Posts Tagged Neurorehabilitation

[Abstract] Activity-based Rehabilitation Interventions of the Neurologically Impaired Upper Extremity: Description of a Scoping Review Protocol

Introduction: A scoping review provides a means to synthesize and present a large body of literature on a broad topic, such as methods for various upper extremity activity-based therapy (ABT) interventions.

Objectives: To describe our scoping review protocol to evaluate peer-reviewed articles focused on ABT interventions for individuals with neurologically impaired upper extremities.

Methods: At Jefferson College of Health Professions and Sidney Kimmel Medical College at Jefferson, Philadelphia, the authors will follow this protocol to conduct a scoping review by establishing a research question and conducting a search of bibliographic databases to identify relevant studies. Using specific inclusion and exclusion criteria, abstracts will be screened and full-text articles will be reviewed for inclusion in charting, summarizing, and reporting results of appropriate studies.

Conclusion: This protocol will guide the scoping review process to develop a framework for establishing a noninvasive ABT intervention informed by evidence for individuals with neurologically impaired upper extremities.

via Activity-based Rehabilitation Interventions of the Neurologically Impaired Upper Extremity: Description of a Scoping Review Protocol | Topics in Spinal Cord Injury Rehabilitation

Advertisements

, , , , , ,

Leave a comment

[BLOG POST] MindMaze offers VR treatment for stroke victims in the U.S.

OnTheGo

Swiss startup MindMaze, which raised $100 million in funding, has launched its MindMaze Pro virtual reality treatment for stroke recovery patients in the U.S.

The launch shows that VR is for more than just games, as it stands at the intersection of neuroscience and entertainment. The launch is the latest example of how VR is spreading far beyond games and entertainment. And that’s important, as consumer VR sales have been slower than expected.

Based on a decade of research and testing for “neuro VR,” the MindMaze Pro is an upper-limb neurorehabilitation platform that uses proprietary 3D motion-tracking cameras to help patients recovering from traumatic injuries and those suffering from acute and chronic strokes.

MindMaze introduced MindMotion Pro to the European market in 2013, and hundreds of patients have used the platform for the rehabilitation therapy.

Lausanne, Switzerland-based MindMaze already delivered a thought-powered virtual reality, augmented reality, and motion capture game system in MindLeap. The company, whose board includes some of the world’s leading doctors and neuroscientists, will be applying its multisensory computing platform to numerous new fields, which include robotics and transportation.

The U.S. Food and Drug Administration has granted MindMaze 510(k) clearance. Mindmaze also said that it has completed 261 patient trials of MindMotion Go, a portable neurotechnology device that uses VR to continue therapy after a patient leaves the hospital. Those trials were conducted in the United Kingdom, Germany, and Switzerland.

Each year in the U.S., about 800,000 people suffer a stroke, resulting in debilitating health effects as well as direct and indirect losses of economic activity of $65 billion according to research published in The American Journal of Managed Care.

MindMotion Pro works by mapping a patient’s movements onto 3D avatars in customized interactive exercises that are based on standardized neurorehabilitation principles of upper limb rehabilitation and cognitive paradigms. By doing so, it reactivates damaged neural pathways and activates new ones.

MindMaze’s technology is specifically designed to help stroke patients and those with traumatic brain injuries start recovery early and continue it for maximum gains.

MindMotion Pro uses VR games to keep patients engaged with therapies for recovery. It has custom tracking technology that gives real-time and accurate patient tracking in both bedside and wheelchair uses. It also helps the therapist in supporting the patient during the activities.

“Our work at the forefront of neuroscience and virtual reality allows patients to recover faster and return more fully to the life they lived before injury,” said Tadi in a statement. “Over the last decade, we’ve honed this therapy to be cost-effective for both patients and healthcare providers.”

Due to the motivating effects of the virtual-reality based games, patients can engage in 10 to 15 times more exercising repetitions than with standard rehabilitation programs, and because the system offers real-time multisensory feedback, therapists can assess progress and tailor therapy to patient performance.

Research from the leading rehabilitation facility Clinique Romande de Réadaptation/EPFL in Sion, Switzerland, found that 90 percent of chronic stroke patients using MindMotion Pro reported heightened motivation to perform rehab, increased the potential for motor function recovery and that their training intensity doubled within the first 10 sessions of using the platform. Additionally, Lausanne University Hospital-CHUV reported 100 percent of patients forgot they were in a hospital.

Source: venturebeat.com

via MindMaze offers VR treatment for stroke victims in the U.S. – Analytics Anywhere

, , ,

Leave a comment

[ARTICLE] Technological Approaches for Neurorehabilitation: From Robotic Devices to Brain Stimulation and Beyond – Full Text

Neurological diseases causing motor/cognitive impairments are among the most common causes of adult-onset disability. More than one billion of people are affected worldwide, and this number is expected to increase in upcoming years, because of the rapidly aging population. The frequent lack of complete recovery makes it desirable to develop novel neurorehabilitative treatments, suited to the patients, and better targeting the specific disability. To date, rehabilitation therapy can be aided by the technological support of robotic-based therapy, non-invasive brain stimulation, and neural interfaces. In this perspective, we will review the above methods by referring to the most recent advances in each field. Then, we propose and discuss current and future approaches based on the combination of the above. As pointed out in the recent literature, by combining traditional rehabilitation techniques with neuromodulation, biofeedback recordings and/or novel robotic and wearable assistive devices, several studies have proven it is possible to sensibly improve the amount of recovery with respect to traditional treatments. We will then discuss the possible applied research directions to maximize the outcome of a neurorehabilitation therapy, which should include the personalization of the therapy based on patient and clinician needs and preferences.

Introduction

According to the World Health Organization (WHO), neurological disorders and injuries account for the 6.3% of the global burden of disease (GBD) (12). With more than 6% of DALY (disability-adjusted life years) in the world, neurological disorders represent one of the most widespread clinical condition. Among neurological disorders, more than half of the burden in DALYs is constituted by cerebral-vascular disease (55%), such as stroke. Stroke, together with spinal cord injury (SCI), accounts for 52% of the adult-onset disability and, over a billion people (i.e., about a 15% of the population worldwide) suffer from some form of disability (3). These numbers are likely to increase in the coming years due to the aging of the population (4), since disorders affecting people aged 60 years and older contribute to 23% of the total GBD (5).

Standard physical rehabilitation favors the functional recovery after stroke, as compared to no treatment (6). However, the functional recovery is not always satisfactory as only 20% of patients fully resume their social life and job activities (7). Hence, the need of more effective and patient-tailored rehabilitative approaches to maximize the functional outcome of neurological injuries as well as patients’ quality of life (8). Modern technological methodologies represent one of the most recent advances in neurorehabilitation, and an increasing body of evidence supports their role in the recovery from brain and/or medullary insults. This manuscript provides a perspective on how technologies and methodologies could be combined in order to maximize the outcome of neurorehabilitation.

Current Systems and Therapeutic Approaches for Neurorehabilitation

The great progress made in interdisciplinary fields, such as neural engineering (910), has allowed to investigate many neural mechanisms, by detecting and processing the neural signals at high spatio-temporal resolution, and by interfacing the nervous system with external devices, thus restoring neurological functions lost due to disease/injury. The progress continues in parallel to technological advancements. The last two decades there has seen a large proliferation of technological approaches for human rehabilitation, such as robots, wearable systems, brain stimulation, and virtual environments. In the next sections, we will focus on: robotic therapy, non-invasive brain stimulation (NIBS), and neural interfaces.

Robotic Devices

Robots for neurorehabilitation are designed to support the administration of physical exercises to the upper or lower extremities, with the purpose of promoting neuro-motor recovery. This technology has a relatively long history, dating back to the early 1990s (11). Robot devices for rehabilitation differ widely in terms of mechanical design, number of degrees of freedom, and control architectures. As regards the mechanical design, robots may have either a single point of interaction (i.e., end effector) with the user body (endpoint robots or manipulanda) or multiple points of interaction (exoskeletons and wearable robots) (12).

Endpoint robots for the upper extremity, include Inmotion2 (IMT, USA) (13), KINARM End-Point (BKIN, Canada), and Braccio di Ferro (14) (Figure 1A1, left). Only some of these devices have been tested in randomized clinical trials (15), confirming an improvement of upper limb motor function after stroke (16). However, convincing evidence in favor of significant changes in activities of daily living (ADL) indicators is lacking (17), possibly because performance in ADL is highly affected by hand functionality. A good example of lower limb endpoint robot is represented by gait trainer GT1 (Reha-Stim, Germany). Its efficacy was tested by Picelli et al. (18), who demonstrated an improvement in multiple clinical measures in subjects with Parkinson’s disease following robotic-assisted rehabilitation when compared to physical rehabilitation alone (18). Endpoint robots are also available for postural rehabilitation. For instance, Hunova (Movendo Technology, Italy, launched in 2017) is equipped with a seat and a platform that induce multidirectional movements to improve postural stability (Figure 1A1, right).

 

Figure 1. Neurorehabilitation therapies. (A1) Endpoint robots: on the left the “Braccio di Ferro” manipulandum, on the right the postural robot Hunova. Braccio di ferro (14) is a planar manipulandum with 2-DOF, developed at the University of Genoa (Italy). It is equipped with direct-drive brushless motors and is specially designed to minimize endpoint inertia. It uses the H3DAPI programming environment, which allows to share exercise protocol with other devices. Written informed consent was obtained from the subject depicted in the panel. Movendo Technology’s Hunova is a robotic device that permits full-body rehabilitation. It has two 2-DOF actuated and sensorized platforms located under the seat and on the floor level that allow it to rehabilitate several body districts, including lower limb (thanks to the floor-level platform), the core, and the back, using the platform located underneath the seat. Different patient categories (orthopedic, neurological, and geriatric) can be treated, and interact with the machine through a GUI based on serious games. (A2) Wearable device: the recent exoskeleton Twin. Twin is a fully modular device developed at IIT and co-funded by INAIL (the Italian National Institute for Insurance against Accidents at Work). The device can be easily assembled/disassembled by the patient/therapist. It provides total assistance to patients in the 5–95th percentile range with a weight up to 110 kg. Its modularity is implemented by eight quick release connectors, each located at both mechanical ends of each motor, that allow mechanical and electrical connection with the rest of the structure. It can implement three different walking patterns that can be fully customized according to the patient’s needs viaa GUI on mobile device, thus enabling personalization of the therapy. Steps can be triggered via an IMU-based machine state controller. (B1) Repetitive transcranial magnetic stimulation (rTMS) representation. rTMS refers to the application of magnetic pulses in a repetitive mode. Conventional rTMS applied at low frequency (0.2–1 Hz) results in plastic inhibition of cortical excitability, whereas when it is applied at high frequency (≥5Hz), it leads to excitation (19). rTMS can also be applied in a “patterned mode.” Theta burst stimulation involves applying bursts of high frequency magnetic stimulation (three pulses at 50 Hz) repeated at intervals of 200 ms (20). Intermittent TBS increases cortical excitability for a period of 20–30 min, whereas continuous TBS leads to a suppression of cortical activity for approximately the same amount of time (20). (B2) Transcranial current stimulation (tCS) representation. tCS uses ultra-low intensity current, to manipulate the membrane potential of neurons and modulate spontaneous firing rates, but is insufficient on its own to discharge resting neurons or axons (21). tCS is an umbrella term for a number of brain modulating paradigms, such as transcranial direct current stimulation (22), transcranial alternating current stimulation (23), and transcranial random noise stimulation (24). (C) A typical BCI system. Five stages are represented: brain-signal acquisition, preprocessing, feature extraction/selection, classification, and application interface. In the first stage, brain-signal acquisition, suitable signals are acquired using an appropriate modality. Since the acquired signals are normally weak and contain noise (physiological and instrumental) and artifacts, preprocessing is needed, which is the second stage. In the third stage, some useful data or so-called “features” are extracted. These features, in the fourth stage, are classified using a suitable classifier. Finally, in the fifth stage, the classified signals are transmitted to a computer or other external devices for generating the desired control commands to the devices. In neurofeedback applications, the application interface is a real-time display of brain activity, which enables self-regulation of brain functions (25).

Continue —> Frontiers | Technological Approaches for Neurorehabilitation: From Robotic Devices to Brain Stimulation and Beyond | Neurology

, , , , , , ,

Leave a comment

[WEB SITE] Traumatic Brain Injury Rehabilitation at Florida Institute for Neurologic Rehabilitation

A Specialized Approach to NeuroRehabilitation & Traumatic Brain Injury Rehabilitation

The Florida Institute for Neurologic Rehabilitation, (FINR) has developed a comprehensive brain injury rehabilitation continuum of care offering specialized inpatient evaluation and treatment for both children and adults. Through a pre-admission evaluation and medical records review, FINR develops individualized treatment programs. As a leader in traumatic brain injury rehabilitation (TBI)neurorehabilitation, and neuropsychiatric disorders, our continuum of care delivers clinically relevant and cost effective services with unparalleled continuity of care. The distinct programs in our continuum are designed for individuals with a wide range of complex medical, neurorehabilitation, neurobehavioral, and neuropsychiatric care needs.

Potential traumatic brain injury rehabilitation clients, family members, funders, referral sources, and other concerned parties are encouraged to tour our facilities in order to make informed placement decisions. If our team of expert staff can assist in scheduling a tour or providing educational resources and information, please give us a call at 1-888-TBI-FINR (888-824-3467).

 

 

via Traumatic Brain Injury Rehabilitation at Florida Institute for Neurologic Rehabilitation

, , , , ,

Leave a comment

[WEB SITE] How Virtual Avatars Help Stroke Patients Improve Motor Function

At USC, Dr. Sook-Lei Liew is testing whether watching a virtual avatar that moves in response to brain commands can activate portions of the brain damaged by stroke.
Dr. Sook-Lei Liew (Photo: Nate Jensen)

Photo: Nate Jensen

I am hooked up to a 16-channel brain machine interface with 12 channels of EEG on my head and ears and four channels of electromyography (EMG) on my arms. An Oculus Rift occludes my vision.

Two inertial measurement units (IMU) are stuck to my wrists and forearms, tracking the orientation of my arms, while the EMG monitors my electrical impulses and peripheral nerve activity.

Dr. Sook-Lei Liew, Director of USC’s Neural Plasticity and Neurorehabilitation Laboratory, and Julia Anglin, Research Lab Supervisor and Technician, wait to record my baseline activity and observe a monitor with a representation of my real arm and a virtual limb. I see the same image from inside the Rift.

“Ready?” asks Dr. Liew. “Don’t move—or think.”

I stay still, close my eyes, and let my mind go blank. Anglin records my baseline activity, allowing the brain-machine interface to take signals from the EEG and EMG, alongside the IMU, and use that data to inform an algorithm that drives the virtual avatar hand.

“Now just think about moving your arm to the avatar’s position,” says Dr. Liew.

I don’t move a muscle, but think about movement while looking at the two arms on the screen. Suddenly, my virtual arm moves toward the avatar appendage inside the VR world.

VR rehab at USC

Something happened just because I thought about it! I’ve read tons of data on how this works, even seen other people do it, especially inside gaming environments, but it’s something else to experience it for yourself.

“Very weird isn’t it?” says David Karchem, one of Dr. Liew’s trial patients. Karchem suffered a stroke while driving his car eight years ago, and has shown remarkable recovery using her system.

“My stroke came out of the blue and it was terrifying, because I suddenly couldn’t function. I managed to get my car through an intersection and call the paramedics. I don’t know how,” Karchem says.

He gets around with a walking stick today, and has relatively normal function on the right side of his body. However, his left side is clearly damaged from the stroke. While talking, he unwraps surgical bandages and a splint from his left hand, crooked into his chest, to show Dr. Liew the progress since his last VR session.

As a former software engineer, Karchem isn’t fazed by using advanced technology to aid the clinical process. “I quickly learned, in fact, that the more intellectual and physical stimulation you get, the faster you can recover, as the brain starts to fire. I’m something of a lab rat now and I love it,” he says.

REINVENT Yourself

Karchem is participating in Dr. Liew’s REINVENT (Rehabilitation Environment using the Integration of Neuromuscular-based Virtual Enhancements for Neural Training) project, funded by the American Heart Association, under a National Innovative Research Grant. It’s designed to help patients who have suffered strokes reconnect their brains to their bodies.

VR rehab at USC (Photo: Nate Jensen)“My PhD in Occupational Science, with a concentration in Cognitive Neuroscience, focused on how experience changes brain networks,” explains Dr. Liew. “I continued this work as a Postdoctoral Fellow at the National Institute of Neurological Disorders and Stroke at the National Institutes of Health, before joining USC, in my current role, in 2015.

“Our main goal here is to enhance neural plasticity or neural recovery in individuals using noninvasive brain stimulation, brain-computer interfaces and novel learning paradigms to improve patients’ quality of life and engagement in meaningful activities,” she says.

Here’s the science bit: the human putative mirror neuron system (MNS) is a key motor network in the brain that is active both when you perform an action, like moving your arm, and when you simply watch someone else—like a virtual avatar—perform that same action. Dr. Liew hypothesizes that, for stroke patients who can’t move their arm, simply watching a virtual avatar that moves in response to their brain commands will activate the MNS and retrain damaged or neighboring motor regions of the brain to take over the role of motor performance. This should lead to improved motor function.

“In previous occupational therapy sessions, we found many people with severe strokes got frustrated because they didn’t know if they were activating the right neural networks when we asked them to ‘think about moving’ while we physically helped them to do so,” Dr. Liew says. “If they can’t move at all, even if the right neurological signals are happening, they have no biological feedback to reinforce the learning and help them continue the physical therapy to recover.”

For many people, the knowledge that there’s “intent before movement”—in that the brain has to “think” about moving before the body will do so, is news. We also contain a “body map” inside our heads that predicts our spacetime presence in the world (so we don’t bash into things all the time and know when something is wrong). Both of these brain-body elements face massive disruption after a stroke. The brain literally doesn’t know how to help the body move.

What Dr. Liew’s VR platform has done is show patients how this causal link works and aid speedier, and less frustrating, recovery in real life.

From the Conference Hall to the Lab

She got the idea while geeking out in Northern California one day.

“I went to the Experiential Technology Conference in San Francisco in 2015, and saw demos of intersections of neuroscience and technology, including EEG-based experiments, wearables, and so on. I could see the potential to help our clinical population by building a sensory-visual motor contingency between your own body and an avatar that you’re told is ‘you,’ which provides rewarding sensory feedback to reestablish brain-body signals.

“Inside VR you start to map the two together, it’s astonishing. It becomes an automatic process. We have seen that people who have had a stroke are able to ’embody’ an avatar that does move, even though their own body, right now, cannot,” she says.

VR rehab at USC

Dr. Liew’s system is somewhat hacked together, in the best possible Maker Movement style; she built what didn’t exist and modified what did to her requirements.

“We wanted to keep costs low and build a working device that patients could actually afford to buy. We use Oculus for the [head-mounted display]. Then, while most EEG systems are $10,000 or more, we used an OpenBCI system to build our own, with EMG, for under $1,000.

“We needed an EEG cap, but most EEG manufacturers wanted to charge us $200 or more. So, we decided to hack the rest of the system together, ordering a swim cap from Amazon, taking a mallet and bashing holes in it to match up where the 12 positions on the head electrodes needed to be placed (within the 10-10 international EEG system). We also 3D print the EEG clips and IMU holders here at the lab.

VR rehab at USC

“For the EMG, we use off-the-shelf disposable sensors. This allows us to track the electromyography, if they do have trace muscular activity. In terms of the software platform, we coded custom elements in C#, from Microsoft, and implemented them in the Unity3D game engine.”

Dr. Liew is very keen to bridge the gap between academia and the tech industry; she just submitted a new academic paper with the latest successful trial results from her work for publication. Last year, she spoke at SXSW 2017 about how VR affects the brain, and debuted REINVENT at the conference’s VR Film Festival. It received a “Special Jury Recognition for Innovative Use of Virtual Reality in the Field of Health.”

Going forward, Dr. Liew would like to bring her research to a wider audience.

RELATED

“I feel the future of brain-computer interfaces splits into adaptive, as with implanted electrodes, and rehabilitative, which is what we work on. What we hope to do with REINVENT is allow patients to use our system to re-train their neural pathways, [so they] eventually won’t need it, as they’ll have recovered.

“We’re talking now about a commercial spin-off potential. We’re able to license the technology right now, but, as researchers, our focus, for the moment, is in furthering this field and delivering more trial results in published peer-reviewed papers. Once we have enough data we can use machine learning to tailor the system precisely for each patient and share our results around the world.”

If you’re in L.A., Dr. Liew and her team will be participating in the Creating Reality VR Hackathon from March 12-15 at USC. Details here.

via How Virtual Avatars Help Stroke Patients Improve Motor Function | News & Opinion | PCMag.com

, , , , , , , , ,

Leave a comment

[ARTICLE] Pilot testing of the spring operated wearable enhancer for arm rehabilitation (SpringWear) – Full Text

Abstract

Background

Robotic devices for neurorehabilitation of movement impairments in persons with stroke have been studied extensively. However, the vast majority of these devices only allow practice of stereotyped components of simulated functional tasks in the clinic. Previously we developed SpringWear, a wearable, spring operated, upper extremity exoskeleton capable of assisting movements during real-life functional activities, potentially in the home. SpringWear assists shoulder flexion, elbow extension and forearm supination/pronation. The assistance profiles were designed to approximate the torque required to move the joint passively through its range. These three assisted DOF are combined with two passive shoulder DOF, allowing complex multi-joint movement patterns.

Methods

We performed a cross-sectional study to assess changes in movement patterns when assisted by SpringWear. Thirteen persons with chronic stroke performed range of motion (ROM) and functional tasks, including pick and place tasks with various objects. Sensors on the device measured rotation at all 5 DOF and a kinematic model calculated position of the wrist relative to the shoulder. Within subject t-tests were used to determine changes with assistance from SpringWear.

Results

Maximum shoulder flexion, elbow extension and forearm pronation/supination angles increased significantly during both ROM and functional tasks (p < 0.002). Elbow flexion/extension ROM also increased significantly (p < 0.001). When the subjects volitionally held up the arm against gravity, extension at the index finger proximal interphalangeal joint increased significantly (p = 0.033) when assisted by SpringWear. The forward reach workspace increased 19% (p = 0.002). Nine subjects could not complete the functional tasks unassisted and only one showed improvement on task completion with SpringWear.

Conclusions

SpringWear increased the usable workspace during reaching movements, but there was no consistent improvement in the ability to complete functional tasks. Assistance levels at the shoulder were increased only until the shoulder could be voluntarily held at 90 degrees of flexion. A higher level of assistance may have yielded better results. Also combining SpringWear with HandSOME, an exoskeleton for assisting hand opening, may yield the most dramatic improvements in functional task performance. These low-cost devices can potentially reduce effort and improve performance during task practice, increasing adherence to home training programs for rehabilitation.

Background

There are 800,000 new strokes in the United States each year [1]. Many survivors experience debilitating motor impairments in the upper extremity that negatively affect functional capacity and quality of life. Impairments can include weakness [2] and lack of coordination between different muscle groups [3]. Fifty percent of stroke survivors older than 64 have persistent hemiparesis at six months post-stroke and 26% are dependent in activities of daily living (ADL) [1]. Unfortunately, a very high level of upper extremity motor control may be needed before the impaired limb is actually incorporated into ADL. Stroke patients often appear to have adequate movement ability when observed in the laboratory, but don’t use the limb with the expected regularity [4].

Neurorehabilitation of these impairments is possible with task-specific repetitive movement practice that incorporates high repetition, volitional effort, and successful completion of tasks to prevent frustration and maintain motivation [5]. Robotics has been studied extensively as a means of assisting movements with forces applied to the limb, allowing completion of movements that would otherwise be impossible to complete unassisted. A recent meta-analysis of 34 studies including 1160 subjects found that robotic devices produced larger gains in arm function, strength and ADL ability than comparison interventions [6]. However, authors concluded the advantages of robotic therapy may not be clinically relevant. The vast majority of these studies involved patients traveling to the clinic on a regimented schedule to practice components of tasks. Home-based approaches may be more effective in increasing the amount of limb use, in particular devices that can assist movements while subjects perform real-world ADL.

Many robotic treatments involve providing partial support of the arm against gravity to enable practice of reaching within a larger workspace [78]. This approach is motivated by research that has shown that many stroke patients have an abnormal synergy whereby elevation of the shoulder against gravity impairs the ability to extend the elbow [91011]. More recently, work has shown an abnormal coupling of proximal and distal arm muscles, such that activation level of proximal muscles and level of arm support can affect control of hand and wrist muscles [1213]. However current robotic approaches that provide gravity compensation do not allow practice of tasks in real-world environments, such as in the home, while standing or when performing bimanual tasks. Also, the provision of gravity support may not completely overcome distal weakness in elbow extension and forearm supination [14]. Additionally, many robotic paradigms rely on repetitive performance of components of functional tasks, for example, planar reaching movements. This contradicts motor learning studies that suggest retention and generalization of skills requires task variability [151617].

In previous work we developed a wearable passively actuated hand exoskeleton (HandSOME) that increases finger ROM and function [1819]. However, some subjects were found to be inappropriate for HandSOME because of proximal weakness, and while the HandSOME enabled adequate range of motion at the fingers, some subjects had difficulty supinating the forearm enough to properly grasp certain objects. Furthermore, finger extension ability would degrade as the arm was lifted against gravity. This motivated the development of a wearable arm exoskeleton called the spring-operated wearable enhancer (SpringWear). Springs apply an angle-dependent torque to the joints, with the goal of increasing ROM, repertoire of possible movements, task variability and success in completing tasks.

Overall, the goal was to enable effective use of the impaired limb in the home environment, thereby allowing patients a highly variable, but meaningful task practice. SpringWear can also reduce effort in task completion promoting greater adherence to home practice schedules. At the shoulder, SpringWear provides partial gravity compensation, which reduces the muscle forces at the shoulder needed to lift the arm. With proper selection of assistance level, the initiation and control of movements are still under patient control but less effort is needed and a larger ROM can be achieved. At the elbow, patients often can flex the joint, but have limited extension, so extension torques are applied to increase elbow extension range. A similar strategy is used to assist forearm supination/pronation. In order to benefit from SpringWear, patients should have some active movement at the joints, but for profoundly weak patients, this approach will not be effective. In these patients, powered exoskeletons may be needed, since they can move the limb throughout a larger workspace than spring powered devices. However, powered devices are much more expensive and complicated to integrate into a wearable device and compact designs are often high impedance, requiring sensors to infer the patient’s intended movement trajectory, which may be difficult in very low level patients.

In this study, chronic stroke patients performed a number of tasks with and without assistance from the SpringWear, and the kinematics of the movements were compared. If successful, SpringWear combined with HandSOME, may provide an inexpensive home-based intervention for a wide range of severe to moderately impaired stroke patients.

Methods

SpringWear design

An upper limb exoskeleton, in general, needs to be adaptable to different segment lengths and have a high number of DOFs in order to allow realistic movement practice with many anatomical joint axes involved [20]. With five DOFs, SpringWear was designed to provide assistance to forearm supination/pronation, elbow extension, shoulder flexion, while providing passive joints for shoulder horizontal abduction/adduction and internal/external rotation to allow realistic upper limb movements (Fig. 1). The design uses rubber bands or bungee cords as springs to provide the assistance. These profiles can be customized for each subject by adjusting the stiffness of the springs, which is dependent on impairment level.

 

Fig. 1 Full Assembly of SpringWear with back splint. Double-headed arrows represents five degrees of freedom. Assistance was applied at shoulder FE, elbow FE, and supination/pronation

[…]

Continue —> Pilot testing of the spring operated wearable enhancer for arm rehabilitation (SpringWear) | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , , , ,

Leave a comment

[BOOK] Emerging Therapies in Neurorehabilitation II – [Chapter] Virtual Rehabilitation – Request PDF

Abstract

This chapter addresses the current state of the art of virtual rehabilitation by summarizing recent research results that focus on the assessment and remediation of motor impairments using virtual rehabilitation technology. Moreover, strengths and weaknesses of the virtual rehabilitation approach and its technical and clinical implications will be discussed. This overview is an update and extension of a previous virtual rehabilitation chapter with a similar focus. Despite tremendous advancements in virtual reality hardware in the past few years, clinical evidence for the efficacy of virtual rehabilitation methods is still sparse. All recent meta-analyses agree that the potential of virtual reality systems for motor rehabilitation in stroke and traumatic brain injury populations is evident, but that larger clinical trials are needed that address the contribution of individual aspects of virtual rehabilitation systems on different patient populations in acute and chronic stages of neurorehabilitation.

Virtual Rehabilitation | Request PDF. Available from: https://www.researchgate.net/publication/300324828_Virtual_Rehabilitation

via Virtual Rehabilitation | Request PDF

, , , ,

Leave a comment

[BOOK] Emerging Therapies in Neurorehabilitation II – Βιβλία Google

Εξώφυλλο
José L. PonsRafael RayaJosé González
Springer30 Οκτ 2015 – 318 σελίδες

This book reports on the latest technological and clinical advances in the field of neurorehabilitation. It is, however, much more than a conventional survey of the state-of-the-art in neurorehabilitation technologies and therapies. It was written on the basis of a week of lively discussions between PhD students and leading research experts during the Summer School on Neurorehabilitation (SSNR2014), held September 15-19 in Baiona, Spain. Its unconventional format makes it a perfect guide for all PhD students, researchers and professionals interested in gaining a multidisciplinary perspective on current and future neurorehabilitation scenarios. The book addresses various aspects of neurorehabilitation research and practice, including a selection of common impairments affecting CNS function, such as stroke and spinal cord injury, as well as cutting-edge rehabilitation and diagnostics technologies, including robotics, neuroprosthetics, brain-machine interfaces and neuromodulation.

via Emerging Therapies in Neurorehabilitation II – Βιβλία Google

, , , , , , ,

Leave a comment

[Abstract] The Effects of Timing and Intensity of Neurorehabilitation on Functional Outcome after Traumatic Brain Injury: a Systematic Review & Meta-Analysis

Abstract

Objective

To systematically review evidence on the effects of timing and intensity of neurorehabilitation on the functional recovery of patients with moderate to severe traumatic brain injury (TBI) and aggregate the available evidence using meta-analytic methods.

Data sources

Pubmed, Embase, PsycINFO and Cochrane Database.

Data selection

Electronic databases were searched for prospective controlled clinical trials assessing the effect of timing or intensity of multidisciplinary neurorehabilitation programs on functional outcome of patients with moderate or severe TBI. A total of 5,961 unique records were screened for relevance, of which 58 full-text articles were assessed for eligibility by two independent authors. Eleven articles were included for systematic review and meta-analysis.

Data extraction

Two independent authors performed data extraction and risk of bias analysis using the Cochrane Collaboration Tool. Discrepancies between authors were resolved by consensus.

Data synthesis

Systematic review of a total of six randomized controlled trials, one quasi-randomized trails and four controlled trials revealed consistent evidence for a beneficial effect of early onset neurorehabilitation in the trauma center and intensive neurorehabilitation in the rehabilitation facility on functional outcome, as compared to usual care. Meta-analytic quantification revealed a large-sized positive effect for early onset rehabilitation programs (d = 1.02, p < .001, 95%-confidence interval [CI]: 0.56-1.47) and a medium-sized positive effect for intensive neurorehabilitation programs (d = 0.67, p < .001. 95%-CI: 0.38-0.97) as compared to usual care. These effects were replicated based on solely studies with a low overall risk of bias.

Conclusions

The available evidence indicates that early onset neurorehabilitation in the trauma center and more intensive neurorehabilitation in the rehabilitation facility promote functional recovery of patients with moderate to severe TBI as compared to usual care. These findings support the integration of early onset and more intensive neurorehabilitation in the chain of care for patients with TBI.

via The Effects of Timing and Intensity of Neurorehabilitation on Functional Outcome after Traumatic Brain Injury: a Systematic Review & Meta-Analysis – Archives of Physical Medicine and Rehabilitation

, , , , , ,

Leave a comment

[WEB SITE] Virtual Reality for Stroke Rehabilitation

stroke rehabilitation

Researchers piloted a study to investigate the potential of using virtual reality (VR) training systems in stroke rehabilitation.

Following a stroke, survivors are often left with physical and mental disabilities. Nine out of ten stroke survivors are left with some degree of upper limb motor impairment, thus making it the most prevalent post-stroke disability suffered. Not only does stroke rehabilitation training need to be long-lasting, repetitive, task-specific and challenging, the training must also be motivating and intensive.

What is the Role of Virtual Reality?

Virtual reality (VR) is a relatively new approach to stroke rehabilitation that has shown to have moderate effectiveness in improving motor functions. VR can allow for embodied sensorimotor feedback where patients’ movements are reproduced in a virtual environment via motion capture technology. This enhanced VR experience has previously demonstrated an ability to increase patient motivation and stimulate neural circuits in the motor system to aid in functional recovery.

Can Virtual Reality Help with Stroke Rehabilitation?

In a pilot study published in the Journal of NeuroEngineering and Rehabilitation, researchers in Switzerland investigated the potential use of a VR-based stroke rehabilitation training targeted to the upper motor limbs. The study’s main goal was to assess the training intensity (the number of repetitions divided by the number of minutes of active therapy) and rehabilitation dose (number of repetitions). They also examined VR-based training improvements in functional upper limb outcomes and the safety and tolerance of this technology.

Ten stroke patients with one-sided weakness were included in the study, utilizing the Mind Motion PRO VR-based motor rehabilitation system. The intervention consisted of two one-hour sessions per week for five weeks with a physical therapist to guide the tasks according to the patient’s needs and abilities. Assessments were conducted at baseline (prior to training), post-treatment, and at a four-week follow-up. The participants engaged in VR treatment exercises that stimulated shoulder, elbow, forearm, and wrist movements at varying difficulties through game-like scenario tasks that included pointing, reaching, and grabbing objects in virtual space.

How Effective was the Virtual Reality Therapy?

All ten of the study’s participants completed the full ten training sessions in the treatment. The study found that the median duration of training increased by approximately ten minutes and the median effective training time (number of minutes that the participants actively trained, excluding breaks) per session doubled by the last session of the intervention. The intensity of the training (number of goal-directed movements per minute of effective training time) progressively increased from the first to last training session.

Secondarily, the study evaluated upper limb function, active range of motion and muscle strength, which all showed an increase from baseline. No adverse events were reported and pain and stress levels were low throughout the treatment, thus indicating that VR treatment is well tolerated. Lastly, the participants showed a high degree of concentration and comfort with the movements and expressed interest in continuing the training after the ten sessions, suggesting a high level of adherence and motivation for VR treatment – a key component to stroke rehabilitation treatment outcomes.

Overall, this pilot study demonstrated the ability of VR-based treatment to provide efficient training sessions, as the efficiency rate (relation between time of therapy session and time in active therapy) was 86.3%, which is higher than conventional therapies. The study supports the potential for VR-based intervention as stroke rehabilitation therapy to improve functional and motor outcomes. This should be further explored in future studies that incorporate control groups, a larger sample size, stratified groups and more intensive interventions with a variety of motor assessments.

Written by Maggie Leung, PharmD

Reference: Perez-Marcos, D., Chevalley, O., Schmidlin, T., Garipelli, G., Serino, A., Vuadens, P., . . . Millán, J. D. (2017). Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study. Journal of NeuroEngineering and Rehabilitation,14(1). doi:10.1186/s12984-017-0328-9

via Virtual Reality for Stroke Rehabilitation – Medical News Bulletin | Health News and Medical Research

, , , , , , , ,

Leave a comment

%d bloggers like this: