Posts Tagged Communication

[WEB SITE] What Disabilities Can Result From a TBI? – BrainLine

What Disabilities Can Result From a TBI?

National Institute of Neurological Disorders and Stroke
¿Qué discapacidades pueden resultar de un traumatismo cerebral?

 

Disabilities resulting from a TBI depend upon the severity of the injury, the location of the injury, and the age and general health of the patient. Some common disabilities include problems with cognition (thinking, memory, and reasoning), sensory processing (sight, hearing, touch, taste, and smell), communication (expression and understanding), and behavior or mental health (depression, anxiety, personality changes, aggression, acting out, and social inappropriateness).

Within days to weeks of the head injury approximately 40 percent of TBI patients develop a host of troubling symptoms collectively called postconcussion syndrome (PCS). A patient need not have suffered a concussion or loss of consciousness to develop the syndrome and many patients with mild TBI suffer from PCS. Symptoms include headache, dizziness, vertigo (a sensation of spinning around or of objects spinning around the patient), memory problems, trouble concentrating, sleeping problems, restlessness, irritability, apathy, depression, and anxiety. These symptoms may last for a few weeks after the head injury. The syndrome is more prevalent in patients who had psychiatric symptoms, such as depression or anxiety, before the injury. Treatment for PCS may include medicines for pain and psychiatric conditions, and psychotherapy and occupational therapy todevelop coping skills.

Cognition is a term used to describe the processes of thinking, reasoning, problem solving, information processing, and memory. Most patients with severe TBI, if they recover consciousness, suffer from cognitive disabilities, including the loss of many higher level mental skills. The most common cognitive impairment among severely head-injured patients is memory loss, characterized by some loss of specific memories and the partial inability to form or store new ones. Some of these patients may experience post-traumatic amnesia (PTA), either anterograde or retrograde. Anterograde PTA is impaired memory of events that happened after the TBI, while retrograde PTA is impaired memory of events that happened before the TBI.

Many patients with mild to moderate head injuries who experience cognitive deficits become easily confused or distracted and have problems with concentration and attention. They also have problems with higher level, so-called executive functions, such as planning, organizing, abstract reasoning, problem solving, and making judgments, which may make it difficult to resume pre-injury work-related activities. Recovery from cognitive deficits is greatest within the first 6 months after the injury and more gradual after that.

Patients with moderate to severe TBI have more problems with cognitive deficits than patients with mild TBI, but a history of several mild TBIs may have an additive effect, causing cognitive deficits equal to a moderate or severe injury.

Many TBI patients have sensory problems, especially problems with vision. Patients may not be able to register what they are seeing or may be slow to recognize objects. Also, TBI patients often have difficulty with hand-eye coordination. Because of this, TBI patients may be prone to bumping into or dropping objects, or may seem generally unsteady. TBI patients may have difficulty driving a car, working complex machinery, or playing sports. Other sensory deficits may include problems with hearing, smell, taste, or touch. Some TBI patients develop tinnitus, a ringing or roaring in the ears. A person with damage to the part of the brain that processes taste or smell may develop a persistent bitter taste in the mouth or perceive a persistent noxious smell. Damage to the part of the brain that controls the sense of touch may cause a TBI patient to develop persistent skin tingling, itching, or pain. Although rare, these conditions are hard to treat.

Language and communication problems are common disabilities in TBI patients. Some may experience aphasia, defined as difficulty with understanding and producing spoken and written language; others may have difficulty with the more subtle aspects of communication, such as body language and emotional, non-verbal signals.

In non-fluent aphasia, also called Broca’s aphasia or motor aphasia, TBI patients often have trouble recalling words and speaking in complete sentences. They may speak in broken phrases and pause frequently. Most patients are aware of these deficits and may become extremely frustrated. Patients with fluent aphasia, also called Wernicke’s aphasia or sensory aphasia, display little meaning in their speech, even though they speak in complete sentences and use correct grammar. Instead, they speak in flowing gibberish, drawing out their sentences with non-essential and invented words. Many patients with fluent aphasia are unaware that they make little sense and become angry with others for not understanding them. Patients with global aphasia have extensive damage to the portions of the brain responsible for language and often suffer severe communication disabilities.

TBI patients may have problems with spoken language if the part of the brain that controls speech muscles is damaged. In this disorder, called dysarthria, the patient can think of the appropriate language, but cannot easily speak the words because they are unable to use the muscles needed to form the words and produce the sounds. Speech is often slow, slurred, and garbled. Some may have problems with intonation or inflection, called prosodic dysfunction. An important aspect of speech, inflection conveys emotional meaning and is necessary for certain aspects of language, such as irony. These language deficits can lead to miscommunication, confusion, and frustration for the patient as well as those interacting with him or her.

Most TBI patients have emotional or behavioral problems that fit under the broad category of psychiatric health. Family members of TBI patients often find that personality changes and behavioral problems are the most difficult disabilities to handle. Psychiatric problems that may surface include depression, apathy, anxiety, irritability, anger, paranoia, confusion, frustration, agitation, insomnia or other sleep problems, and mood swings. Problem behaviors may include aggression and violence, impulsivity, disinhibition, acting out, noncompliance, social inappropriateness, emotional outbursts, childish behavior, impaired self-control, impaired self awareness, inability to take responsibility or accept criticism, egocentrism, inappropriate sexual activity, and alcohol or drug abuse/addiction. Some patients’ personality problems may be so severe that they are diagnosed with borderline personality disorder, a psychiatric condition characterized by many of the problems mentioned above. Sometimes TBI patients suffer from developmental stagnation, meaning that they fail to mature emotionally, socially, or psychologically after the trauma. This is a serious problem for children and young adults who suffer from a TBI. Attitudes and behaviors that are appropriate for a child or teenager become inappropriate in adulthood. Many TBI patients who show psychiatric or behavioral problems can be helped with medication and psychotherapy.

 

via What Disabilities Can Result From a TBI? | BrainLine

, , , , , , , , , , ,

Leave a comment

[WEB SITE] Stroke Rehabilitation from “Head to Toe”

By Devin Cooney, MOR, OTR/L; Brittany Merkh, PT, DPT; Kelly Tender, MS, CCC-SLP

According to the American Stroke Association, one in four people worldwide will have a stroke. It is the number five cause of death and a leading cause of long-term disability in the United States. More than 7 million stroke survivors are currently living in the United States.1

Many stroke survivors choose to go to an acute inpatient rehabilitation facility for their specific rehabilitation needs. In 2018, 1,494 individuals and their families selected Kessler Institute for Rehabilitation in Marlton, NJ, for their start of recovery. Thirty percent of those individuals were diagnosed with a stroke. Although their rehabilitation needs were different, they shared a common goal: to gain the skills, strengths, and strategies to rebuild their lives.

Recently, rehabilitation has shifted to include greater use of technology. The integration of technology-based rehabilitation within stroke recovery may empower an individual toward being more engaged in their own care in addition to forcing greater outcomes and providing objective data.2 Technology can be incorporated in stroke recovery from “head to toe,” including rehabilitation of cognitive-communication, recovery of swallow function, improvement of upper and lower extremity use, and restoration of the ability to walk.

 Communication and Swallow Function

Depending on the area of the brain in which a stroke occurs, a survivor may experience problems related to speech, reading, writing, and/or understanding words (aphasia). Technology is often incorporated into speech-language pathology treatment for individuals affected by aphasia at Kessler-Marlton. Technology such as smartphones, tablets, text-to-speech or word prediction software, augmentative-alternative communication devices, video telecommunication, and online support communities provide additional avenues for survivors affected by aphasia to communicate.3

Use of technology is also widely incorporated in the management of dysphagia. There are many causes of dysphagia, but a very common cause is stroke. Swallowing problems can lead to poor nutrition, pneumonia, and poorer quality of life. A specialized swallowing test (videofluoroscopic swallow study and/or fiber optic endoscopic evaluation of swallowing) is recommended to better assess the problems and determine a treatment plan. Swallowing exercises may be needed to improve strength and coordination of swallowing muscles. One example of technology utilized at Kessler-Marlton is surface electromyography (sEMG) biofeedback to provide visual monitoring of the sEMG signal to guide performance in swallowing therapy, increase active participation, provide objective data, and track outcomes.4,5 Use of sEMG in conjunction with swallow exercise has been shown to improve functional swallowing outcomes.6 Additional supportive interventions include neuromuscular stimulation, patterned electrical stimulation, pressure biofeedback to measure and target tongue strength, and dysphagia applications to offer education and personalized exercise programs to patients and their families.

Upper Extremity and Vision Restoration

Stroke survivors may have difficulty performing activities of daily living for various reasons. However, for the purpose of this article the focus will be on the recovery of upper extremity use and visual/visuo-spatial impairments. Occupational therapy (OT) is vital in stroke recovery, and the goal is to increase, improve, or restore independence within activities of daily living. While manual therapies are typically used with the majority of patients, therapists at Kessler Marlton incorporate supportive technology and equipment including an integrated therapy system with a touchscreen display that can be used for oculomotor therapy, motor control training, and cognitive learning; a computerized, task-oriented upper extremity workstation; and a hand rehabilitation system that uses a wireless orthosis to deliver electrical stimulation.

The integrated therapy systems is a large technological board with a touch screen. It can be used to target a wide range of impairments including vision-related activities. These activities focus on visuomotor coordination, reaction time, visual processing, and visuospatial perception. This technology engages patients and can be personalized to individual needs.

In addition to vision, OT focuses on the rehabilitation of the upper extremity when indicated. To facilitate this, the computerized upper extremity workstation is often utilized. It is a computerized training system with a full workstation as well as a computer program. It utilizes games and objective data to motivate and engage patients. This system offers the ability to complete both gross and fine motor activities including different grip and pinch patterns. Different planes of movement or positions can also be completed to downgrade or upgrade patient challenge.

When appropriate, the hand rehabilitation system with wireless orthosis may be utilized to target the upper extremity. While neuromuscular electrical stimulation (NMES) can be used on different body parts and muscle groups, this device specifically targets the muscles of the hand. This system’s program settings such as pinching, grasping, and releasing can be utilized individually or while completing functional activities.

Restoration of the Lower Extremity

Many people who are affected by stroke lose function of their lower extremity to some capacity. The goal of the physical therapist (PT) is to facilitate improved functional independence and maximize safety with overall mobility while primarily focusing on lower extremity recovery. Recently, with the use of technology, rehabilitation and mobility can be initiated sooner, which translates into improved overall outcomes.

Within the inpatient rehabilitation setting at Kessler-Marlton, PTs have access to a multitude of technology options, including an adaptive cycling machine. The cycling device is multimodal and allows patients to participate passively, motor-supported, or actively. The passive mode allows for early mobilization of patients diagnosed with stroke, as it is able to assist with reducing muscle tone in those patients with hypertonicity. With patients who are not ready to perform ambulation itself, the passive mode also allows for repetitive motions that mimic the back-and-forth motion of walking. These repetitive, rhythmic movements help to stimulate the brain to reorganize and relearn motor tasks.

As patients improve and regain motor control and neuromuscular strength, the adaptive cycling machine can be used in the motor-supported mode, which allows the motor to assist to stimulate both strength and endurance until the patient is able to participate in active mode. In active mode, the patient is using her or his own strength to pedal.

Partial Weight-Bearing

As early mobilization is an important factor in recovery, another technological device that assists the user with partial weight-bearing is of great importance. This technology is a body weight-supported gait training device in which the patient is supported by an overhead suspension system and harness. This system allows the patient, who might not necessarily be able to stand on his or her own, the opportunity to force weight-bearing through the affected lower extremity to force motor recovery. In the upright position, it not only affords the patient the opportunity to weight-bear, but it also promotes proper upright posturing and provides the patient a safe, fall-free environment in which to practice initiating mobility. This system allows the therapist to provide hands-on assistance at the lower extremity or at the pelvis to achieve proper gait pattern. The device can be used for over-ground training or for training over the treadmill, which challenges a patient’s coordination and timing of the different phases of the gait cycle. As a patient improves, the overhead system can be adjusted to allow increased weight-bearing and increased degrees of freedom.

As the patient moves into a more ambulatory level, he or she still may demonstrate impairments in the amount or quality of movement in their lower extremity. The use of functional electrical stimulation (FES) may be used as a recovery tool. The FES device this facility uses is a wireless foot drop system that helps to stimulate the nerves and muscles of the affected lower extremity, most often at the ankle and in the thigh, to re-educate the brain and restore muscle function during walking. This system comes with a lower leg cuff to stimulate the ankle muscles in patients with difficulty clearing their toes or patients with foot drop. The system also comes with a thigh cuff to stimulate muscles in the upper leg to provide stability while in stance phase.

Although speech, occupational, and/or physical therapy itself has been shown to improve patient outcomes, the integration of technology in therapeutic intervention following stroke can maximize patient motivation and progress. For example, the inclusion of technology in physical therapy has been able to allow patients the opportunity to participate in therapy at earlier phases. This early mobilization is crucial to jump-start a patient’s recovery. The use of technology throughout the patient’s recovery process has been an integral part in demonstrating improved outcomes which allows physical therapists to facilitate recovery by working on the often stated patient-centered goal of returning to walking. RM

Devin Cooney, MOR, OTR/L, has worked at Kessler Institute for Rehabilitation—Marlton for the past 3 years. The majority of her career has been spent in the acute rehabilitation setting focusing on ADLs and IADLs to encourage safe return to home.

Brittany Merkh, PT, DPT, is Co-Chair of the Stroke Program at Kessler Institute for Rehabilitation in Marlton, New Jersey. Most of her career has been spent in acute rehabilitation, treating patients with a variety of diagnoses.

Kelly Tender, MS, CCC-SLP, is senior speech-language pathologist and leader within the SLP department. Her certifications and training include MDTP, VitalStim, PENS, and sEMG. She is a member of the hospital’s stroke committee. For more information, contact RehabEditor@medqor.com.

References

1. About Stroke. www.stroke.orghttps://www.stroke.org/en/about-stroke. Published 2019. Accessed November 21, 2019.

2. Des Roches C, Kiran S. Technology-based rehabilitation to improve communication after acquired brain injury. Front Neurosci. 2017;11. doi:10.3389/fnins.2017.00382. Accessed November 21, 2019.

3. Technology for People with Aphasia. www.stroke.orghttps://www.stroke.org/en/life-after-stroke/recovery/daily-living/technology-for-people-with-aphasia. Published 2019. Accessed October 12, 2019.

4. Steele C. Treating dysphagia with sEMG biofeedback. The ASHA Leader. 2004;9(13):2-23. doi: https://www.doi.org/10.1044/leader.ftr2.09132004.2.

5. Crary M, Carnaby (Mann) G, Groher M, Helseth E. Functional benefits of dysphagia therapy using adjunctive sEMG biofeedback. Dysphagia. 2004;19(3). doi: https://www.doi.org/10.1007/s00455-004-0003-8.

6. Bogaardt H, Grolman W, Fokkens W. The use of biofeedback in the treatment of chronic dysphagia in stroke patients. Folia Phoniatrica et Logopaedica. 2009;61(4):200-205. doi: https://www.doi.org/10.1159/000227997

via Stroke Rehabilitation from “Head to Toe” – Rehab Managment

, , , , , , ,

Leave a comment

[BLOG POST] Clamming up about my brain injury stings relationships – Jumbledbrain

At times I’m just too tired to explain how I’m feeling. (You might have noticed I write less often than I used to and that’s one of the reasons for it.) Sometimes there is a storm of emotions inside me which I realise are irrational but I can’t quell them. So to avoid saying anything that I would later regret, I find myself clamming up. But my face rarely gets the memo and goes into full on sulky mode. I’m so bored of this brain injury, I wish I could direct my anger at it and evict it from my head. Sadly it doesn’t work like that though.

At the time clamming up feels like the lesser of two evils. But maybe it isn’t.

My silence carries more weight than I intend it to. All I’m doing it trying to contain my poisonous tongue. Some people go quiet for dramatic effect, waiting for someone to ask “What’s wrong, you’ve hardly said a word today?” I guarantee you, that when you are struggling with a brain injury there is no such thing as dramatic effect.

Even when I’m trying to be mindful, holding my tongue is the best I can do. I might be sulking about my partner James having to work so much, and having less time with him. As he is the only one bringing in a income, I know I can’t begrudge him for being so conscientious. In fact, I know he would like nothing more than being able to work less, or even take early retirement. But currently neither are an option. So I try to remind myself of this and empathise with his position. And it works, but not for my brain injury. It just keeps complaining and dragging me down.

How clamming up about my brain injury is not a good idea

How silence leaves too many unanswered questions.

My grumpiness is too obvious, and I know it makes James feel guilty. But he has nothing to feel guilty about. He has been truly amazing the entire time. Superman hasn’t got a patch on this guy. If the world had more people like him in it, people wouldn’t need heaven.

But he still doubts himself as he can read my face. So eventually I manage to spill, but I start with a disclaimer: “I know I’m being stupid, and here’s the reason why it’s stupid …..blah,blah,blah…. but I can’t help it. I’m upset about ….x,y,z….. because…..”

This really does help the situation, it’s just a shame it takes me so long to be in a position where I can do it. James is getting used to my behaviour, but he is only human (although he’s as close to an angel as you can get.) When I am clamming up, his mind is running a million miles an hour, thinking of all the things I might be annoyed about. I do feel bad for torturing him like this as he doesn’t deserve it. So here’s a shout out for all the carers who some how put up with the nonsense some of us survivors put them through.

clamming up after my brain injury isn't helpful.

I’m tired and I’ve run out of words again so I’m going to leave it there. I think you get the point, and I’m sure I’m not the only one who is going through this.

Other articles you may like:

Do you find yourself clamming up, or are you the opposite? If you say everything that is going on in your mind does it work out well for you?

via Clamming up about my brain injury stings relationships | Jumbledbrain

, , , ,

Leave a comment

[WEB SITE] Parenting After Brain Injury

Parenting After Brain Injury

Parenting is a challenging life role for all people, yet one of the most valued roles within society. Brain Injury frequently occurs at a life stage where people are yet to complete their parenting responsibilities. For people with acquired brain injury (ABI), facing cognitive, physical, communication, behavioural and psychological challenges, parenting can present complex challenges. In addition, persons with ABI often face societal and environmental barriers. These fact sheets have been developed to assist parents with an ABI and their partners to improve their knowledge and skills to meet the ongoing challenges of parenting. family walking together
little girl finger painting boy doing his homework two little girls arguing

Encouraging your
Developing Child

Setting Routines

Managing Behaviour

Other Useful Parenting Website Links and Resources

Parenting Fact Sheet References and Acknowledgements
Return to Support for Families

Contact ABIOS
abios@health.qld.gov.au

Last updated: 20 March 2017

via Parenting After Brain Injury | Queensland Health

, , , , , , , , , , ,

Leave a comment

[Guide] LIFE AFTER STROKE Our Path Forward – American Stroke Association

THERE IS LIFE – AND HOPE – AFTER STROKE. WITH TIME, NEW ROUTINES WILL BECOME SECOND NATURE. REHABILITATION CAN BUILD YOUR STRENGTH, CAPABILITY AND CONFIDENCE. IT CAN HELP YOU CONTINUE YOUR DAILY ACTIVITIES DESPITE THE EFFECTS OF YOUR STROKE.

If you are the caregiver, family member or friend of a stroke survivor, your role is vital. You should know the prevention plan and help your loved one to comply with the plan. With a committed health care team and a rehabilitation plan specific to their needs, most stroke survivors can prevent another stroke and thrive.

We hope this guide will help you and your loved ones understand the effects of stroke and how to maximize your rehabilitation and recovery.

Download PDF file

, , , , , , , , , , , , ,

Leave a comment

[WEB SITE] Constant Therapy: A Mobile Solution for Brain Rehabilitation

The Constant Therapy app is a virtual clinic, leading users through a digital door toward more than 100,000 speech, language and cognitive exercises.

Created by the Learning Corp and built by an expert team of neuroscientists and clinicians at Boston University, this award-winning app was developed with the goal of helping people with learning disabilities or those recovering from traumatic brain injury, stroke or aphasia.

Screen of constant therapy app

Constant Therapy includes 50 categories of tasks with varying degrees of difficulty. It automatically assigns tasks to users based on their initial evaluation and performance history. Exercises range from spelling, rhyming and sentence completion to picture matching, map reading, multiplication and much more. The app’s library of therapy resources is continually updated and constantly growing.

Not only does this app enable users to engage in therapy from the comfort of their home, but it also allows clinicians to track their progress and pinpoint areas in need of improvement. Through advanced analytics, they can see exactly where their patients are on the road to recovery. This data also encourages users by clearly showing them the positive leaps they are taking.

Constant therapy app screen

 

 

 

 

 

 

 

 

Check out a few of the several rave reviews for this app:

“My 75-year-old husband had a stroke last year. He had never used a computer before the stroke but finds it easy to use the Constant Therapy app on the iPad. He was an avid crossword puzzle fan so this is a nice challenge for him. He is eager to use the app daily because he’s rewarded with new material as he masters what he’s working on. The tasks in the app are very applicable and practical in everyday life, and the immediate feedback is excellent. I have witnessed my husband getting so much better from using this app. I have spent hours looking for other brain and speech therapy apps, and nothing compares to Constant Therapy.”  ~ Terri 

Constant therapy app screen

“I cannot recommend the Constant Therapy app enough. For the past six months, my son has used the app about three times a week. The app is like a virtual therapist, it’s very easy to use and it gives him immediate feedback. He now understands things faster, can make decisions with less hesitation, has improved recognition of words and his confidence is higher. I also find it easy to get in touch with customer service; they pleasantly help out. The whole experience has been great.” ~ Miriam

 “Thank you for this product. The Constant Therapy app has given me back some of my dignity. It allows me to get up in the morning knowing I can accomplish something and feel good.” ~ Sheree

If you or a loved one could benefit from the Constant Therapy app, visit https://www.constanttherapy.com for more information.

Check out this video!

 

via Constant Therapy: A Mobile Solution for Brain Rehabilitation – Assistive Technology at Easter Seals Crossroads

, , , , , , , , , , , , ,

Leave a comment

[Abstract] Assessing physiotherapists’ communication skills for promoting patient autonomy for self-management: reliability and validity of the communication evaluation in rehabilitation tool

Purpose: To assess the inter-rater reliability and concurrent validity of the Communication Evaluation in Rehabilitation Tool, which aims to externally assess physiotherapists competency in using Self-Determination Theory-based communication strategies in practice.

Materials and methods: Audio recordings of initial consultations between 24 physiotherapists and 24 patients with chronic low back pain in four hospitals in Ireland were obtained as part of a larger randomised controlled trial. Three raters, all of whom had Ph.Ds in psychology and expertise in motivation and physical activity, independently listened to the 24 audio recordings and completed the 18-item Communication Evaluation in Rehabilitation Tool. Inter-rater reliability between all three raters was assessed using intraclass correlation coefficients. Concurrent validity was assessed using Pearson’s r correlations with a reference standard, the Health Care Climate Questionnaire.

Results: The total score for the Communication Evaluation in Rehabilitation Tool is an average of all 18 items. Total scores demonstrated good inter-rater reliability (Intraclass Correlation Coefficient (ICC) = 0.8) and concurrent validity with the Health Care Climate Questionnaire total score (range: r = 0.7–0.88). Item-level scores of the Communication Evaluation in Rehabilitation Tool identified five items that need improvement.

Conclusion: Results provide preliminary evidence to support future use and testing of the Communication Evaluation in Rehabilitation Tool.

  • Implications for Rehabilitation
  • Promoting patient autonomy is a learned skill and while interventions exist to train clinicians in these skills there are no tools to assess how well clinicians use these skills when interacting with a patient. The lack of robust assessment has severe implications regarding both the fidelity of clinician training packages and resulting outcomes for promoting patient autonomy.

  • This study has developed a novel measurement tool Communication Evaluation in Rehabilitation Tool and a comprehensive user manual to assess how well health care providers use autonomy-supportive communication strategies in real world-clinical settings.

  • This tool has demonstrated good inter-rater reliability and concurrent validity in its initial testing phase.

  • The Communication Evaluation in Rehabilitation Tool can be used in future studies to assess autonomy-supportive communication and undergo further measurement property testing as per our recommendations.

via Assessing physiotherapists’ communication skills for promoting patient autonomy for self-management: reliability and validity of the communication evaluation in rehabilitation tool: Disability and Rehabilitation: Vol 0, No 0

, , , ,

Leave a comment

[VIDEO] Brain-Machine Interfaces for Restoration of Motor Function and Communication – NIH VideoCast

Play VIDEO

Jaimie Henderson, M.D. is director of the Stanford program in Stereotactic and Functional Neurosurgery, and co-director (with Prof. Krishna Shenoy, PhD) of the Stanford Neural Prosthetics Translational Laboratory (NPTL). His research interests encompass several areas of stereotactic and functional neurosurgery, including frameless stereotactic approaches for therapy delivery to deep brain nuclei; mechanisms of action of deep brain stimulation; cortical physiology and its relationship to normal and pathological movement; neural prostheses; and the development of novel neuromodulatory techniques for the treatment of neurological diseases. During his residency in the early 1990’s, Dr. Henderson was intimately involved with the development of the new field of image-guided surgery. This innovative technology has revolutionized the practice of neurosurgery, allowing for safer and more effective operations with reduced operating time. Dr. Henderson remains one of the world’s foremost experts on the application of image-guided surgical techniques to functional neurosurgical procedures such as the placement of deep brain stimulators for movement disorders, epilepsy, pain, and psychiatric diseases. His work with NPTL focuses on the creation of clinically viable interfaces between the human brain and prosthetic devices to assist people with severe neurological disability.

NIH Neuroscience Series Seminar
For more information go to https://neuroscience.nih.gov/neuroseries/Home.aspx

via NIH VideoCast – Brain-Machine Interfaces for Restoration of Motor Function and Communication

, , ,

Leave a comment

[ARTICLE] EEG-Based Brain–Computer Interfaces for Communication and Rehabilitation of People with Motor Impairment: A Novel Approach of the 21st Century – Full Text

People with severe neurological impairments face many challenges in sensorimotor functions and communication with the environment; therefore they have increased demand for advanced, adaptive and personalized rehabilitation. During the last several decades, numerous studies have developed brain–computer interfaces (BCIs) with the goals ranging from providing means of communication to functional rehabilitation. Here we review the research on non-invasive, electroencephalography (EEG)-based BCI systems for communication and rehabilitation. We focus on the approaches intended to help severely paralyzed and locked-in patients regain communication using three different BCI modalities: slow cortical potentials, sensorimotor rhythms and P300 potentials, as operational mechanisms. We also review BCI systems for restoration of motor function in patients with spinal cord injury and chronic stroke. We discuss the advantages and limitations of these approaches and the challenges that need to be addressed in the future.

Introduction

Vidal (1973, p. 157), in his seminal work, raised the question: “Can observable electrical brain signals be put to work as carriers of information in person–computer communication or for the purpose of controlling devices such as prostheses?”. Since then, we have come a long way investigating whether people with motor disabilities can repurpose brain activity from inner neural signals to tangible controls that attribute the user’s intent to interact with devices or adjust their environment (Shih et al., 2012Lebedev and Nicolelis, 2017). Nowadays, several advancements in the fields of clinical neurophysiology and computational neuroscience have led to the development of promising approaches based on non-invasive BCIs that pave the way for reliable communication and effective rehabilitation of people with disabilities.

In this review, we focus on non-invasive BCI applications geared toward alternative communication and restoration of movement to paralyzed patients. We consider several milestone studies on EEG-based BCIs that contributed to the systems that improve everyday life and activity of people with motor disabilities in the 21st century. We review EEG-based BCI technologies for communication and control based on three different EEG signals (SCP, SMR and P300), and discuss their limitations and advantages. In addition, we examine and analyze the BCI methods for inducing brain plasticity and restoring functions in impaired patients. An overview of the study framework is presented in Figure 1.

FIGURE 1. Overview of the review framework.

The paper is structured as follows. We firstly review the advantages of the BCI approach compared to other strategies for communication in people with motor impairment. In section 3, we present BCI realizations based on different approaches for brain activity recording, and elaborate on three EEG-based modalities: SCP, SMR, and P300. Subsequently, we provide an elaborate overview of the milestone studies, published mainly during the last two decades, on the BCI systems for communication and rehabilitation in patients with motor-impairments. Finally, we discuss advantages and shortfalls of these BCIs, point out their limitations and comment on the future perspectives in this field.[…]

Continue —> Frontiers | EEG-Based Brain–Computer Interfaces for Communication and Rehabilitation of People with Motor Impairment: A Novel Approach of the 21st Century | Frontiers in Human Neuroscience

, , , , , , ,

Leave a comment

[ARTICLE] Internet and Social Media Use After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study – Full Text

Objectives: To characterize Internet and social media use among adults with moderate to severe traumatic brain injury (TBI) and to compare demographic and socioeconomic factors associated with Internet use between those with and without TBI.

Setting: Ten Traumatic Brain Injury Model Systems centers.

Participants: Persons with moderate to severe TBI (N = 337) enrolled in the TBI Model Systems National Database and eligible for follow-up from April 1, 2014, to March 31, 2015.

Design: Prospective cross-sectional observational cohort study.

Main Measures: Internet usage survey.

Results: The proportion of Internet users with TBI was high (74%) but significantly lower than those in the general population (84%). Smartphones were the most prevalent means of Internet access for persons with TBI. The majority of Internet users with TBI had a profile account on a social networking site (79%), with more than half of the sample reporting multiplatform use of 2 or more social networking sites.

Conclusion: Despite the prevalence of Internet use among persons with TBI, technological disparities remain in comparison with the general population. The extent of social media use among persons with TBI demonstrates the potential of these platforms for social engagement and other purposes. However, further research examining the quality of online activities and identifying potential risk factors of problematic use is recommended.

THE INTERNET AND SOCIAL MEDIA are dominant forces in our lives in this Age of Information. Time spent on the Internet continues to grow steadily in the United States and worldwide, with mobile technology and social media driving much of the expansion.1 , 2 Social media tools, including social networking sites (SNSs) (eg, Facebook), blogs (eg, Tumblr), online content communities (eg, YouTube), and online forums (eg, Google Hangouts), encourage multidimensional communication where users can exchange information, connect to resources, and create social networks based on common interests.3 Such platforms can facilitate opportunities that would otherwise be limited by various barriers. Not only have the Internet and social media transformed the ways that we seek and gather information but they also appear to be changing the perception of communication and of what constitutes social support. For example, among college students, large and seemingly impersonal networks of Facebook friends are associated with greater perceived social support than smaller ones and expressing one’s feelings to such large networks may serve important needs for an evolving type of intimacy.4

People with disabilities may encounter obstacles to keeping up with these social trends and enjoying their advantages. A Pew survey5 in 2011 revealed that Americans with disabilities are less likely to use the Internet than their able-bodied counterparts (54% vs 81%). This remained true even after controlling for factors such as lower income, lower education, and older age. Moreover, people with disabilities were less likely to use online access methods such as broadband service and mobile devices, both of which are advantageous for seeking work, finding health information, and communicating remotely with others. Lack of experience with these technologies creates a vicious cycle, as less experience predicts less favorable outcome in studies using Web-based platforms to help mitigate the effects of disability.6 All of these trends are unfortunate, considering that the Internet and social media may be seen as electronic curb cuts7—resources to help offset the reduced mobility and social isolation that affect many people with disabilities.

Reduced social network size and loneliness are particularly common for persons with traumatic brain injury (TBI).8–11 Social networking through the Internet has the potential to alleviate this isolation. However, cognitive impairments typical after TBI9 , 11 (eg, impaired memory, attention, and organization) may pose an obstacle to learning and utilizing rapidly changing technology. There have been recent studies exploring the use of mobile technology to help people with acquired brain injury compensate for cognitive impairments12–14 and caregivers for such individuals to utilize online resources for support.15 , 16 A few studies have attempted to directly teach Internet access17 or use of social media18 to people with TBI. Others have surveyed people with TBI on their habitual use of the Internet19 or Facebook.20 Such studies quickly become outdated and difficult to generalize as new technologies and online trends emerge. As a result, there is an ongoing need for updated information regarding the use of online technology after TBI that can guide future efforts to narrow the “disability divide,”21 encourage Internet-based social participation, and develop online interventions to facilitate these novel forms of interaction.

In this study, we interviewed a large cohort of people at least 1 year after moderate or severe TBI to examine the current level of online activity among these individuals. Our aims were (1) to examine various aspects of Internet use among adults with TBI, particularly focusing on activities involving communication and social participation through social media platforms; and (2) to compare certain online activities, as well as demographic and socioeconomic factors associated with Internet use, between those with and without TBI, the latter based on published surveys of the general population.22 […]

Continue —>  Internet and Social Media Use After Traumatic Brain Injury:… : The Journal of Head Trauma Rehabilitation

 

, , , , ,

Leave a comment

%d bloggers like this: