Posts Tagged Neurorehabilitation

[WEB SITE] How Virtual Avatars Help Stroke Patients Improve Motor Function

At USC, Dr. Sook-Lei Liew is testing whether watching a virtual avatar that moves in response to brain commands can activate portions of the brain damaged by stroke.
Dr. Sook-Lei Liew (Photo: Nate Jensen)

Photo: Nate Jensen

I am hooked up to a 16-channel brain machine interface with 12 channels of EEG on my head and ears and four channels of electromyography (EMG) on my arms. An Oculus Rift occludes my vision.

Two inertial measurement units (IMU) are stuck to my wrists and forearms, tracking the orientation of my arms, while the EMG monitors my electrical impulses and peripheral nerve activity.

Dr. Sook-Lei Liew, Director of USC’s Neural Plasticity and Neurorehabilitation Laboratory, and Julia Anglin, Research Lab Supervisor and Technician, wait to record my baseline activity and observe a monitor with a representation of my real arm and a virtual limb. I see the same image from inside the Rift.

“Ready?” asks Dr. Liew. “Don’t move—or think.”

I stay still, close my eyes, and let my mind go blank. Anglin records my baseline activity, allowing the brain-machine interface to take signals from the EEG and EMG, alongside the IMU, and use that data to inform an algorithm that drives the virtual avatar hand.

“Now just think about moving your arm to the avatar’s position,” says Dr. Liew.

I don’t move a muscle, but think about movement while looking at the two arms on the screen. Suddenly, my virtual arm moves toward the avatar appendage inside the VR world.

VR rehab at USC

Something happened just because I thought about it! I’ve read tons of data on how this works, even seen other people do it, especially inside gaming environments, but it’s something else to experience it for yourself.

“Very weird isn’t it?” says David Karchem, one of Dr. Liew’s trial patients. Karchem suffered a stroke while driving his car eight years ago, and has shown remarkable recovery using her system.

“My stroke came out of the blue and it was terrifying, because I suddenly couldn’t function. I managed to get my car through an intersection and call the paramedics. I don’t know how,” Karchem says.

He gets around with a walking stick today, and has relatively normal function on the right side of his body. However, his left side is clearly damaged from the stroke. While talking, he unwraps surgical bandages and a splint from his left hand, crooked into his chest, to show Dr. Liew the progress since his last VR session.

As a former software engineer, Karchem isn’t fazed by using advanced technology to aid the clinical process. “I quickly learned, in fact, that the more intellectual and physical stimulation you get, the faster you can recover, as the brain starts to fire. I’m something of a lab rat now and I love it,” he says.


Karchem is participating in Dr. Liew’s REINVENT (Rehabilitation Environment using the Integration of Neuromuscular-based Virtual Enhancements for Neural Training) project, funded by the American Heart Association, under a National Innovative Research Grant. It’s designed to help patients who have suffered strokes reconnect their brains to their bodies.

VR rehab at USC (Photo: Nate Jensen)“My PhD in Occupational Science, with a concentration in Cognitive Neuroscience, focused on how experience changes brain networks,” explains Dr. Liew. “I continued this work as a Postdoctoral Fellow at the National Institute of Neurological Disorders and Stroke at the National Institutes of Health, before joining USC, in my current role, in 2015.

“Our main goal here is to enhance neural plasticity or neural recovery in individuals using noninvasive brain stimulation, brain-computer interfaces and novel learning paradigms to improve patients’ quality of life and engagement in meaningful activities,” she says.

Here’s the science bit: the human putative mirror neuron system (MNS) is a key motor network in the brain that is active both when you perform an action, like moving your arm, and when you simply watch someone else—like a virtual avatar—perform that same action. Dr. Liew hypothesizes that, for stroke patients who can’t move their arm, simply watching a virtual avatar that moves in response to their brain commands will activate the MNS and retrain damaged or neighboring motor regions of the brain to take over the role of motor performance. This should lead to improved motor function.

“In previous occupational therapy sessions, we found many people with severe strokes got frustrated because they didn’t know if they were activating the right neural networks when we asked them to ‘think about moving’ while we physically helped them to do so,” Dr. Liew says. “If they can’t move at all, even if the right neurological signals are happening, they have no biological feedback to reinforce the learning and help them continue the physical therapy to recover.”

For many people, the knowledge that there’s “intent before movement”—in that the brain has to “think” about moving before the body will do so, is news. We also contain a “body map” inside our heads that predicts our spacetime presence in the world (so we don’t bash into things all the time and know when something is wrong). Both of these brain-body elements face massive disruption after a stroke. The brain literally doesn’t know how to help the body move.

What Dr. Liew’s VR platform has done is show patients how this causal link works and aid speedier, and less frustrating, recovery in real life.

From the Conference Hall to the Lab

She got the idea while geeking out in Northern California one day.

“I went to the Experiential Technology Conference in San Francisco in 2015, and saw demos of intersections of neuroscience and technology, including EEG-based experiments, wearables, and so on. I could see the potential to help our clinical population by building a sensory-visual motor contingency between your own body and an avatar that you’re told is ‘you,’ which provides rewarding sensory feedback to reestablish brain-body signals.

“Inside VR you start to map the two together, it’s astonishing. It becomes an automatic process. We have seen that people who have had a stroke are able to ’embody’ an avatar that does move, even though their own body, right now, cannot,” she says.

VR rehab at USC

Dr. Liew’s system is somewhat hacked together, in the best possible Maker Movement style; she built what didn’t exist and modified what did to her requirements.

“We wanted to keep costs low and build a working device that patients could actually afford to buy. We use Oculus for the [head-mounted display]. Then, while most EEG systems are $10,000 or more, we used an OpenBCI system to build our own, with EMG, for under $1,000.

“We needed an EEG cap, but most EEG manufacturers wanted to charge us $200 or more. So, we decided to hack the rest of the system together, ordering a swim cap from Amazon, taking a mallet and bashing holes in it to match up where the 12 positions on the head electrodes needed to be placed (within the 10-10 international EEG system). We also 3D print the EEG clips and IMU holders here at the lab.

VR rehab at USC

“For the EMG, we use off-the-shelf disposable sensors. This allows us to track the electromyography, if they do have trace muscular activity. In terms of the software platform, we coded custom elements in C#, from Microsoft, and implemented them in the Unity3D game engine.”

Dr. Liew is very keen to bridge the gap between academia and the tech industry; she just submitted a new academic paper with the latest successful trial results from her work for publication. Last year, she spoke at SXSW 2017 about how VR affects the brain, and debuted REINVENT at the conference’s VR Film Festival. It received a “Special Jury Recognition for Innovative Use of Virtual Reality in the Field of Health.”

Going forward, Dr. Liew would like to bring her research to a wider audience.


“I feel the future of brain-computer interfaces splits into adaptive, as with implanted electrodes, and rehabilitative, which is what we work on. What we hope to do with REINVENT is allow patients to use our system to re-train their neural pathways, [so they] eventually won’t need it, as they’ll have recovered.

“We’re talking now about a commercial spin-off potential. We’re able to license the technology right now, but, as researchers, our focus, for the moment, is in furthering this field and delivering more trial results in published peer-reviewed papers. Once we have enough data we can use machine learning to tailor the system precisely for each patient and share our results around the world.”

If you’re in L.A., Dr. Liew and her team will be participating in the Creating Reality VR Hackathon from March 12-15 at USC. Details here.

via How Virtual Avatars Help Stroke Patients Improve Motor Function | News & Opinion |


, , , , , , , , ,

Leave a comment

[ARTICLE] Pilot testing of the spring operated wearable enhancer for arm rehabilitation (SpringWear) – Full Text



Robotic devices for neurorehabilitation of movement impairments in persons with stroke have been studied extensively. However, the vast majority of these devices only allow practice of stereotyped components of simulated functional tasks in the clinic. Previously we developed SpringWear, a wearable, spring operated, upper extremity exoskeleton capable of assisting movements during real-life functional activities, potentially in the home. SpringWear assists shoulder flexion, elbow extension and forearm supination/pronation. The assistance profiles were designed to approximate the torque required to move the joint passively through its range. These three assisted DOF are combined with two passive shoulder DOF, allowing complex multi-joint movement patterns.


We performed a cross-sectional study to assess changes in movement patterns when assisted by SpringWear. Thirteen persons with chronic stroke performed range of motion (ROM) and functional tasks, including pick and place tasks with various objects. Sensors on the device measured rotation at all 5 DOF and a kinematic model calculated position of the wrist relative to the shoulder. Within subject t-tests were used to determine changes with assistance from SpringWear.


Maximum shoulder flexion, elbow extension and forearm pronation/supination angles increased significantly during both ROM and functional tasks (p < 0.002). Elbow flexion/extension ROM also increased significantly (p < 0.001). When the subjects volitionally held up the arm against gravity, extension at the index finger proximal interphalangeal joint increased significantly (p = 0.033) when assisted by SpringWear. The forward reach workspace increased 19% (p = 0.002). Nine subjects could not complete the functional tasks unassisted and only one showed improvement on task completion with SpringWear.


SpringWear increased the usable workspace during reaching movements, but there was no consistent improvement in the ability to complete functional tasks. Assistance levels at the shoulder were increased only until the shoulder could be voluntarily held at 90 degrees of flexion. A higher level of assistance may have yielded better results. Also combining SpringWear with HandSOME, an exoskeleton for assisting hand opening, may yield the most dramatic improvements in functional task performance. These low-cost devices can potentially reduce effort and improve performance during task practice, increasing adherence to home training programs for rehabilitation.


There are 800,000 new strokes in the United States each year [1]. Many survivors experience debilitating motor impairments in the upper extremity that negatively affect functional capacity and quality of life. Impairments can include weakness [2] and lack of coordination between different muscle groups [3]. Fifty percent of stroke survivors older than 64 have persistent hemiparesis at six months post-stroke and 26% are dependent in activities of daily living (ADL) [1]. Unfortunately, a very high level of upper extremity motor control may be needed before the impaired limb is actually incorporated into ADL. Stroke patients often appear to have adequate movement ability when observed in the laboratory, but don’t use the limb with the expected regularity [4].

Neurorehabilitation of these impairments is possible with task-specific repetitive movement practice that incorporates high repetition, volitional effort, and successful completion of tasks to prevent frustration and maintain motivation [5]. Robotics has been studied extensively as a means of assisting movements with forces applied to the limb, allowing completion of movements that would otherwise be impossible to complete unassisted. A recent meta-analysis of 34 studies including 1160 subjects found that robotic devices produced larger gains in arm function, strength and ADL ability than comparison interventions [6]. However, authors concluded the advantages of robotic therapy may not be clinically relevant. The vast majority of these studies involved patients traveling to the clinic on a regimented schedule to practice components of tasks. Home-based approaches may be more effective in increasing the amount of limb use, in particular devices that can assist movements while subjects perform real-world ADL.

Many robotic treatments involve providing partial support of the arm against gravity to enable practice of reaching within a larger workspace [78]. This approach is motivated by research that has shown that many stroke patients have an abnormal synergy whereby elevation of the shoulder against gravity impairs the ability to extend the elbow [91011]. More recently, work has shown an abnormal coupling of proximal and distal arm muscles, such that activation level of proximal muscles and level of arm support can affect control of hand and wrist muscles [1213]. However current robotic approaches that provide gravity compensation do not allow practice of tasks in real-world environments, such as in the home, while standing or when performing bimanual tasks. Also, the provision of gravity support may not completely overcome distal weakness in elbow extension and forearm supination [14]. Additionally, many robotic paradigms rely on repetitive performance of components of functional tasks, for example, planar reaching movements. This contradicts motor learning studies that suggest retention and generalization of skills requires task variability [151617].

In previous work we developed a wearable passively actuated hand exoskeleton (HandSOME) that increases finger ROM and function [1819]. However, some subjects were found to be inappropriate for HandSOME because of proximal weakness, and while the HandSOME enabled adequate range of motion at the fingers, some subjects had difficulty supinating the forearm enough to properly grasp certain objects. Furthermore, finger extension ability would degrade as the arm was lifted against gravity. This motivated the development of a wearable arm exoskeleton called the spring-operated wearable enhancer (SpringWear). Springs apply an angle-dependent torque to the joints, with the goal of increasing ROM, repertoire of possible movements, task variability and success in completing tasks.

Overall, the goal was to enable effective use of the impaired limb in the home environment, thereby allowing patients a highly variable, but meaningful task practice. SpringWear can also reduce effort in task completion promoting greater adherence to home practice schedules. At the shoulder, SpringWear provides partial gravity compensation, which reduces the muscle forces at the shoulder needed to lift the arm. With proper selection of assistance level, the initiation and control of movements are still under patient control but less effort is needed and a larger ROM can be achieved. At the elbow, patients often can flex the joint, but have limited extension, so extension torques are applied to increase elbow extension range. A similar strategy is used to assist forearm supination/pronation. In order to benefit from SpringWear, patients should have some active movement at the joints, but for profoundly weak patients, this approach will not be effective. In these patients, powered exoskeletons may be needed, since they can move the limb throughout a larger workspace than spring powered devices. However, powered devices are much more expensive and complicated to integrate into a wearable device and compact designs are often high impedance, requiring sensors to infer the patient’s intended movement trajectory, which may be difficult in very low level patients.

In this study, chronic stroke patients performed a number of tasks with and without assistance from the SpringWear, and the kinematics of the movements were compared. If successful, SpringWear combined with HandSOME, may provide an inexpensive home-based intervention for a wide range of severe to moderately impaired stroke patients.


SpringWear design

An upper limb exoskeleton, in general, needs to be adaptable to different segment lengths and have a high number of DOFs in order to allow realistic movement practice with many anatomical joint axes involved [20]. With five DOFs, SpringWear was designed to provide assistance to forearm supination/pronation, elbow extension, shoulder flexion, while providing passive joints for shoulder horizontal abduction/adduction and internal/external rotation to allow realistic upper limb movements (Fig. 1). The design uses rubber bands or bungee cords as springs to provide the assistance. These profiles can be customized for each subject by adjusting the stiffness of the springs, which is dependent on impairment level.


Fig. 1 Full Assembly of SpringWear with back splint. Double-headed arrows represents five degrees of freedom. Assistance was applied at shoulder FE, elbow FE, and supination/pronation


Continue —> Pilot testing of the spring operated wearable enhancer for arm rehabilitation (SpringWear) | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , , , ,

Leave a comment

[BOOK] Emerging Therapies in Neurorehabilitation II – [Chapter] Virtual Rehabilitation – Request PDF


This chapter addresses the current state of the art of virtual rehabilitation by summarizing recent research results that focus on the assessment and remediation of motor impairments using virtual rehabilitation technology. Moreover, strengths and weaknesses of the virtual rehabilitation approach and its technical and clinical implications will be discussed. This overview is an update and extension of a previous virtual rehabilitation chapter with a similar focus. Despite tremendous advancements in virtual reality hardware in the past few years, clinical evidence for the efficacy of virtual rehabilitation methods is still sparse. All recent meta-analyses agree that the potential of virtual reality systems for motor rehabilitation in stroke and traumatic brain injury populations is evident, but that larger clinical trials are needed that address the contribution of individual aspects of virtual rehabilitation systems on different patient populations in acute and chronic stages of neurorehabilitation.

Virtual Rehabilitation | Request PDF. Available from:

via Virtual Rehabilitation | Request PDF

, , , ,

Leave a comment

[BOOK] Emerging Therapies in Neurorehabilitation II – Βιβλία Google

José L. PonsRafael RayaJosé González
Springer30 Οκτ 2015 – 318 σελίδες

This book reports on the latest technological and clinical advances in the field of neurorehabilitation. It is, however, much more than a conventional survey of the state-of-the-art in neurorehabilitation technologies and therapies. It was written on the basis of a week of lively discussions between PhD students and leading research experts during the Summer School on Neurorehabilitation (SSNR2014), held September 15-19 in Baiona, Spain. Its unconventional format makes it a perfect guide for all PhD students, researchers and professionals interested in gaining a multidisciplinary perspective on current and future neurorehabilitation scenarios. The book addresses various aspects of neurorehabilitation research and practice, including a selection of common impairments affecting CNS function, such as stroke and spinal cord injury, as well as cutting-edge rehabilitation and diagnostics technologies, including robotics, neuroprosthetics, brain-machine interfaces and neuromodulation.

via Emerging Therapies in Neurorehabilitation II – Βιβλία Google

, , , , , , ,

Leave a comment

[Abstract] The Effects of Timing and Intensity of Neurorehabilitation on Functional Outcome after Traumatic Brain Injury: a Systematic Review & Meta-Analysis



To systematically review evidence on the effects of timing and intensity of neurorehabilitation on the functional recovery of patients with moderate to severe traumatic brain injury (TBI) and aggregate the available evidence using meta-analytic methods.

Data sources

Pubmed, Embase, PsycINFO and Cochrane Database.

Data selection

Electronic databases were searched for prospective controlled clinical trials assessing the effect of timing or intensity of multidisciplinary neurorehabilitation programs on functional outcome of patients with moderate or severe TBI. A total of 5,961 unique records were screened for relevance, of which 58 full-text articles were assessed for eligibility by two independent authors. Eleven articles were included for systematic review and meta-analysis.

Data extraction

Two independent authors performed data extraction and risk of bias analysis using the Cochrane Collaboration Tool. Discrepancies between authors were resolved by consensus.

Data synthesis

Systematic review of a total of six randomized controlled trials, one quasi-randomized trails and four controlled trials revealed consistent evidence for a beneficial effect of early onset neurorehabilitation in the trauma center and intensive neurorehabilitation in the rehabilitation facility on functional outcome, as compared to usual care. Meta-analytic quantification revealed a large-sized positive effect for early onset rehabilitation programs (d = 1.02, p < .001, 95%-confidence interval [CI]: 0.56-1.47) and a medium-sized positive effect for intensive neurorehabilitation programs (d = 0.67, p < .001. 95%-CI: 0.38-0.97) as compared to usual care. These effects were replicated based on solely studies with a low overall risk of bias.


The available evidence indicates that early onset neurorehabilitation in the trauma center and more intensive neurorehabilitation in the rehabilitation facility promote functional recovery of patients with moderate to severe TBI as compared to usual care. These findings support the integration of early onset and more intensive neurorehabilitation in the chain of care for patients with TBI.

via The Effects of Timing and Intensity of Neurorehabilitation on Functional Outcome after Traumatic Brain Injury: a Systematic Review & Meta-Analysis – Archives of Physical Medicine and Rehabilitation

, , , , , ,

Leave a comment

[WEB SITE] Virtual Reality for Stroke Rehabilitation

stroke rehabilitation

Researchers piloted a study to investigate the potential of using virtual reality (VR) training systems in stroke rehabilitation.

Following a stroke, survivors are often left with physical and mental disabilities. Nine out of ten stroke survivors are left with some degree of upper limb motor impairment, thus making it the most prevalent post-stroke disability suffered. Not only does stroke rehabilitation training need to be long-lasting, repetitive, task-specific and challenging, the training must also be motivating and intensive.

What is the Role of Virtual Reality?

Virtual reality (VR) is a relatively new approach to stroke rehabilitation that has shown to have moderate effectiveness in improving motor functions. VR can allow for embodied sensorimotor feedback where patients’ movements are reproduced in a virtual environment via motion capture technology. This enhanced VR experience has previously demonstrated an ability to increase patient motivation and stimulate neural circuits in the motor system to aid in functional recovery.

Can Virtual Reality Help with Stroke Rehabilitation?

In a pilot study published in the Journal of NeuroEngineering and Rehabilitation, researchers in Switzerland investigated the potential use of a VR-based stroke rehabilitation training targeted to the upper motor limbs. The study’s main goal was to assess the training intensity (the number of repetitions divided by the number of minutes of active therapy) and rehabilitation dose (number of repetitions). They also examined VR-based training improvements in functional upper limb outcomes and the safety and tolerance of this technology.

Ten stroke patients with one-sided weakness were included in the study, utilizing the Mind Motion PRO VR-based motor rehabilitation system. The intervention consisted of two one-hour sessions per week for five weeks with a physical therapist to guide the tasks according to the patient’s needs and abilities. Assessments were conducted at baseline (prior to training), post-treatment, and at a four-week follow-up. The participants engaged in VR treatment exercises that stimulated shoulder, elbow, forearm, and wrist movements at varying difficulties through game-like scenario tasks that included pointing, reaching, and grabbing objects in virtual space.

How Effective was the Virtual Reality Therapy?

All ten of the study’s participants completed the full ten training sessions in the treatment. The study found that the median duration of training increased by approximately ten minutes and the median effective training time (number of minutes that the participants actively trained, excluding breaks) per session doubled by the last session of the intervention. The intensity of the training (number of goal-directed movements per minute of effective training time) progressively increased from the first to last training session.

Secondarily, the study evaluated upper limb function, active range of motion and muscle strength, which all showed an increase from baseline. No adverse events were reported and pain and stress levels were low throughout the treatment, thus indicating that VR treatment is well tolerated. Lastly, the participants showed a high degree of concentration and comfort with the movements and expressed interest in continuing the training after the ten sessions, suggesting a high level of adherence and motivation for VR treatment – a key component to stroke rehabilitation treatment outcomes.

Overall, this pilot study demonstrated the ability of VR-based treatment to provide efficient training sessions, as the efficiency rate (relation between time of therapy session and time in active therapy) was 86.3%, which is higher than conventional therapies. The study supports the potential for VR-based intervention as stroke rehabilitation therapy to improve functional and motor outcomes. This should be further explored in future studies that incorporate control groups, a larger sample size, stratified groups and more intensive interventions with a variety of motor assessments.

Written by Maggie Leung, PharmD

Reference: Perez-Marcos, D., Chevalley, O., Schmidlin, T., Garipelli, G., Serino, A., Vuadens, P., . . . Millán, J. D. (2017). Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study. Journal of NeuroEngineering and Rehabilitation,14(1). doi:10.1186/s12984-017-0328-9

via Virtual Reality for Stroke Rehabilitation – Medical News Bulletin | Health News and Medical Research

, , , , , , , ,

Leave a comment

[Conference paper] Robotic Upper Limb Rehabilitation Using Armeo®Spring for Chronic Stroke Patients at University Malaya Medical Centre (UMMC) – Abstract+References


This is a retrospective study of patients with chronic partial arm paresis post stroke who attended neurorehabilitation at University Malaya Medical Centre, Malaysia. In this study we aimed to analyze the clinical and practical outcome of robotic-assisted upper limb rehabilitation. Specifically, we analyzed the impact of therapy on motor and function of chronic stroke arm paresis through structured therapy protocol. We extended our analysis towards user acceptance in robotic-assisted rehabilitation. We applied our Armeo®Spring Therapy Protocol on stroke patients with unilateral partial upper limb paresis of more than six months duration. The outcome measures were muscle strength, spasticity and hand dexterity. Thirty three patients who fulfilled the criteria of treatment protocol attended outpatient therapy session. Fourteen patients completed the treatment protocol in which ten participants were stroke patients. This study reported statistically significant improvement in multiple joint range of motions following therapy. Although there was non progressing arm spasticity, and improved paretic hand dexterity, both latter outcomes were not statistically significant at the end of therapy.


  1. 1.
    Broeks, J.G., Lankhorst, G.J., Rumping, K., Prevo, A.J.: The long-term outcome of arm function after stroke: results of a follow-up study. Disabil. Rehabil. 21, 357–364 (1999)CrossRefGoogle Scholar
  2. 2.
    Jørgensen, H.S., Nakayama, H., Raaschou, H.O., Vive-Larsen, J., Støier, M., Olsen, T.S.: Outcome and time course of recovery in stroke. II. Time course of recovery: the Copenhagen stroke study. Arch. Phys. Med. Rehabil. 76, 406–412 (1995)CrossRefGoogle Scholar
  3. 3.
    Lo, A.C., Guarino, P.D., Richards, L.G., et al.: Robotic-assisted therapy for long term upper limb impairment in stroke. N Engl. Med. 362, 19 (2010)CrossRefGoogle Scholar
  4. 4.
    Colombo, R., Sterpi, I., Mazzone, A., Delconte, C., Pisano, F.: Robot aided neurorehabilitation in sub-acute and chronic stroke: does spontaneous recovery have limited impact on outcome? NeuroRehabilitation 33, 621–629 (2013)Google Scholar
  5. 5.
    Abdullah, H.A., Tarry, C., Lambert, C., Barreca, S., Allen, B.O.: Results of clinicians using a therapeutic robotic system in an inpatient stroke rehabilitation unit. J. NeuroEng. Rehabil. 8, 50 (2011)CrossRefGoogle Scholar
  6. 6.
    Levin, M.F., Kleim, J.A., Wolf, S.L.: What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil. Neural Repair 23, 313–319 (2009)CrossRefGoogle Scholar
  7. 7.
    Desrosiers, J., Bravo, G., Hébert, R., Dutil, E., Mercier, L.: Validation of the box and block test as a measure of dexterity of elderly people: reliability, validity, and norms studies. Arch. Phys. Med. Rehabil. 75, 751–755 (1994)Google Scholar
  8. 8.
  9. 9.
    Dijkers, M.P., deBear, P.C., Erlandson, R.F., Kristy, K., Geer, D.M., Nichols, A.: Patient and staff acceptance of robot technology in occupational therapy: a pilot study. J. Rehabil. Res. Dev. 28(2), 33–44 (1991)CrossRefGoogle Scholar
  10. 10.
    Loureiro, R.C.V., Harwin, W.S., Nagai, K., Johnson, M.: Advances in upper limb stroke rehabilitation: a technology push. Med. Biol. Eng. Comput. 49, 1103–1111 (2011)CrossRefGoogle Scholar

via Robotic Upper Limb Rehabilitation Using Armeo®Spring for Chronic Stroke Patients at University Malaya Medical Centre (UMMC) | SpringerLink

, , , , , , , , ,

Leave a comment

[ARTICLE] Personalized upper limb training combined with anodal-tDCS for sensorimotor recovery in spastic hemiparesis: study protocol for a randomized controlled trial – Full Text



Recovery of voluntary movement is a main rehabilitation goal. Efforts to identify effective upper limb (UL) interventions after stroke have been unsatisfactory. This study includes personalized impairment-based UL reaching training in virtual reality (VR) combined with non-invasive brain stimulation to enhance motor learning. The approach is guided by limiting reaching training to the angular zone in which active control is preserved (“active control zone”) after identification of a “spasticity zone”. Anodal transcranial direct current stimulation (a-tDCS) is used to facilitate activation of the affected hemisphere and enhance inter-hemispheric balance. The purpose of the study is to investigate the effectiveness of personalized reaching training, with and without a-tDCS, to increase the range of active elbow control and improve UL function.


This single-blind randomized controlled trial will take place at four academic rehabilitation centers in Canada, India and Israel. The intervention involves 10 days of personalized VR reaching training with both groups receiving the same intensity of treatment. Participants with sub-acute stroke aged 25 to 80 years with elbow spasticity will be randomized to one of three groups: personalized training (reaching within individually determined active control zones) with a-tDCS (group 1) or sham-tDCS (group 2), or non-personalized training (reaching regardless of active control zones) with a-tDCS (group 3). A baseline assessment will be performed at randomization and two follow-up assessments will occur at the end of the intervention and at 1 month post intervention. Main outcomes are elbow-flexor spatial threshold and ratio of spasticity zone to full elbow-extension range. Secondary outcomes include the Modified Ashworth Scale, Fugl-Meyer Assessment, Streamlined Wolf Motor Function Test and UL kinematics during a standardized reach-to-grasp task.


This study will provide evidence on the effectiveness of personalized treatment on spasticity and UL motor ability and feasibility of using low-cost interventions in low-to-middle-income countries.


Stroke is a leading cause of long-term disability. Up to 85% of patients with sub-acute stroke present chronic upper limb (UL) sensorimotor deficits [1]. While post-stroke UL recovery has been a major focus of attention, efforts to identify effective rehabilitation interventions have been unsatisfactory. This study focuses on the delivery of personalized impairment-based UL training combined with low-cost state-of-the-art technology (non-invasive brain stimulation and commercially available virtual reality, VR) to enhance motor learning, which is becoming more readily available worldwide.

A major impairment following stroke is spasticity, leading to difficulty in daily activities and reduced quality of life [2]. Studies have identified that spasticity relates to disordered motor control due to deficits in the ability of the central nervous system to regulate motoneuronal thresholds through segmental and descending systems [34]. In the healthy nervous system, the motoneuronal threshold is expressed as the “spatial threshold” (ST) or the specific muscle length/joint angle at which the stretch reflex and other proprioceptive reflexes begin to act [567]. The range of ST regulation in the intact system is defined by the task-specific ability to activate muscles anywhere within the biomechanical joint range of motion (ROM). However, to relax the muscle completely, ST has to be shifted outside of the biomechanical range [8].

After stroke, the ability to regulate STs is impaired [3] such that the upper angular limit of ST regulation occurs within the biomechanical range of the joint resulting in spasticity (spasticity zone). Thus, resistance to stretch of the relaxed muscle has a spatial aspect in that it occurs within the defined spasticity zone. In other joint ranges, spasticity is not present and normal reciprocal muscle activation can occur (active control zone; [4] Fig. 1). This theory-based intervention investigates whether recovery of voluntary movement is linked to recovery of ST control.

Fig. 1Spatial thresholds (STs) in healthy and stroke participants. a The tonic stretch reflex threshold (TSRT) can be regulated throughout a range (filled bar) that exceeds the biomechanical range of the joint (open bar). Relaxation and active force can be produced at any angle within the biomechanical range. b The intersection of the diagonal line with the zero-velocity line defines the TSRT. In healthy subjects, TSRT lies outside of the biomechanical range of the joint (arrow) during the relaxed state. c In patients with stroke, TSRT may lie within the biomechanical range in the relaxed state, defining the joint angle at which spasticity begins to appear (spasticity zone). In the other joint ranges, spasticity is not present (active zone)

We also consider that inter-hemispheric balance is disrupted after stroke, interfering with recovery. UL motor function depends on the modulation of inter-hemispheric inhibition between cortical areas via transcallosal projections [910] and descending projections to fingers, hand and arm [11]. Unilateral hemispheric damage reduces activity in the affected hemisphere while activity in the unaffected hemisphere increases [12], becoming more dominant. UL recovery may relate to rebalancing of inter-hemispheric inhibition [13] using, for example, anodal transcranial direct current stimulation (a-tDCS) over the affected hemisphere [1415]. a-tDCS is considered a safe technique with transient adverse effects, such as slight scalp itching or tingling and/or mild headaches, that are not expected to impede the patient’s ability to participate in the training protocol [16].

The underlying idea of this proposal is that recovery of voluntary movement is tightly linked to the recovery of threshold control. We propose an intervention that combines current knowledge about motor learning and disorders in ST control. The intervention involves personalized UL reach training designed according to the spatial structure of motor deficits of an individual, with excitatory a-tDCS over the sensorimotor areas of the affected hemisphere. […]


Continue —> Personalized upper limb training combined with anodal-tDCS for sensorimotor recovery in spastic hemiparesis: study protocol for a randomized controlled trial | Trials | Full Text

, , , , , , , ,

Leave a comment

[Abstract] Active exergames to improve cognitive functioning in neurological disabilities: a systematic review and meta-analysis.

Exergames represent a way to perform physical activity through active video games, serving as potentially useful tool in the field of neurorehabilitation. However, little is known regarding the possible role of exergames in improving cognitive functions in persons suffering from neurological disabilities.A search for relevant articles was carried out on PubMed/Medline, Scopus, PEDro, and Google Scholar. Only randomized controlled studies and non-randomized but controlled studies were retained. The following additional inclusion criteria were applied: studies focused on physical activity interventions carried out by means of exergames; populations targeted were affected by neurological disabilities; and reported results were related to cognitive outcomes. We calculated standardized mean differences (SMD) and pooled results using a random effects meta-analysis.Of 520 abstracts screened, thirteen studies met the criteria to be included yielding a total of 465 participants, 233 randomized to exergames, and 232 allocated to the alternative or no intervention. The included studies varied in terms of studied populations (e.g., multiple sclerosis, post-stroke hemiparesis, Parkinson’s disease, dementia, dyslexia, Down syndrome), type and duration of interventions, and cognitive outcome measures. Exergames significantly improved executive functions (SMD=0.53, p=0.005; 8 studies, n=380) and visuo-spatial perception (SMD=0.65, p<0.0001; 5 studies, n=209) when compared to the alternative or no intervention. There were no significant differences for attention (SMD=0.57, p=0.07; 7 studies, n=250) and global cognition (SMD=0.05, p=0.80; 6 studies, n=161).Exergames are a highly-flexible tool for rehabilitation of both cognitive and motor functions in adult populations suffering from various neurological disabilities and developmental neurological disorders. Additional high-quality clinical trials with larger samples and more specific cognitive outcomes are needed to corroborate these preliminary findings.Exergames could be considered either as a supplemental treatment to conventional rehabilitation, or as strategy to extend benefits of conventional programs at home.

via Active exergames to improve cognitive functioning in neurological disabilities: a systematic… – Abstract – Europe PMC

, ,

Leave a comment

[Editorial] Advances in Neural Engineering for Rehabilitation – Behavioural Neurology

Neurorehabilitation has been identified as a grand challenge for the coming decades, mainly due to the fast-growing population with neurological disorders (e.g., stroke, Alzheimer’s, and Parkinson’s). Efficient, quantitative, and automated rehabilitation services are in urgent need to release the increasing demands for long-term medical treatments and healthcare and to compensate the lack of manpower in rehabilitation professionals. Neural engineering is an active research area, where engineering technologies, such as robots, imaging, biosignal processing, and sensors, have contributed to diagnosis, treatment, and long-term evaluation in rehabilitation processes. Advances in neural engineering techniques, from the fundamental research in laboratories to clinical trials, will definitely promote the automated and personalized rehabilitation in the future. There are ten articles collected in this special issue, featuring the cutting-edge representatives in the area of neural engineering.

A robot has been an important assistant to a human therapist in physical rehabilitation. The review articles, “Hand Rehabilitation Robotics on Poststroke Motor Recovery” by Z. Yue et al. and “Robotics in Lower-Limb Rehabilitation after Stroke” by X. Zhang et al., pointed out the therapeutic difficulties encountered in the traditional poststroke rehabilitation, that is, the recovery in distal joints and the restoration on walking independency. The papers summarized the latest developments in the robotic design and discussed the possible solutions to improve the performance of the current robots. In the article “Effects of Robot-Assisted Training for the Unaffected Arm in Patients with Hemiparetic Cerebral Palsy: A Proof-of-Concept Pilot Study” by A. Picelli et al., the positive rehabilitation effectiveness by practicing the unaffected upper limb with the assistance of robot has been validated, and the results demonstrated the improvements in hand functions and action planning ability in the recruited subjects. Rehabilitation robot was also applied in the study “The Effect of Dopaminergic Medication on Joint Kinematics during Haptic Movements in Individuals with Parkinson’s Disease” by K. Li et al. The haptic sensitivity in individuals with Parkinson’s disease, who received dopamine replacement therapy, was quantitatively evaluated in a robot-assisted haptic exploration.

Neural signal processing is a technology to understand the language talking in the nervous system. The neural signal of the brain detected by electroencephalography (EEG) was adopted as a biofeedback in the treatment for schizophrenia, as presented in “An Exploratory Study of Intensive Neurofeedback Training for Schizophrenia” by W. Nan et al. The study demonstrated the effectiveness of a short but intensive neurofeedback treatment for the patients with difficulty in long-time training and provided new insight into the treatment of schizophrenia. The neural signal of the brain was also investigated by electrocorticography (ECoG) in persons with epilepsy in the study “Gesture Decoding Using ECoG Signals from Human Sensorimotor Cortex: A Pilot Study” by Y. Li et al. The ECoG signals were used in a brain-machine interfacing (BMI) system to recognize different hand gestures performed by the subjects with an online accuracy above 80%. In the study “Prior Knowledge of Target Direction and Intended Movement Selection Improves Indirect Reaching Movement Decoding” by H. Li et al., the neural signals with higher resolutions than EEG and ECoG were captured by implanted microarrays at the cortical level in monkeys, and the neural signals were applied in the prediction of hand trajectories.

Quantitative evaluation plays an important role in diagnosis and long-term follow-up for rehabilitation. The imaging techniques of functional magnetic resonance imaging (fMRI) have been employed in the studies “The Difference of Neural Networks between Bimanual Antiphase and In-Phase Upper Limb Movements: A Preliminary Functional Magnetic Resonance Imaging Study” by Q. Lin et al. and “Cerebral Reorganization in Subacute Stroke Survivors after Virtual Reality-Based Training: A Preliminary Study” by X. Xiao et al. In Q. Lin et al.’s work, the effects of different bimanual practices in the upper limbs on the intra- and interregional connectivity in the brain were investigated in unimpaired subjects, and the results revealed the behavioral modulation on the cerebellar-cerebral functional connectivity. In X. Xiao et al.’s work, fMRI imaging was applied in the evaluation on the poststroke rehabilitation program by virtual reality-enhanced treadmill training. The neural reconstruction in the primary sensorimotor cortex after the training could be determined with the imaging quantification. In the study “Characterizing Patients with Unilateral Vestibular Hypofunction Using Kinematic Variability and Local Dynamic Stability during Treadmill Walking” by P. Liu et al., the asymmetry and instability during the gait of the patients were evaluated by three-dimensional motion analysis. The severity of vestibular functional asymmetry could be quantified by the parameters of the motion analysis on the lower limbs, which could be complementary to the traditional assessments.

We hope that this special issue of Behavioral Neurology will help to promote further developments in neural engineering and neurorehabilitation. In addition to reducing suffering and improving the quality of life, neurorehabilitation when combined with novel engineering methods has the potential to advance our knowledge about the mechanisms of the nervous system.


We would like to express our deepest gratitude to many reviewers, whose professional comments guaranteed the high quality of the selected papers. In addition, we also would like to express our appreciation to the editorial board members and publishing office of the journal for their help and support throughout the preparation of this special issue.

Xiaoling Hu
Ting Zhao
Jun Yao
Yu Kuang
Yuan Yang

via Advances in Neural Engineering for Rehabilitation

, ,

Leave a comment

%d bloggers like this: