robotic system could be connected to a computer with custom software to train specific aspects of hand function in a motivating game-like environment with multiple levels of difficulty. By adding the game environment, an assistive device is transformed into a dedicated training device.
The aim of the current thesis is to define user requirements, to investigate feasibility and to evaluate the direct and clinical effects of a wearable soft-robotic system that is developed to support impaired hand function of older adults and stroke patients in a wide range of daily activities and in exercise training at home.

via The wearable hand robot: supporting impaired hand function in activities of daily living and rehabilitation — University of Twente Research Information

, , , , , , , , , , , ,

Leave a comment

[Abstract] Electromechanical and robot‐assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke

Abstract

Background

Electromechanical and robot‐assisted arm training devices are used in rehabilitation, and may help to improve arm function after stroke.

Objectives

To assess the effectiveness of electromechanical and robot‐assisted arm training for improving activities of daily living, arm function, and arm muscle strength in people after stroke. We also assessed the acceptability and safety of the therapy.

Search methods

We searched the Cochrane Stroke Group’s Trials Register (last searched January 2018), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2018, Issue 1), MEDLINE (1950 to January 2018), Embase (1980 to January 2018), CINAHL (1982 to January 2018), AMED (1985 to January 2018), SPORTDiscus (1949 to January 2018), PEDro (searched February 2018), Compendex (1972 to January 2018), and Inspec (1969 to January 2018). We also handsearched relevant conference proceedings, searched trials and research registers, checked reference lists, and contacted trialists, experts, and researchers in our field, as well as manufacturers of commercial devices.

Selection criteria

Randomised controlled trials comparing electromechanical and robot‐assisted arm training for recovery of arm function with other rehabilitation or placebo interventions, or no treatment, for people after stroke.

Data collection and analysis

Two review authors independently selected trials for inclusion, assessed trial quality and risk of bias, used the GRADE approach to assess the quality of the body of evidence, and extracted data. We contacted trialists for additional information. We analysed the results as standardised mean differences (SMDs) for continuous variables and risk differences (RDs) for dichotomous variables.

Main results

We included 45 trials (involving 1619 participants) in this update of our review. Electromechanical and robot‐assisted arm training improved activities of daily living scores (SMD 0.31, 95% confidence interval (CI) 0.09 to 0.52, P = 0.0005; I² = 59%; 24 studies, 957 participants, high‐quality evidence), arm function (SMD 0.32, 95% CI 0.18 to 0.46, P < 0.0001, I² = 36%, 41 studies, 1452 participants, high‐quality evidence), and arm muscle strength (SMD 0.46, 95% CI 0.16 to 0.77, P = 0.003, I² = 76%, 23 studies, 826 participants, high‐quality evidence). Electromechanical and robot‐assisted arm training did not increase the risk of participant dropout (RD 0.00, 95% CI ‐0.02 to 0.02, P = 0.93, I² = 0%, 45 studies, 1619 participants, high‐quality evidence), and adverse events were rare.

Authors’ conclusions

People who receive electromechanical and robot‐assisted arm training after stroke might improve their activities of daily living, arm function, and arm muscle strength. However, the results must be interpreted with caution although the quality of the evidence was high, because there were variations between the trials in: the intensity, duration, and amount of training; type of treatment; participant characteristics; and measurements used.

Plain language summary

Electromechanical‐assisted training for improving arm function and disability after stroke

Review question

To assess the effects of electromechanical and robot‐assisted arm training for improving arm function in people who have had a stroke.

Background

More than two‐thirds of people who have had a stroke have difficulties with reduced arm function, which can restrict a person’s ability to perform everyday activities, reduce productivity, limit social activities, and lead to economic burden. Electromechanical and robot‐assisted arm training uses specialised machines to assist rehabilitation in supporting shoulder, elbow, or hand movements. However, the role of electromechanical and robot‐assisted arm training for improving arm function after stroke is unclear.

Study characteristics

We identified 45 trials (involving 1619 participants) up to January 2018 and included them in our review. Twenty‐four different electromechanical devices were described in the trials, which compared electromechanical and robot‐assisted arm training with a variety of other interventions. Participants were between 21 to 80 years of age, the duration of the trials ranged from two to 12 weeks, the size of the trials was between eight and 127 participants, and the primary outcome (activities of daily living: the most important target variable measured) differed between the included trials.

Key results

Electromechanical and robot‐assisted arm training improved activities of daily living in people after stroke, and function and muscle strength of the affected arm. As adverse events, such as injuries and pain, were seldom described, these devices can be applied as a rehabilitation tool, but we still do not know when or how often they should be used.

Quality of the evidence

The quality of the evidence was high.

 

via Electromechanical and robot‐assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke – Mehrholz, J – 2018 | Cochrane Library

, , , , , , , , , ,

Leave a comment

[Abstract + References] A Wearable Hand Neuroprosthesis for Hand Rehabilitation After Stroke: Preliminary Results of the RETRAINER S2 Randomized Controlled Trial – Conference paper

Abstract

Stroke is the main cause of permanent and complex long-term disability in adults. RETRAINER S2 is a system able to recover and support person’s ability to perform Activities of Daily Living (ADL) in early stage after stroke. The system is based on exercises for hand and wrist performed using Neuro Muscular Electrical Stimulation (NMES). This work describes the preliminary results of a multi-center Randomized Controlled Trial (RCT) aimed at evaluating effectiveness of the system. The preliminary results were calculated on 18 patients who completed the protocol. Data is promising, the RETRANER S2 system seems to be a good tool for stroke rehabilitation. Data confirms also a general good usability of the system.

via A Wearable Hand Neuroprosthesis for Hand Rehabilitation After Stroke: Preliminary Results of the RETRAINER S2 Randomized Controlled Trial | SpringerLink

, , , , , , ,

Leave a comment

[Book Chapter] SOFT ROBOTIC GLOVE FOR COMBINED ASSISTANCE AND REHABILITATION DURING ACTIVITIES OF DAILY LIVING – The Encyclopedia of Medical Robotics

Abstract:

The human hand plays an important role in the manipulation and exploration of the environment. Unfortunately, when disease or injury impedes hand function, the consequences are numerous including disrupting quality of life, independence, and financial stability. In this chapter, we present the development of a soft robotic glove designed to support basic hand function. The glove uses soft fluidic actuators programmed to apply assistive forces to support the range of motion of a human hand. More specifically, we present a method of fabrication and characterization of these soft actuators as well as consider an approach for controlling the glove. This analysis concludes with results from preliminary human subjects testing where glove performance was evaluated on a healthy and an impaired subject.

via SOFT ROBOTIC GLOVE FOR COMBINED ASSISTANCE AND REHABILITATION DURING ACTIVITIES OF DAILY LIVING | The Encyclopedia of Medical Robotics

, , , , , , , ,

Leave a comment

[REVIEW] Moving toward Soft Robotics: A Decade Review of the Design of Hand Exoskeletons – Full Text HTML

Abstract

Soft robotics is a branch of robotics that deals with mechatronics and electromechanical systems primarily made of soft materials. This paper presents a summary of a chronicle study of various soft robotic hand exoskeletons, with different electroencephalography (EEG)- and electromyography (EMG)-based instrumentations and controls, for rehabilitation and assistance in activities of daily living. A total of 45 soft robotic hand exoskeletons are reviewed. The study follows two methodological frameworks: a systematic review and a chronological review of the exoskeletons. The first approach summarizes the designs of different soft robotic hand exoskeletons based on their mechanical, electrical and functional attributes, including the degree of freedom, number of fingers, force transmission, actuation mode and control strategy. The second approach discusses the technological trend of soft robotic hand exoskeletons in the past decade. The timeline analysis demonstrates the transformation of the exoskeletons from rigid ferrous materials to soft elastomeric materials. It uncovers recent research, development and integration of their mechanical and electrical components. It also approximates the future of the soft robotic hand exoskeletons and some of their crucial design attributes.

1. Introduction

The emerging trend of soft robotics has stimulated the interest of engineers and researchers around the world to look into various applications, ranging from biomedical and rehabilitation to grasping and manipulation [1,2]. Biomimetic and bioinspired soft robots have been among the most successful products of soft material robotics. Among others, the inspiration for these soft robots originates from examining invertebrates like caterpillars, worms and fish grubs [2]. The hydrostatic and fluid-like structure motivates researchers to look more into the use of soft materials to develop similar structures.
One of the major lessons learned from these biostructures was the ability to form and adapt to complexly shaped bodies. This led to various developments such as: (1) an octopus-like robot for flexible manipulation [2]; (2) a worm-like robot that uses a thermal shape-memory alloy (SMA) actuator to imitate the motion of its biological counterpart [3]; and (3) a caterpillar-shaped soft robot that imitates the process of translating deformation to locomotor dynamics [4].
Another important development in the emerging field of soft robotics is the use of pneumatic soft grippers for handling fragile objects such as an uncooked egg or an anesthetized mouse [5]. These devices can grip, hold and release certain complexly shaped objects. They have several fingers to hold delicate objects by intelligently adapting themselves to the shape of the object and providing maximum gripping force without damaging it.
This new trend is especially interesting for biomedical and rehabilitation engineering applications as well, with the hand exoskeleton as one of the examples. A major shift from the use of hard to soft materials can be observed in some of the latest designs of hand exoskeletons, such as the Wyss Institute glove [6,7,8], the Magnetic Resonance Compatible (MRC) glove [9,10,11,12], the National University of Singapore (NUS) glove [13,14,15,16,17] and the Seoul National University (SNU) glove [18,19,20,21,22,23]. The hand exoskeleton is an integral part of rehabilitation robotics that provides rehabilitation exercises and assistance in activities of daily living (ADL), such as gripping and grasping [24]. It is commonly recommended for patients with cerebrovascular disease [24], cerebral palsy [25] and rheumatoid arthritis [26].
Unlike a prosthetic hand, a hand exoskeleton is designed and built around the human hand; thus, it has to conform to the hand anatomy and its range of motion to minimize the wearer’s discomfort. More importantly, it has to be light and able to be put on easily so that the wearer can use it daily to perform basic activities. Figure 1a shows the natural skeletal structure of the human finger, the movement of which may be assisted. The structure consists of three joints: distal (DIP), proximal (PIP) and metacarpal (MCP) interphalangeal joints [27,28]. The finger movements are controlled through the activation of extrinsic and intrinsic muscles. The extrinsic muscles are actuated from the forearm and control the flexor and extensor muscle tendons to move the fingers. The intrinsic muscles are located within the finger, and they control the independent motion of the finger [28]. The maximum flexion for the MCP joint ranges from 70° to 95° depending on the finger orientation, while the maximum flexion for the DIP and PIP joints is about 110° and 90°, respectively.
Hand exoskeletons have endured extensive research, primarily in the field of assistive and rehabilitative robotics, and have also been discussed from various perspectives [29,30,31]. Several iterations of different hand exoskeletons indicate the growing need for a better, lighter and more practical solution. Most of the existing hand exoskeletons adopt one of the design approaches depicted in Figure 1. With the rise of soft robotics, there has been a progressive shift from the conventional rigid mechanical structure designs (Figure 1b) to designs with softer actuation (Figure 1c) and designs that closely resemble the natural finger musculoskeletal structure (Figure 1d) [27]. This study aims to review these changes in the recent decade and discuss how the adoption of soft robotics helps in designing a more compliant hand exoskeleton. The design of a hand exoskeleton can be divided into three main components: the mechanical design, the actuation unit and sensory feedback control. This work also examines how soft robotics technology has changed the architectures of these components over the years.[…]

 

Continue —>  Biomimetics | Free Full-Text | Moving toward Soft Robotics: A Decade Review of the Design of Hand Exoskeletons | HTML

, , , , , , ,

Leave a comment

[Abstract] Effects of MOTOmed movement therapy on the mobility and activities of daily living of stroke patients with hemiplegia: a systematic review and meta-analysis

To estimate the effectiveness of MOTOmed® movement therapy in increasing mobility and activities of daily living in stroke patients with hemiplegia.

Systematic review.

English- and Chinese-language articles published from the start of database coverage through 20 June 2018 were retrieved from the Embase, Web of Science, PubMed, OVID, Cochrane Central Register of Controlled Trials, Cochrane Systematic Reviews, Wanfang, Chinese National Knowledge Infrastructure, VIP, and Chinese Biomedicine databases. Articles were also retrieved by manual searches of Rehabilitation Medicine and Chinese journals.

Randomized control trials examining MOTOmed movement therapy interventions for patients with post-stroke hemiplegia were included in this review. The risk of bias assessment tool was utilized in accordance with Cochrane Handbook 5.1.0. All included studies reported mobility effects as primary outcomes. Standardized mean differences or mean differences with the corresponding 95% confidence intervals (CIs) were calculated. Review Manager 5.3 was utilized for meta-analysis.

In total, 19 trials involving a total of 1099 patients were included in the analysis. All studies were of moderate quality, based on the Cochrane Handbook for Systematic Reviews of Intervention: Part 2:8.5. MOTOmed movement therapy resulted in a merged mean difference in the Fugl-Meyer Assessment score of 5.51 (95% CI: 4.03 to 6.98). Comparison of groups treated with and without MOTOmed movement therapy yielded the following mean differences: Modified Ashworth Scale, −1.13 (95% CI: −1.37 to −0.89); Berg Balance Scale, 13.66 (95% CI: 10.47–16.85); Functional Ambulation Category Scale, 0.85 (95% CI: 0.68–1.03); 10-m walk test, 10.15 (95% CI: 5.72–14.58); Barthel Index, 14.82 (95% CI: 12.96–16.68); and Modified Barthel Index, 11.49 (95% CI: 8.96–14.03).

MOTOmed movement therapy combined with standard rehabilitation improves mobility and activities of daily living in stroke patients with hemiplegia.

  

via Effects of MOTOmed movement therapy on the mobility and activities of daily living of stroke patients with hemiplegia: a systematic review and meta-analysis – Cuiling Shen, Fang Liu, Liqun Yao, Zhongyuan Li, Li Qiu, Suzhu Fang, 2018

, , , , , , ,

Leave a comment

[Abstract] Eye Movements Interfere With Limb Motor Control in Stroke Survivors

Background. Humans use voluntary eye movements to actively gather visual information during many activities of daily living, such as driving, walking, and preparing meals. Most stroke survivors have difficulties performing these functional motor tasks, and we recently demonstrated that stroke survivors who require many saccades (rapid eye movements) to plan reaching movements exhibit poor motor performance. However, the nature of this relationship remains unclear.

Objective. Here we investigate if saccades interfere with speed and smoothness of reaching movements in stroke survivors, and if excessive saccades are associated with difficulties performing functional tasks.

Methods. We used a robotic device and eye tracking to examine reaching and saccades in stroke survivors and age-matched controls who performed the Trail Making Test, a visuomotor task that uses organized patterns of saccades to plan reaching movements. We also used the Stroke Impact Scale to examine difficulties performing functional tasks.

Results. Compared with controls, stroke survivors made many saccades during ongoing reaching movements, and most of these saccades closely preceded transient decreases in reaching speed. We also found that the number of saccades that stroke survivors made during ongoing reaching movements was strongly associated with slower reaching speed, decreased reaching smoothness, and greater difficulty performing functional tasks.

Conclusions. Our findings indicate that poststroke interference between eye and limb movements may contribute to difficulties performing functional tasks. This suggests that interventions aimed at treating impaired organization of eye movements may improve functional recovery after stroke.

via Eye Movements Interfere With Limb Motor Control in Stroke Survivors – Tarkeshwar Singh, Christopher M. Perry, Stacy L. Fritz, Julius Fridriksson, Troy M. Herter, 2018

, , , , , , , ,

Leave a comment

[ARTICLE] Upper limb robotic rehabilitation for chronic stroke survivors: a single-group preliminary study – Full Text PDF

Abstract

[Purpose] This study aimed to assess whether robotic rehabilitation can improve upper limb function, activities of daily living performance, and kinematic performance of chronic stroke survivors.

[Subjects and Methods] Participants were 21 chronic stroke survivors (19 men; 60.8 years; Mini-Mental State Examination score: 28; onset duration: 10.2 years). Training exercises were performed with a Whole Arm Manipulator and a 120-inch projective display to provide visual and auditory feedback. Once the training began, red and grey balls appeared on the projective display, and participants performed reaching movements, in the assist-as-needed mode, toward 6 directional targets in a 3-dimensional space. All participants received training for 40 minutes per day, thrice per
week, for 6 weeks. Main outcome measures were upper limb function (Fugl-Meyer Assessment, Action Research Arm Test, and Box and Blocks Test scores), activities of daily living performance (Modified Barthel Index), and kinematic performance (movement velocity) in 6 directions.

[Results] After 6 weeks, significant improvement was observed in upper limb function, activities of daily living performance, and kinematic performance.

[Conclusion]
This study demonstrated the positive effects of robotic rehabilitation on upper limb function, activities of daily living performance, and kinematic performance in chronic stroke survivors.

Full Text PDF

, , , , , , ,

Leave a comment

[Abstract] Analyzing finger interdependencies during the Purdue Pegboard Test and comparative activities of daily living

Abstract

Study Design

Bench and cross-sectional study.

Introduction

Information obtained from dexterity tests is an important component of a comprehensive examination of the hand.

Purpose of the Study

To analyze and compare finger interdependencies during the performance of the Purdue Pegboard Test (PBT) and comparative daily tasks.

Methods

A method based on the optoelectronic kinematic analysis of the precision grip style and on the calculation of cross-correlation coefficients between relevant joint angles, which provided measures of the degree of finger coordination, was conducted on 10 healthy participants performing the PBT and 2 comparative daily living tasks.

Results

Daily tasks showed identifiable interdependencies patterns between the metacarpophalangeal joints of the fingers involved in the grip. Tasks related to activities of daily living resulted in significantly higher cross-correlation coefficients across subjects and movements during the formation and manipulation phases of the tasks (0.7-0.9), whereas the release stage produced significantly lower movement correlation values (0.3-0.7). Contrarily, the formation and manipulation stages of the PBT showed low finger correlation across most subjects (0.2-0.6), whereas the release stage resulted in the highest values for all relevant movements (0.65-0.9).

Discussion

Interdependencies patterns were consistent for the activities of daily living but differ from the patterns observed from the PBT.

Conclusions

The PBT does not compare well with the whole range of finger movements that account for hand performance during daily tasks.

via Analyzing finger interdependencies during the Purdue Pegboard Test and comparative activities of daily living – Journal of Hand Therapy

, , , , , , , , , ,

Leave a comment

%d bloggers like this: