Posts Tagged ADL

[ARTICLE] Soft robotic devices for hand rehabilitation and assistance: a narrative review – Full Text



The debilitating effects on hand function from a number of a neurologic disorders has given rise to the development of rehabilitative robotic devices aimed at restoring hand function in these patients. To combat the shortcomings of previous traditional robotics, soft robotics are rapidly emerging as an alternative due to their inherent safety, less complex designs, and increased potential for portability and efficacy. While several groups have begun designing devices, there are few devices that have progressed enough to provide clinical evidence of their design’s therapeutic abilities. Therefore, a global review of devices that have been previously attempted could facilitate the development of new and improved devices in the next step towards obtaining clinical proof of the rehabilitative effects of soft robotics in hand dysfunction.


A literature search was performed in SportDiscus, Pubmed, Scopus, and Web of Science for articles related to the design of soft robotic devices for hand rehabilitation. A framework of the key design elements of the devices was developed to ease the comparison of the various approaches to building them. This framework includes an analysis of the trends in portability, safety features, user intent detection methods, actuation systems, total DOF, number of independent actuators, device weight, evaluation metrics, and modes of rehabilitation.


In this study, a total of 62 articles representing 44 unique devices were identified and summarized according to the framework we developed to compare different design aspects. By far, the most common type of device was that which used a pneumatic actuator to guide finger flexion/extension. However, the remainder of our framework elements yielded more heterogeneous results. Consequently, those results are summarized and the advantages and disadvantages of many design choices as well as their rationales were highlighted.


The past 3 years has seen a rapid increase in the development of soft robotic devices for hand rehabilitative applications. These mostly preclinical research prototypes display a wide range of technical solutions which have been highlighted in the framework developed in this analysis. More work needs to be done in actuator design, safety, and implementation in order for these devices to progress to clinical trials. It is our goal that this review will guide future developers through the various design considerations in order to develop better devices for patients with hand impairments.


Imagine tying your shoes or putting on a pair of pants while having limited use of your hands. Now imagine the impact on your daily life if that limitation was permanent. The ability to perform activities of daily living (ADL) is highly dependent on hand function, leaving those suffering with hand impairments less capable of executing ADLs and with a reduced quality of life. Unfortunately, the hand is often the last part of the body to receive rehabilitation.

According to a 2015 National Health Interview Survey, there were approximately 4.7 million adults in the United States that found it “Very difficult to or cannot grasp or handle small objects” [1]. Hand impairments are commonly observed in neurological and musculoskeletal diseases such as arthritis, Cerebral Palsy, Parkinson’s Disease, and stroke. A summary of motor impairment prevalence associated with these diseases may be seen in Table 1. Fortunately, physical rehabilitation has been shown to promote motor recovery through repetitive isolated movements [2345]. This is largely due to neuroplasticity – the ability for the brain to reorganize itself by establishing new neural connections. Occupational and physical therapists thus attempt to take advantage of neuroplasticity in order to re-map motor function in the brain through repeated exercise. Currently, however, there is no consensus on the best mode and dosing to facilitate neuroplasticity [6]. Additionally, recovery success relies heavily on a patient’s ability to attend therapy, which can be deterred by the frequency, duration, or cost of the therapy. Robotic devices could enhance access to repeated exercise. As such, they have been developed and investigated for their utilization as an adjunctive therapy to improve patient access, compliance and subsequent outcomes of rehabilitation efforts. An overview of the designs with comparisons between the different approaches will help future development of these tools.[…]

Continue —> Soft robotic devices for hand rehabilitation and assistance: a narrative review | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 5Methods of detection along motor pathway [81]


, , , , , , , ,

Leave a comment

[ARTICLE] The Efficacy of the proprioceptive neuromuscular facilitation (PNF) approach in stroke rehabilitation to improve basic activities of daily living and quality of life: a systematic review and meta-analysis protocol – Full Text


Introduction Proprioceptive neuromuscular facilitation (PNF) is a widely used rehabilitation concept, although its efficacy has not yet been demonstrated in stroke survivors. The aim of this systematic review is to identify, assess and synthesise the potential benefits of using PNF to improve the activities of daily living (ADL) and quality of life (QoL) of individuals with stroke.

Methods and analysis A systematic electronic search will be conducted in MEDLINE, Embase, CENTRAL and PEDro. We will include randomised or quasi-randomised controlled trials of PNF interventions conducted in stroke survivors up to April 2017. Two review authors will independently select relevant studies and will extract data using the Cochrane handbook for systematic reviews of interventions approach and the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P). The methodological quality will be assessed by using the PEDro scale. Finally, with the permitted numeric data, we will carry out a meta-analysis.

Ethics and dissemination Ethical considerations will not be required. Results will be disseminated in a peer-review journal. This systematic review aims to examine the effects of PNF (neurophysiological approach) in order to clarify its efficacy in improving ADL and QoL in the rehabilitation process of stroke survivors.


Strengths and limitations of this study

  • To our knowledge this study is the first systematic review focused on the proprioceptive neuromuscular facilitation (PNF) approach for stroke survivors.

  • This systematic review has an open eligibility criteria to clarify the efficacy of the PNF method for different clinical situations in stroke patients.

  • The electronic search will only include randomised controlled and quasi-randomised controlled trials published in English, Spanish, French and Portuguese that could limit the inclusion of studies.



Every year, stroke survivors, related deaths, and disability-adjusted life-years are increasing, although the mortality rates for stroke have decreased in the last two decades.1 Motor and sensory impairments due to stroke often affect the patients’ mobility, limiting their activities of daily living (ADL) and their social participation, and hindering their chances of resuming their professional life. Motor function among other factors (such as social or personal factors) could contribute to a low overall quality of life (QoL).2

Throughout the years, a number of conceptualisations have been used to describe QoL in stroke survivors.3–5 The lack of an agreed definition on QoL means that most QoL outcomes have been assessed using standardised questionnaires. However, these questionnaires do not reveal important domains of patients’ QoL and sometimes scores may be difficult to interpret.5

Dijkers4 separated the QoL term into three categories: (1) QoL as subjective well-being (SWB); (2) QoL as achievement; and (3) QoL as utility. QoL as SWB has been defined as the sum total of the cognitive and emotional reactions that people experience when they compare what they have and do in life with their aspirations, needs, and other expectations. QoL as achievement refers to people’s possessions, relationships and accomplishments, among others, using metrics defined by an outsider’s point of view. Within the medical rehabilitation field, QoL measurements commonly involve health status or are qualified by the term “health-related”. Health-related QoL (HRQoL) is defined by the value assigned to the duration of life when modified by impairment, functional state, perception and social factors that are influenced by disease, injury, treatment or policy.6 According to Dijkers4some researchers base themselves on the WHO’s encompassing definition of health, and may add to this different social health indicators such as interactions with others and social role functioning. Finally, in QoL as utility, achievements and statuses are judged in terms of societal norms and standards that quantify the value of a life.

An optimal rehabilitation effectively addresses components, as coded by the International Classification of Functioning (ICF), such as impairment, activity limitations and participation restrictions, and contextual and personal factors, with the goal of a satisfactory QoL as perceived by the individual. The relationship between the three domains of the ICF is clear: impairments impact activities and activities have an impact on participation. Functionality and ADL take a specific role in influencing QoL in stroke survivors positively. During the recovery process and according to the degree of disability, it is important to impact on those variables at any time throughout the rehabilitation treatment, taking into account that they are variables that change over time.7 Much of the focus of stroke rehabilitation is on the recovery of impaired movement and the associated functions. According to Jørgensen8there seems to be a correlation between motor impairments and activity limitations; for example, lower-limb strength (impairment) has been correlated with independence in walking (activity level). In order to improve the neuromuscular system’s effectiveness in coordinating movement and function, there are different physical rehabilitation approaches used for enhancing recovery in post stroke patients, but neither method was more (or less) effective in terms of improving independence in ADL or motor function.9Proprioceptive neuromuscular facilitation (PNF) is widely used in rehabilitation practice.10

The PNF approach has existed since the late 1930s and ’40s when the physician and neurologist Herman Kabat, and the physiotherapist Margaret Knott, began using proprioceptive techniques on younger individuals with cerebral palsy and other neurological conditions. The main goal of this intervention method is to help patients achieve their highest function level. PNF uses the body’s proprioceptive system to facilitate or inhibit muscle contraction. The definition of PNF encompasses the terms proprioceptive (which has to do with any of the sensory receptors that provide information concerning movement and position of the body); neuromuscular (involving the nerves and muscles); and facilitation (making it easier).11

Recently, various systematic reviews 12–17 and an evidence-based clinical practice guideline18 have evaluated the efficacy of stroke rehabilitation interventions, including PNF techniques. However, none were specifically focused on PNF, and only one narrative review assessed PNF as the principal topic.10 Furthermore, the most frequent objectives to assess the efficacy of this intervention method were motor function and mobility. It is necessary that therapists base their clinical decisions on the most reliable scientific evidence available; hence, this systematic review aims to determine the efficacy of PNF techniques in improving ADL and QoL in stroke survivors.


The primary purpose of this systematic review is to examine the efficacy of PNF in improving ADL and QoL in individuals with stroke. Secondary specific aims are to determine the efficacy of the PNF techniques in postural control, gait, upper limb function and muscle strength.[…]


Continue —> The Efficacy of the proprioceptive neuromuscular facilitation (PNF) approach in stroke rehabilitation to improve basic activities of daily living and quality of life: a systematic review and meta-analysis protocol | BMJ Open

, , , , , ,

Leave a comment



The purpose of this education is to help you understand how to screen, refer and treat patients related to functional performance.

Objectives for Today
■ Identify signs and symptoms that indicate a potential vision problem.
■ Identify the differences amongst the variety of vision problems that can occur
following a neurological event and how it impacts functional performance with
■ Identify how to accurately screen for potential vision problems and when to refer to
an eye specialist.
■ Identify therapeutic approaches used to treat and compensate for problems,
allowing for improved function.

Full Text PDF (79 pages)

, , , , , , ,

Leave a comment

[ARTICLE] Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials – Full Text



Transcranial Direct Current Stimulation (tDCS) is an emerging approach for improving capacity in activities of daily living (ADL) and upper limb function after stroke. However, it remains unclear what type of tDCS stimulation is most effective. Our aim was to give an overview of the evidence network regarding the efficacy and safety of tDCS and to estimate the effectiveness of the different stimulation types.


We performed a systematic review of randomised trials using network meta-analysis (NMA), searching the following databases until 5 July 2016: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, AMED, Web of Science, and four other databases. We included studies with adult people with stroke. We compared any kind of active tDCS (anodal, cathodal, or dual, that is applying anodal and cathodal tDCS concurrently) regarding improvement of our primary outcome of ADL capacity, versus control, after stroke. PROSPERO ID: CRD42016042055.


We included 26 studies with 754 participants. Our NMA showed evidence of an effect of cathodal tDCS in improving our primary outcome, that of ADL capacity (standardized mean difference, SMD = 0.42; 95% CI 0.14 to 0.70). tDCS did not improve our secondary outcome, that of arm function, measured by the Fugl-Meyer upper extremity assessment (FM-UE). There was no difference in safety between tDCS and its control interventions, measured by the number of dropouts and adverse events.


Comparing different forms of tDCS shows that cathodal tDCS is the most promising treatment option to improve ADL capacity in people with stroke.


An emerging approach for enhancing neural plasticity and hence rehabilitation outcomes after stroke is non-invasive brain stimulation (NIBS). Several stimulation procedures are available, such as repetitive transcranial magnetic stimulation (rTMS) [1], transcranial direct current stimulation (tDCS) [234], transcranial alternating current stimulation (tACS) [5], and transcranial pulsed ultrasound (TPU) [6]. In recent years a considerable evidence base for NIBS has emerged, especially for rTMS and tDCS.

tDCS is relatively inexpensive, easy to administer and portable, hence constituting an ideal adjuvant therapy during stroke rehabilitation. It works by applying a weak and constant direct current to the brain and has the ability to either enhance or suppress cortical excitability, with effect lasting up to several hours after the stimulation [789]. Hypothetically, this technique makes tDCS a potentially useful tool to modulate neuronal inhibitory and excitatory networks of the affected and the non-affected hemisphere post stroke to enhance, for example, upper limb motor recovery [1011]. Three different stimulation types can be distinguished.

  • In anodal stimulation, the anodal electrode (+) usually is placed over the lesioned brain area and the reference electrode over the contralateral orbit [12]. This leads to subthreshold depolarization, hence promoting neural excitation [3].

  • In cathodal stimulation, the cathode (−) usually is placed over the non-lesioned brain area and the reference electrode over the contralateral orbit [12], leading to subthreshold polarization and hence inhibiting neural activity [3].

  • Dual tDCS means the simultaneous application of anodal and cathodal stimulation [13].

However, the literature does not provide clear guidelines, not only regarding the tDCS type, but also regarding the electrode configuration [14], the amount of current applied and the duration of tDCS, or the question if tDCS should be applied as a standalone therapy or in combination with other treatments, like robot-assisted therapy [15].


There is so far conflicting evidence from systematic reviews of randomised controlled trials on the effectiveness of different tDCS approaches after stroke. For example, over the past two decades more than 30 randomised clinical trials have investigated the effects of different tDCS stimulation techniques for stroke, and there are 55 ongoing trials [16]. However, the resulting network of evidence from randomised controlled trials (RCTs) investigating different types of tDCS (i.e., anodal, cathodal or dual) as well as their comparators like sham tDCS, physical rehabilitation or pharmacological agents has not yet been analyzed in a systematic review so far.

A network meta-analysis (NMA), also known as multiple treatment comparison meta-analysis or mixed treatment comparison analysis, allows for a quantitative synthesis of the evidence network. This is made possible by combining direct evidence from head-to-head comparisons of three or more interventions within randomised trials with indirect evidence across randomised trials on the basis of a common comparator [17181920]. Network meta-analysis has many advantages over traditional pairwise meta-analysis, such as visualizing and facilitating the interpretation of the wider picture of the evidence and improving understanding of the relative merits of these different types of neuromodulation when compared to sham tDCS and/or another comparator such as exercise therapy and/or pharmacological agents [2122]. By borrowing strength from indirect evidence to gain certainty about all treatment comparisons, network meta-analysis allows comparative effects that have not been investigated directly in randomised clinical trials to be estimated and ranked [2223].


The aim of our systematic review with NMA was to give an overview of the evidence network of randomised controlled trials of tDCS (anodal, cathodal, or dual) for improving capacity in activities of daily living (ADL) and upper limb function after stroke, as well as its safety, and to estimate and rank the relative effectiveness of the different stimulation types, while taking into account potentially important treatment effect modifiers.

Continue —>  Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials | Journal of NeuroEngineering and Rehabilitation | Full Text


Fig. 1 Study flow diagram

, , , , , ,

Leave a comment

[Abstract] Repetitive peripheral magnetic stimulation for activities of daily living and functional ability in people after stroke (Cochrane review) [with consumer summary] – PEDro

BACKGROUND: Repetitive peripheral magnetic stimulation (rPMS) is a form of therapy that creates painless stimulation of deep muscle structures to improve motor function in people with physical impairment from brain or nerve disorders. Use of rPMS for people after stroke has been identified as a feasible approach to improve activities of daily living and functional ability. However, no systematic reviews have assessed the findings of available trials. The effect and safety of this intervention for people after stroke currently remain uncertain.

OBJECTIVES: To assess the effect of rPMS for improving activities of daily living and functional ability in people after stroke. SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register (August 2016), the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, issue 8) in the Cochrane Library (August 2016), Medline OVID (November 2016), Embase OVID (August 2016), the Cumulative Index to Nursing and Allied Health Literature (CINAHL) in Ebsco (August 2016), PsycINFO OVID (August 2016), the Allied and Complementary Medicine Database (AMED) OVID (August 2016), Occupational Therapy Systematic Evaluation of Evidence (OTseeker) (August 2016), the Physiotherapy Evidence Database (PEDro) (October 2016), and ICHUSHI Web (October 2016). We also searched five ongoing trial registries, screened reference lists, and contacted experts in the field. We placed no restrictions on the language or date of publication when searching the electronic databases.

SELECTION CRITERIA: We included randomised controlled trials (RCTs) conducted to assess the therapeutic effect of rPMS for people after stroke. Comparisons eligible for inclusion were (1) active rPMS only compared with ‘sham’ rPMS (a very weak form of stimulation or a sound only); (2) active rPMS only compared with no intervention; (3) active rPMS plus rehabilitation compared with sham rPMS plus rehabilitation; and (4) active rPMS plus rehabilitation compared with rehabilitation only.

DATA COLLECTION AND ANALYSIS: Two review authors independently assessed studies for inclusion. The same review authors assessed methods and risk of bias and extracted data. We contacted trial authors to ask for unpublished information if necessary. We resolved all disagreements through discussion.

MAIN RESULTS: We included three trials (two RCTs and one cross-over trial) involving 121 participants. Blinding of participants and physicians was well reported in all trials, and overall risk of bias was low. We found no clear effect of rPMS on activities of daily living at the end of treatment (mean difference (MD) -3.00, 95% confidence interval (CI) -16.35 to 10.35; low-quality evidence) and at the end of follow-up (MD -2.00, 95% CI -14.86 to 10.86; low-quality evidence). Investigators in one study with 63 participants observed no statistical difference in improvement of upper limb function at the end of treatment (MD 2.00, 95% CI -4.91 to 8.91) and at the end of follow-up (MD 4.00, 95% CI -2.92 to 10.92). One trial with 18 participants showed that rPMS treatment was not associated with improved muscle strength at the end of treatment (MD 3.00, 95% CI -2.44 to 8.44). Another study reported a significant decrease in spasticity of the elbow at the end of follow-up (MD -0.48, 95% CI -0.93 to -0.03). No studies provided information on lower limb function and death. Based on the GRADE approach, we judged the certainty of evidence related to the primary outcome as low owing to the small sample size of one study.

AUTHORS’ CONCLUSIONS: Available trials provided inadequate evidence to permit any conclusions about routine use of rPMS for people after stroke. Additional trials with large sample sizes are needed to determine an appropriate rPMS protocol as well as long-term effects. We identified three ongoing trials and will include these trials in the next review update.

Full text (sometimes free) may be available at these link(s):      help

Source: PEDro – Search Detailed Search Results

, , , ,

Leave a comment

[ARTICLE] Effect of upper extremity coordination exercise during standing on the paretic side on balance, gait ability and activities of daily living in persons with stroke – Full Text PDF

Objective: The purpose of this study was to determine the effect of upper extremity coordination exercise (UECE) during standing on the paretic side on balance, gait ability and activities of daily living (ADL) in persons with stroke.
Design: A randomized controlled trial.
Methods: A total of 27 patients with hemiplegic diagnosis after stroke were divided into two groups. Fourteen patients were in the study group and 13 patients were in the control group. The study group received conventional physical therapy and UECE during standing on the paretic side. The control group received conventional physical therapy and simple upper extremity exercise (SUEE). Subjects in both groups were given upper extremity training for 30 minutes per day, five times a week for 4 weeks. Initial evaluation was performed before treatment and reevaluated 4 weeks later to compare the changes of balance, gait ability and ADL (Korean version of modified Barthel index, K-MBI).
Results: Both groups showed a significant effect for balance, gait ability and ADL (p<0.05). In the Independent t-test, between both groups showed a significant effect for balance and gait ability except ADL (p<0.05).
Conclusions: In this paper, we investigated the changes in balance, walking, and ADL through UECE. We found significant changes in the study group and the control group. Results of the present study indicated that UECE during standing on the paretic side for 4 weeks had an effect on balance, gait ability and ADL (K-MBI) in persons with hemiplegia after stroke.

Download Full Text PDF


, , , , , , , , , , ,

Leave a comment

[ARTICLE] Exercising daily living activities in robot-mediated therapy – Full Text PDF


[Purpose] Investigation of the efficacy of robot-mediated therapy of the upper limb in patients with chronic stroke, in task-oriented training activities of daily living in real environment.

[Subjects and Methods] 20 patients, each more than one year post-stroke (13–71 months) received 20 sessions of upper limb robot-mediated therapy. No other treatment was given. Each therapy session consisted of a passive motion and an active task therapy. During the active therapy, subjects exercised 5 activities of daily living. Assessments of the subjects were blind, and conducted one month prior to, at the start, at the end, and three months after the therapy course. The following outcome measures were recorded: Fugl-Meyer Scale—upper extremity subsection, Modified Ashworth Scale, Action Research Arm Test, Functional Independence Measure, Barthel Index.

[Results] Significant improvements were observed between the start and the end of the therapy, except for Modified Ashworth Scale and Barthel Index. Results still held up at the follow-up visit three months later.

[Conclusion] Practicing activities of daily living in real environment with robot-mediated physical therapy can improve the motor and functional ability of patients, even with relatively good initial functions, and even years post-stroke.

Full Text Pdf

, , , , , , ,

Leave a comment

[ARTICLE] Transcranial Direct Current Stimulation Does Not Affect Lower Extremity Muscle Strength Training in Healthy Individuals: A Triple-Blind, Sham-Controlled Study – Full Text

The present study investigated the effects of anodal transcranial direct current stimulation (tDCS) on lower extremity muscle strength training in 24 healthy participants. In this triple-blind, sham-controlled study, participants were randomly allocated to the anodal tDCS plus muscle strength training (anodal tDCS) group or sham tDCS plus muscle strength training (sham tDCS) group. Anodal tDCS (2 mA) was applied to the primary motor cortex of the lower extremity during muscle strength training of the knee extensors and flexors. Training was conducted once every 3 days for 3 weeks (7 sessions). Knee extensor and flexor peak torques were evaluated before and after the 3 weeks of training. After the 3-week intervention, peak torques of knee extension and flexion changed from 155.9 to 191.1 Nm and from 81.5 to 93.1 Nm in the anodal tDCS group. Peak torques changed from 164.1 to 194.8 Nm on extension and from 78.0 to 85.6 Nm on flexion in the sham tDCS group. In both groups, peak torques of knee extension and flexion significantly increased after the intervention, with no significant difference between the anodal tDCS and sham tDCS groups. In conclusion, although the administration of eccentric training increased knee extensor and flexor peak torques, anodal tDCS did not enhance the effects of lower extremity muscle strength training in healthy individuals. The present null results have crucial implications for selecting optimal stimulation parameters for clinical trials.


Transcranial direct current stimulation (tDCS) is a non-invasive cortical stimulation procedure in which weak direct currents polarize target brain regions (Nitsche and Paulus, 2000). The application of anodal tDCS to the primary motor cortex of the lower extremity transiently increases corticospinal excitability in healthy individuals (Jeffery et al., 2007Tatemoto et al., 2013) and improves motor function in healthy individuals and patients with stroke (Tanaka et al., 20092011Madhavan et al., 2011Sriraman et al., 2014Chang et al., 2015Montenegro et al., 20152016Angius et al., 2016Washabaugh et al., 2016). Thus, anodal tDCS has a potential to become a new adjunct therapeutic strategy for the rehabilitation of leg motor function and locomotion following a stroke.

Lower leg muscle strength is an important motor function required for patients who have had a stroke to regain activities of daily living (ADL). Lower leg muscle strength correlates with performance in activities, including sit-to-stand, gait, and stair ascent (Bohannon, 2007). Furthermore, lower leg muscle strength training increases muscle strength and improves ADL in patients with stroke (Ada et al., 2006). Therefore, lower leg muscle strength training is one of the important activities rehabilitating patients with stroke to regain their independence in ADL.

Several studies have examined the effect of a single session of tDCS on lower leg muscle strength, although the evidence is inconsistent (Tanaka et al., 20092011Montenegro et al., 20152016Angius et al., 2016Washabaugh et al., 2016). Its effects seem dependent on tDCS protocols, training tasks, muscle groups, and subject populations. Although, most tDCS studies on lower leg muscle strength have focused on the acute effects of a single tDCS application, to the best of our knowledge, no study has examined how lower extremity strength training combined with repeated sessions of tDCS affects lower leg muscle strength. This type of investigation has strong clinical implications for the application of tDCS in rehabilitation for patients with lower leg muscle weakness.

Thus, to examine whether anodal tDCS can enhance the effects of lower extremity muscle strength training, the present study simultaneously applied anodal tDCS and lower extremity muscle strength training to healthy individuals and evaluated their effects on lower extremity muscle strength.

Continue —> Frontiers | Transcranial Direct Current Stimulation Does Not Affect Lower Extremity Muscle Strength Training in Healthy Individuals: A Triple-Blind, Sham-Controlled Study | Perception Science

Figure 1. Experimental setup of the muscle strength training and torque assessment.

, , ,

Leave a comment

[Conference paper] Upper-Limb Kinematics During Feeding and Drinking – Abstract+References


Feeding and drinking are Activities of Daily Living which can be used to assess the motor control and functional ability of the upper limb. This paper presents the upper-limb kinematics during the execution of feeding and drinking activities, such analysis consisted in the measurement of angles of flexion for trunk and arm. Eight healthy subjects performed these activities in a simulated-environment while they were video recorded. Markers on anatomical landmarks were used to analyze the kinematics of the upper limb in the sagittal plane. Additionally an electro-hydraulic sensor was attached to each upper limb to assess the vertical position of the wrist relative to the shoulder. Results showed a difference on the angles of the elbow and trunk. The electro-hydraulic sensor showed to be an efficient way to record the vertical position of wrist.


Source: Upper-Limb Kinematics During Feeding and Drinking | SpringerLink

, , , , , , ,

Leave a comment

%d bloggers like this: