Posts Tagged Neurorehabilitation

[Conference paper] Robotic Upper Limb Rehabilitation Using Armeo®Spring for Chronic Stroke Patients at University Malaya Medical Centre (UMMC) – Abstract+References

Abstract

This is a retrospective study of patients with chronic partial arm paresis post stroke who attended neurorehabilitation at University Malaya Medical Centre, Malaysia. In this study we aimed to analyze the clinical and practical outcome of robotic-assisted upper limb rehabilitation. Specifically, we analyzed the impact of therapy on motor and function of chronic stroke arm paresis through structured therapy protocol. We extended our analysis towards user acceptance in robotic-assisted rehabilitation. We applied our Armeo®Spring Therapy Protocol on stroke patients with unilateral partial upper limb paresis of more than six months duration. The outcome measures were muscle strength, spasticity and hand dexterity. Thirty three patients who fulfilled the criteria of treatment protocol attended outpatient therapy session. Fourteen patients completed the treatment protocol in which ten participants were stroke patients. This study reported statistically significant improvement in multiple joint range of motions following therapy. Although there was non progressing arm spasticity, and improved paretic hand dexterity, both latter outcomes were not statistically significant at the end of therapy.

References

  1. 1.
    Broeks, J.G., Lankhorst, G.J., Rumping, K., Prevo, A.J.: The long-term outcome of arm function after stroke: results of a follow-up study. Disabil. Rehabil. 21, 357–364 (1999)CrossRefGoogle Scholar
  2. 2.
    Jørgensen, H.S., Nakayama, H., Raaschou, H.O., Vive-Larsen, J., Støier, M., Olsen, T.S.: Outcome and time course of recovery in stroke. II. Time course of recovery: the Copenhagen stroke study. Arch. Phys. Med. Rehabil. 76, 406–412 (1995)CrossRefGoogle Scholar
  3. 3.
    Lo, A.C., Guarino, P.D., Richards, L.G., et al.: Robotic-assisted therapy for long term upper limb impairment in stroke. N Engl. Med. 362, 19 (2010)CrossRefGoogle Scholar
  4. 4.
    Colombo, R., Sterpi, I., Mazzone, A., Delconte, C., Pisano, F.: Robot aided neurorehabilitation in sub-acute and chronic stroke: does spontaneous recovery have limited impact on outcome? NeuroRehabilitation 33, 621–629 (2013)Google Scholar
  5. 5.
    Abdullah, H.A., Tarry, C., Lambert, C., Barreca, S., Allen, B.O.: Results of clinicians using a therapeutic robotic system in an inpatient stroke rehabilitation unit. J. NeuroEng. Rehabil. 8, 50 (2011)CrossRefGoogle Scholar
  6. 6.
    Levin, M.F., Kleim, J.A., Wolf, S.L.: What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil. Neural Repair 23, 313–319 (2009)CrossRefGoogle Scholar
  7. 7.
    Desrosiers, J., Bravo, G., Hébert, R., Dutil, E., Mercier, L.: Validation of the box and block test as a measure of dexterity of elderly people: reliability, validity, and norms studies. Arch. Phys. Med. Rehabil. 75, 751–755 (1994)Google Scholar
  8. 8.
  9. 9.
    Dijkers, M.P., deBear, P.C., Erlandson, R.F., Kristy, K., Geer, D.M., Nichols, A.: Patient and staff acceptance of robot technology in occupational therapy: a pilot study. J. Rehabil. Res. Dev. 28(2), 33–44 (1991)CrossRefGoogle Scholar
  10. 10.
    Loureiro, R.C.V., Harwin, W.S., Nagai, K., Johnson, M.: Advances in upper limb stroke rehabilitation: a technology push. Med. Biol. Eng. Comput. 49, 1103–1111 (2011)CrossRefGoogle Scholar

via Robotic Upper Limb Rehabilitation Using Armeo®Spring for Chronic Stroke Patients at University Malaya Medical Centre (UMMC) | SpringerLink

Advertisements

, , , , , , , , ,

Leave a comment

[ARTICLE] Personalized upper limb training combined with anodal-tDCS for sensorimotor recovery in spastic hemiparesis: study protocol for a randomized controlled trial – Full Text

Abstract

Background

Recovery of voluntary movement is a main rehabilitation goal. Efforts to identify effective upper limb (UL) interventions after stroke have been unsatisfactory. This study includes personalized impairment-based UL reaching training in virtual reality (VR) combined with non-invasive brain stimulation to enhance motor learning. The approach is guided by limiting reaching training to the angular zone in which active control is preserved (“active control zone”) after identification of a “spasticity zone”. Anodal transcranial direct current stimulation (a-tDCS) is used to facilitate activation of the affected hemisphere and enhance inter-hemispheric balance. The purpose of the study is to investigate the effectiveness of personalized reaching training, with and without a-tDCS, to increase the range of active elbow control and improve UL function.

Methods

This single-blind randomized controlled trial will take place at four academic rehabilitation centers in Canada, India and Israel. The intervention involves 10 days of personalized VR reaching training with both groups receiving the same intensity of treatment. Participants with sub-acute stroke aged 25 to 80 years with elbow spasticity will be randomized to one of three groups: personalized training (reaching within individually determined active control zones) with a-tDCS (group 1) or sham-tDCS (group 2), or non-personalized training (reaching regardless of active control zones) with a-tDCS (group 3). A baseline assessment will be performed at randomization and two follow-up assessments will occur at the end of the intervention and at 1 month post intervention. Main outcomes are elbow-flexor spatial threshold and ratio of spasticity zone to full elbow-extension range. Secondary outcomes include the Modified Ashworth Scale, Fugl-Meyer Assessment, Streamlined Wolf Motor Function Test and UL kinematics during a standardized reach-to-grasp task.

Discussion

This study will provide evidence on the effectiveness of personalized treatment on spasticity and UL motor ability and feasibility of using low-cost interventions in low-to-middle-income countries.

Background

Stroke is a leading cause of long-term disability. Up to 85% of patients with sub-acute stroke present chronic upper limb (UL) sensorimotor deficits [1]. While post-stroke UL recovery has been a major focus of attention, efforts to identify effective rehabilitation interventions have been unsatisfactory. This study focuses on the delivery of personalized impairment-based UL training combined with low-cost state-of-the-art technology (non-invasive brain stimulation and commercially available virtual reality, VR) to enhance motor learning, which is becoming more readily available worldwide.

A major impairment following stroke is spasticity, leading to difficulty in daily activities and reduced quality of life [2]. Studies have identified that spasticity relates to disordered motor control due to deficits in the ability of the central nervous system to regulate motoneuronal thresholds through segmental and descending systems [34]. In the healthy nervous system, the motoneuronal threshold is expressed as the “spatial threshold” (ST) or the specific muscle length/joint angle at which the stretch reflex and other proprioceptive reflexes begin to act [567]. The range of ST regulation in the intact system is defined by the task-specific ability to activate muscles anywhere within the biomechanical joint range of motion (ROM). However, to relax the muscle completely, ST has to be shifted outside of the biomechanical range [8].

After stroke, the ability to regulate STs is impaired [3] such that the upper angular limit of ST regulation occurs within the biomechanical range of the joint resulting in spasticity (spasticity zone). Thus, resistance to stretch of the relaxed muscle has a spatial aspect in that it occurs within the defined spasticity zone. In other joint ranges, spasticity is not present and normal reciprocal muscle activation can occur (active control zone; [4] Fig. 1). This theory-based intervention investigates whether recovery of voluntary movement is linked to recovery of ST control.

Fig. 1Spatial thresholds (STs) in healthy and stroke participants. a The tonic stretch reflex threshold (TSRT) can be regulated throughout a range (filled bar) that exceeds the biomechanical range of the joint (open bar). Relaxation and active force can be produced at any angle within the biomechanical range. b The intersection of the diagonal line with the zero-velocity line defines the TSRT. In healthy subjects, TSRT lies outside of the biomechanical range of the joint (arrow) during the relaxed state. c In patients with stroke, TSRT may lie within the biomechanical range in the relaxed state, defining the joint angle at which spasticity begins to appear (spasticity zone). In the other joint ranges, spasticity is not present (active zone)

We also consider that inter-hemispheric balance is disrupted after stroke, interfering with recovery. UL motor function depends on the modulation of inter-hemispheric inhibition between cortical areas via transcallosal projections [910] and descending projections to fingers, hand and arm [11]. Unilateral hemispheric damage reduces activity in the affected hemisphere while activity in the unaffected hemisphere increases [12], becoming more dominant. UL recovery may relate to rebalancing of inter-hemispheric inhibition [13] using, for example, anodal transcranial direct current stimulation (a-tDCS) over the affected hemisphere [1415]. a-tDCS is considered a safe technique with transient adverse effects, such as slight scalp itching or tingling and/or mild headaches, that are not expected to impede the patient’s ability to participate in the training protocol [16].

The underlying idea of this proposal is that recovery of voluntary movement is tightly linked to the recovery of threshold control. We propose an intervention that combines current knowledge about motor learning and disorders in ST control. The intervention involves personalized UL reach training designed according to the spatial structure of motor deficits of an individual, with excitatory a-tDCS over the sensorimotor areas of the affected hemisphere. […]

 

Continue —> Personalized upper limb training combined with anodal-tDCS for sensorimotor recovery in spastic hemiparesis: study protocol for a randomized controlled trial | Trials | Full Text

, , , , , , , ,

Leave a comment

[Abstract] Active exergames to improve cognitive functioning in neurological disabilities: a systematic review and meta-analysis.

Exergames represent a way to perform physical activity through active video games, serving as potentially useful tool in the field of neurorehabilitation. However, little is known regarding the possible role of exergames in improving cognitive functions in persons suffering from neurological disabilities.A search for relevant articles was carried out on PubMed/Medline, Scopus, PEDro, and Google Scholar. Only randomized controlled studies and non-randomized but controlled studies were retained. The following additional inclusion criteria were applied: studies focused on physical activity interventions carried out by means of exergames; populations targeted were affected by neurological disabilities; and reported results were related to cognitive outcomes. We calculated standardized mean differences (SMD) and pooled results using a random effects meta-analysis.Of 520 abstracts screened, thirteen studies met the criteria to be included yielding a total of 465 participants, 233 randomized to exergames, and 232 allocated to the alternative or no intervention. The included studies varied in terms of studied populations (e.g., multiple sclerosis, post-stroke hemiparesis, Parkinson’s disease, dementia, dyslexia, Down syndrome), type and duration of interventions, and cognitive outcome measures. Exergames significantly improved executive functions (SMD=0.53, p=0.005; 8 studies, n=380) and visuo-spatial perception (SMD=0.65, p<0.0001; 5 studies, n=209) when compared to the alternative or no intervention. There were no significant differences for attention (SMD=0.57, p=0.07; 7 studies, n=250) and global cognition (SMD=0.05, p=0.80; 6 studies, n=161).Exergames are a highly-flexible tool for rehabilitation of both cognitive and motor functions in adult populations suffering from various neurological disabilities and developmental neurological disorders. Additional high-quality clinical trials with larger samples and more specific cognitive outcomes are needed to corroborate these preliminary findings.Exergames could be considered either as a supplemental treatment to conventional rehabilitation, or as strategy to extend benefits of conventional programs at home.

via Active exergames to improve cognitive functioning in neurological disabilities: a systematic… – Abstract – Europe PMC

, ,

Leave a comment

[Editorial] Advances in Neural Engineering for Rehabilitation – Behavioural Neurology

Neurorehabilitation has been identified as a grand challenge for the coming decades, mainly due to the fast-growing population with neurological disorders (e.g., stroke, Alzheimer’s, and Parkinson’s). Efficient, quantitative, and automated rehabilitation services are in urgent need to release the increasing demands for long-term medical treatments and healthcare and to compensate the lack of manpower in rehabilitation professionals. Neural engineering is an active research area, where engineering technologies, such as robots, imaging, biosignal processing, and sensors, have contributed to diagnosis, treatment, and long-term evaluation in rehabilitation processes. Advances in neural engineering techniques, from the fundamental research in laboratories to clinical trials, will definitely promote the automated and personalized rehabilitation in the future. There are ten articles collected in this special issue, featuring the cutting-edge representatives in the area of neural engineering.

A robot has been an important assistant to a human therapist in physical rehabilitation. The review articles, “Hand Rehabilitation Robotics on Poststroke Motor Recovery” by Z. Yue et al. and “Robotics in Lower-Limb Rehabilitation after Stroke” by X. Zhang et al., pointed out the therapeutic difficulties encountered in the traditional poststroke rehabilitation, that is, the recovery in distal joints and the restoration on walking independency. The papers summarized the latest developments in the robotic design and discussed the possible solutions to improve the performance of the current robots. In the article “Effects of Robot-Assisted Training for the Unaffected Arm in Patients with Hemiparetic Cerebral Palsy: A Proof-of-Concept Pilot Study” by A. Picelli et al., the positive rehabilitation effectiveness by practicing the unaffected upper limb with the assistance of robot has been validated, and the results demonstrated the improvements in hand functions and action planning ability in the recruited subjects. Rehabilitation robot was also applied in the study “The Effect of Dopaminergic Medication on Joint Kinematics during Haptic Movements in Individuals with Parkinson’s Disease” by K. Li et al. The haptic sensitivity in individuals with Parkinson’s disease, who received dopamine replacement therapy, was quantitatively evaluated in a robot-assisted haptic exploration.

Neural signal processing is a technology to understand the language talking in the nervous system. The neural signal of the brain detected by electroencephalography (EEG) was adopted as a biofeedback in the treatment for schizophrenia, as presented in “An Exploratory Study of Intensive Neurofeedback Training for Schizophrenia” by W. Nan et al. The study demonstrated the effectiveness of a short but intensive neurofeedback treatment for the patients with difficulty in long-time training and provided new insight into the treatment of schizophrenia. The neural signal of the brain was also investigated by electrocorticography (ECoG) in persons with epilepsy in the study “Gesture Decoding Using ECoG Signals from Human Sensorimotor Cortex: A Pilot Study” by Y. Li et al. The ECoG signals were used in a brain-machine interfacing (BMI) system to recognize different hand gestures performed by the subjects with an online accuracy above 80%. In the study “Prior Knowledge of Target Direction and Intended Movement Selection Improves Indirect Reaching Movement Decoding” by H. Li et al., the neural signals with higher resolutions than EEG and ECoG were captured by implanted microarrays at the cortical level in monkeys, and the neural signals were applied in the prediction of hand trajectories.

Quantitative evaluation plays an important role in diagnosis and long-term follow-up for rehabilitation. The imaging techniques of functional magnetic resonance imaging (fMRI) have been employed in the studies “The Difference of Neural Networks between Bimanual Antiphase and In-Phase Upper Limb Movements: A Preliminary Functional Magnetic Resonance Imaging Study” by Q. Lin et al. and “Cerebral Reorganization in Subacute Stroke Survivors after Virtual Reality-Based Training: A Preliminary Study” by X. Xiao et al. In Q. Lin et al.’s work, the effects of different bimanual practices in the upper limbs on the intra- and interregional connectivity in the brain were investigated in unimpaired subjects, and the results revealed the behavioral modulation on the cerebellar-cerebral functional connectivity. In X. Xiao et al.’s work, fMRI imaging was applied in the evaluation on the poststroke rehabilitation program by virtual reality-enhanced treadmill training. The neural reconstruction in the primary sensorimotor cortex after the training could be determined with the imaging quantification. In the study “Characterizing Patients with Unilateral Vestibular Hypofunction Using Kinematic Variability and Local Dynamic Stability during Treadmill Walking” by P. Liu et al., the asymmetry and instability during the gait of the patients were evaluated by three-dimensional motion analysis. The severity of vestibular functional asymmetry could be quantified by the parameters of the motion analysis on the lower limbs, which could be complementary to the traditional assessments.

We hope that this special issue of Behavioral Neurology will help to promote further developments in neural engineering and neurorehabilitation. In addition to reducing suffering and improving the quality of life, neurorehabilitation when combined with novel engineering methods has the potential to advance our knowledge about the mechanisms of the nervous system.

Acknowledgments

We would like to express our deepest gratitude to many reviewers, whose professional comments guaranteed the high quality of the selected papers. In addition, we also would like to express our appreciation to the editorial board members and publishing office of the journal for their help and support throughout the preparation of this special issue.

Xiaoling Hu
Ting Zhao
Jun Yao
Yu Kuang
Yuan Yang

via Advances in Neural Engineering for Rehabilitation

, ,

Leave a comment

[Review] Transcranial Electrical Brain Stimulation – Full Text

Abstract

Transcranial electrical brain stimulation using weak direct current (tDCS) or alternating current (tACS) is being increasingly used in clinical and experimental settings to improve cognitive and motor functions in healthy subjects as well as neurological patients. This review focuses on the therapeutic value of transcranial direct current stimulation for neurorehabilitation and provides an overview of studies addressing motor and non-motor symptoms after stroke, disorders of attention and consciousness as well as Parkinson’s disease.

 

Background

The past 10 years have seen an increased clinical and experimental focus on noninvasive electrical brain stimulation as an innovative therapeutic approach to support neurorehabilitation. This entails the application of either transcranial direct current stimulation (tDCS), or less commonly, transcranial alternating current stimulation (tACS). Typically, up to 0.8 A/m² is used for up to 40 min per single stimulation session [1]. The electrical current partially penetrates the underlying structures and affects nerve cells, glia and vessels in the stimulated brain area [1] [2]. Early animal experiments during the 1960s and 1970s on the effects of weak DC stimulation demonstrated an excitement-induced change of neurons lasting several hours after the end of the stimulation [3] [4]. Therapeutic studies of the 1970s, at that time mainly concerning the treatment of depression, did not yield any success, which in retrospect could be attributed to the stimulation parameters used. In 2 000 key experiments by Nitsche and Paulus on polarity-related excitability changes in the human motor system after transcranial application of tDCS led to a renewed interest in the approach [5]. The authors documented increased cortical excitability measured by the amplitude of motor-evoked potentials in healthy volunteers after anodal stimulation above the motor cortex lasting at least 9 min [6]. Reversing the direction of stimulation (cathodal tDCS) resulted in a decrease in motor-evoked potential. In addition to the concept of pure excitability modulation, a large number of studies demonstrate modulation of neuroplasticity by tDCS in various ways, including basic scientific and mechanistic findings regarding improvement of synaptic transmission strength [7] [8] [9], long-term influence on learning processes and behavior [10] [11], as well as a therapeutic approach to improve function in neurological and psychiatric disorders associated with altered or disturbed neuroplasticity (overview in [12]). In particular, simultaneous application of tDCS together with different learning paradigms, such as motor or cognitive training, appears to produce favorable effects in healthy subjects and in various patient groups [11] [13].

The following review presents the effects of tDCS on the improvement in the function of some neurological disease patterns which are regularly the focus of neurorehabilitative treatment. This especially includes stroke. In addition, we shall refer to a current database of clinical studies containing a comprehensive list of scientific and clinical studies of tDCS in the treatment of neurological and psychiatric disorders [14].

Post-stroke Motor Impairment

Stroke is one of the primary causes worldwide of permanent limitations of motor function and speech. Despite intensive rehabilitation efforts, approx. 50% of stroke patients remain limited in their motor and speech capabilities [15] [16] [17]. Current understanding of the mechanisms of tDCS is largely based on data documented for the human motor system. The reasons for this include the presence of direct and easily objectifiable measurement criteria (for example, motor-evoked potential, fine motor function), as well as anatomical accessibility of brain motor regions for non-invasive stimulation. Therefore, it is not surprising that the clinical syndrome of stroke with the frequent symptom of hemiparesis as a “lesion model of the pyramidal tract” received significant scientific interest with respect to researching the effects of tDCS, as evidenced by the numerous scientific publications since 2005 ([Fig. 1]). In contrast to earlier largely mechanistic studies, in the past 5 years there has been a trend toward studies addressing clinically-oriented therapeutic issues. […]

Continue —> Thieme E-Journals – Neurology International Open / Full Text

Fig. 2 Illustration of the 3 typical brain stimulation montages exemplified by tDCS above the motor cortex. In example a, the anode (red) is placed above the ipsilesional motor cortex, and the cathode (blue) is located on the contralateral forehead. Example b shows the cathode placed above the motor cortex of the non-lesioned hemisphere, and the anode is placed on the contralateral forehead. Example c illustrates bihemispheric montage, with the anode located above the ipsilesional motor cortex, and the cathode placed above the motor cortex of the non-lesioned hemisphere. The white arrow shows the intracerebral current flow. The goal of these 3 arrangements is to modulate the interaction between both motor cortices by changing the activity of one or both hemispheres c.

, , , ,

Leave a comment

[Review] Robot-Assisted and Device-Based Rehabilitation of the Upper Extremity – Full Text

Abstract

Neurorehabilitation of patients with upper limb motor dysfunction due to central nervous system damage still lacks adequate standardization. During the last decade, robot- and device-assisted rehabilitation has become more feasible for the treatment of functional disorders of the upper limb after stroke. Here we present an overview of technological aspects and differential use of devices for upper limb rehabilitation as well as a review of relevant clinical studies. We also discuss the potential for standardized evaluation in the context of limited health care resources. The effectiveness of device-assisted therapy, in comparison to conventional approaches, remains a matter of debate, largely due to the heterogeneous design of the available clinical studies. However, we believe that a better understanding of the timing, intensity, and quality of upper limb rehabilitation, as well as technological progress, will lead to the establishment of a central role for robot- and device-assisted rehabilitation in the next decade.

Introduction

Improvement of the functionality of the upper limb after an injury to the central nervous system (CNS) is one of the most important tasks of neurorehabilitation. Stroke is the leading cause of upper limb disability, with a range of complex functional upper limb impairments occurring in approximately 50 to 70 percent of cases [1]. In addition, these patients commonly exhibit sensory-motor deficits of the lower extremity, speech impairment, visual defects, and cognitive deficits during the acute phase. Even limited dysfunction of the upper extremity can result in significant limitations of daily activities and quality of life [2]. The probability of regaining sufficient hand function, i. e., grasping adequate for performance of everyday activities, in the presence of a pronounced functional disorder due to a distal paresis or hand paralysis, is at most 20 percent [3]. Effective therapy of the upper limb is therefore a crucial component of neurorehabilitation.

In recent years, neurorehabilitative therapy for motor deficits has focused on task-specific training, comprising repetitive, context-specific exercises. In addition, introduction of “shaping” exercises at the individual patient’s limits of motion, as well as active or passive repetitive activities to reinforce motor learning, should be considered essential foundations of rehabilitative therapy.

A uniform standard of therapy for upper extremity sensorimotor deficits is not currently in place, and individual variation in deficits renders such a standardization unlikely. Based on 109 publications, the guidelines of the German Society for Neurorehabilitation (Deutsche Gesellschaft für Neurorehabilitation), “Rehabilitative Therapy of Arm Paresis after Stroke” published in 2009 [4] provide recommendations regarding the timing, duration, and intensity of therapy. The highest levels (A and B) of recommended therapy contain subgroups of repetitive exercises for gripping and releasing to treat paresis of the hand with partially retained proximal motor function. These include damage-oriented training for arm capacity, basic arm trainingconstraint-induced movement therapymirror therapy, and mental training, as well as neuromuscular electrostimulation (NMES)Robotics-supported upper limb therapy provides a potential adjunct, particularly for those unable to perform the therapeutic motions independently, and is classified as recommendation level B (therapy that should be carried out), i. e., offering average efficacy with a medium to high degree of supporting evidence, based on studies of device-supported therapy focusing on stereotypical movements, without specific task-oriented exercises.

Despite considerable growth in recent years in the number of studies investigating the efficacy of robot-assisted interventions in improving arm function and daily activity performance, the methodological heterogeneity of the studies has led to the conclusion in recent Cochrane meta-analyses that the evidence remains limited [5] [6]. Nonetheless, a systematic review and meta-analysis this year suggested there may be improvement in motor control and muscle strength [7].

In the next sections, we provide an overview of the current state of technological developments as well as clinical applications. […]

Continue —-> Thieme E-Journals – Neurology International Open / Full Text

 

, , , ,

Leave a comment

[REVIEW] Pharmacological Aspects of Neurorehabilitation – Full Text

Abstract

Physicians in neurorehabilitation often deal with pharmacological problems, marshalling antihypertensive, anticonvulsive and anticoagulation treatments. In addition, there is growing interest in positive or negative effects of medication on brain recovery. Of great importance is the concept of so-called “detrimental drugs” known to negatively influence processes of brain reorganization and recovery. To this group belong anti-convulsive agents such as phenytoin and barbiturates as well as benzodiazepines, butyrophynones and the antihypertensives clonidine and prazosine. Whenever possible these drugs should be avoided in the course of brain recovery after a cerebral lesion.

For only two substances (the SSRI fluoxetine and cerebrolysin, a mixture of pleotropic neuropeptides and amino acids) large randomized controlled trials showed a positive influence on facilitating motor recovery after the stroke. Both substances probably work through pleotropic multiple molecular mechanisms and not as a one-to-one agonist on the receptor. In general the use of antidepressive agents especially SSRI after the stroke can also be recommended for non-depressed stroke patients.

Also dopaminergic drugs have been shown in smaller studies to positively influence functional recovery. Considering their low side-effect profile, the tentative use of 100 mg of L-Dopa per day in the subacute phase of the stroke can be recommended. In MS patients the use of antidepressive agents is also recommend to improve life quality.

In patients with diminished states of consciousness amantadine is the only substance which a randomized controlled study proved to have at least some transient effect. The use of amantadine can be recommended for the improvement of the level of consciousness in these patients.

Introduction

Physicians engaged in neurological rehabilitation constantly have to deal with aspects of primary pharmacological treatment of patients, including control of high blood pressure, anticonvulsive therapies and suitable anticoagulation treatment to reduce risk factors and secondary problems. Furthermore, neurological rehabilitation must also take into account pharmacological issues relating to restoration of brain function. This concerns the avoidance of pharmaceuticals that may interfere with brain recovery as well as the use of drugs that may have a positive affect on brain function. This overview aims to provide a critical summary of the options available to the clinician in the pharmacological treatment of patients after acute neurological events as part of the process of the rehabilitation of brain organization and restoration of brain function, as well as discuss the avoidance of potentially negative effects of pharmacological interventions. […]

Continue —>  Thieme E-Journals – Neurology International Open / Full Text

, , , ,

Leave a comment

[ARTICLE] Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study – Full Text

Abstract

Background

Technology-mediated neurorehabilitation is suggested to enhance training intensity and therefore functional gains. Here, we used a novel virtual reality (VR) system for task-specific upper extremity training after stroke. The system offers interactive exercises integrating motor priming techniques and embodied visuomotor feedback. In this pilot study, we examined (i) rehabilitation dose and training intensity, (ii) functional improvements, and (iii) safety and tolerance when exposed to intensive VR rehabilitation.

Methods

Ten outpatient stroke survivors with chronic (>6 months) upper extremity paresis participated in a ten-session VR-based upper limb rehabilitation program (2 sessions/week).

Results

All participants completed all sessions of the treatment. In total, they received a median of 403 min of upper limb therapy, with 290 min of effective training. Within that time, participants performed a median of 4713 goal-directed movements. Importantly, training intensity increased progressively across sessions from 13.2 to 17.3 movements per minute. Clinical measures show that despite being in the chronic phase, where recovery potential is thought to be limited, participants showed a median improvement rate of 5.3% in motor function (Fugl-Meyer Assessment for Upper Extremity; FMA-UE) post intervention compared to baseline, and of 15.4% at one-month follow-up. For three of them, this improvement was clinically significant. A significant improvement in shoulder active range of motion (AROM) was also observed at follow-up. Participants reported very low levels of pain, stress and fatigue following each session of training, indicating that the intensive VR intervention was well tolerated. No severe adverse events were reported. All participants expressed their interest in continuing the intervention at the hospital or even at home, suggesting high levels of adherence and motivation for the provided intervention.

Conclusions

This pilot study showed how a dedicated VR system could deliver high rehabilitation doses and, importantly, intensive training in chronic stroke survivors. FMA-UE and AROM results suggest that task-specific VR training may be beneficial for further functional recovery both in the chronic stage of stroke. Longitudinal studies with higher doses and sample sizes are required to confirm the therapy effectiveness.

Background

Stroke affects about 17 million people per year worldwide, with an increasing rate every year [1]. Stroke survivors often suffer from physical and mental disabilities, heavily impacting their quality of life. Five years after the first stroke, nearly 66% of patients exhibit different degrees of disability and only 34% are functionally independent in their activities of daily living [2].[…]

 

Continue —> Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , , , , ,

Leave a comment

[ARTICLE] Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study – Full Text

Abstract

Background

Technology-mediated neurorehabilitation is suggested to enhance training intensity and therefore functional gains. Here, we used a novel virtual reality (VR) system for task-specific upper extremity training after stroke. The system offers interactive exercises integrating motor priming techniques and embodied visuomotor feedback. In this pilot study, we examined (i) rehabilitation dose and training intensity, (ii) functional improvements, and (iii) safety and tolerance when exposed to intensive VR rehabilitation.

Methods

Ten outpatient stroke survivors with chronic (>6 months) upper extremity paresis participated in a ten-session VR-based upper limb rehabilitation program (2 sessions/week).

Results

All participants completed all sessions of the treatment. In total, they received a median of 403 min of upper limb therapy, with 290 min of effective training. Within that time, participants performed a median of 4713 goal-directed movements. Importantly, training intensity increased progressively across sessions from 13.2 to 17.3 movements per minute. Clinical measures show that despite being in the chronic phase, where recovery potential is thought to be limited, participants showed a median improvement rate of 5.3% in motor function (Fugl-Meyer Assessment for Upper Extremity; FMA-UE) post intervention compared to baseline, and of 15.4% at one-month follow-up. For three of them, this improvement was clinically significant. A significant improvement in shoulder active range of motion (AROM) was also observed at follow-up. Participants reported very low levels of pain, stress and fatigue following each session of training, indicating that the intensive VR intervention was well tolerated. No severe adverse events were reported. All participants expressed their interest in continuing the intervention at the hospital or even at home, suggesting high levels of adherence and motivation for the provided intervention.

Conclusions

This pilot study showed how a dedicated VR system could deliver high rehabilitation doses and, importantly, intensive training in chronic stroke survivors. FMA-UE and AROM results suggest that task-specific VR training may be beneficial for further functional recovery both in the chronic stage of stroke. Longitudinal studies with higher doses and sample sizes are required to confirm the therapy effectiveness.

Background

Stroke affects about 17 million people per year worldwide, with an increasing rate every year [1]. Stroke survivors often suffer from physical and mental disabilities, heavily impacting their quality of life. Five years after the first stroke, nearly 66% of patients exhibit different degrees of disability and only 34% are functionally independent in their activities of daily living [2].

Motor rehabilitation after stroke

Motor dysfunction is the most prevalent impairment, with 9 out of 10 stroke survivors suffering from some form of upper limb motor disability [3], and it is a strong predictor of poor functional recovery [4]. Thus, there is a strong need for rehabilitative approaches enhancing motor recovery for stroke patients [5]. To maximize neural, motor and functional recovery, training needs to be long-lasting, challenging, repetitive, task-specific, motivating, salient, and intensive [6]. Standard motor rehabilitation after stroke typically includes neurofacilitation techniques, task-specific training and task-oriented training [7]. Further approaches include strength training, trunk restraint, somatosensory training, constraint-induced movement therapy, bilateral arm training, coordination of reach to grasp, mirror training, action observation and neuromuscular electrical stimulation [8].

Time scheduled for therapy and its frequency are determinant factors for the outcome of motor rehabilitation [9], with a recommended initial amount of at least 45 min for a minimum of 5 days per week [10]. However, the frequency of the delivered therapy usually decreases with time, with therapy being discontinued between 3 and 6 months after the vascular accident [7]. Under these rehabilitation conditions, recovery of motor function has been observed to be strongest during the first month after stroke and to slow down during subsequent months, reaching a “plateau” by 3–6 months post stroke [1112]. Clinical evidence for motor improvement in chronic stroke [13] suggests that the “plateau” may depend not only on neurobiological factors, but may also be caused by other factors such as reduction in rehabilitation services [14].

Thus, increasing therapy dose, also in the chronic phase of the disease, might be a critical factor to achieve a positive outcome. Although several guidelines for upper limb rehabilitation have been recently issued [510], the relationship between training intensity and recovery patterns is not yet fully established. Indeed, it is not fully clear how to quantify the dose increase leading to a positive outcome. Training volume, understood as the number of repetitions, seems to be a more relevant parameter of dose than just the total time allocated for therapy [9]. An important issue is how to quantify and capture this concept in a measurable parameter. Intensity of training, understood as the number of repetitions divided by the number of minutes of active therapy, might be a fundamental factor (together with amount and frequency of therapy) to quantify training efficiency. This knowledge becomes critical in order to evaluate cost-effectiveness of new technology-mediated interventions and to select the most valuable therapy procedures at the different stages of the continuum of care for stroke survivors.

Virtual reality for motor rehabilitation

Different complementary solutions have been proposed during the last decades to help increase and maintain the rehabilitation dose in the long term, mainly through continued therapy. Virtual reality (VR) based motor rehabilitation is a relatively recent approach, showing evidence of moderate effectiveness in improving upper limb and ADL function when compared to conventional therapy [15].

Many VR setups, and often generic (i.e. not developed for rehabilitation purposes) commercial off-the-shelf computer games, are used to perform a series of exercises, where patients move in front of a console and receive mostly visual feedback about their movements [161718]. This represents a limited approach, whereby the level of immersion and potential feedback is restricted to a single sensorimotor action-perception loop: the patient moves and receives only abstract visual feedback from the screen. A rather different approach implies embodied sensorimotor feedback, where movements of the patient in the real world are reproduced as movements of an anthropomorphic avatar in the virtual environment. Under such conditions, VR allows for more elaborated sensorimotor activation, which may impact the recovery process. In particular, through sensorimotor resonance mechanisms, embodied sensorimotor feedback allows the integration of motor priming techniques and cognitive principles related to body perception and action, including mirror therapy [19] and action observation [2021], which have been shown to improve functional recovery and increase cortical activation of the ipsilesional side after stroke. This embodied technology can be achieved by using motion capture technology that interprets the patient’s movements and provides multisensory (vision, audio, touch) feedback to the user about the movement performance. Such enriched VR experiences have been demonstrated to increase patients’ motivation [22] and facilitate functional recovery by engaging appropriate neural circuits in the motor system [23].

One of the VR advantages is that it enables simulated practice of functional tasks at a higher dosage than traditional therapies [15]. Lohse and colleagues recently reviewed the duration, time and frequency scheduled for different VR and computer games interventions, but training intensity (as defined above) was no reported [24]. In general, authors reported an overall median of 570 min of VR (or computer games) therapy delivered, with duration ranging from 20 to 60 min per session, and 8 to 36 sessions [24]. Otherwise, intensity of training is rarely reported for VR training (see [25] for an exception). However, this is a critical factor to estimate cost-effectiveness of VR-based interventions.

Objectives of the study

The present study aims at investigating the feasibility of admninistering intensive training in chronic stroke patients using a dedicated VR-based system that embeds real-time 3D motion capture and embodied visual feedback to deliver functional exercises designed to train impaired motor skills of the upper limb. Our primary goal was to assess (i) rehabilitation dose and training intensity in chronic patients. Additionally, we asked (ii) whether chronic stroke survivors improve functional outcomes of the upper limb when exposed to intensive VR-based therapy, and we measured (iii) safety and tolerance to such a technology-mediated intervention. We hypothesize that intensive VR-based rehabilitation may lead to high rehabilitation doses and functional improvement in chronic stroke survivors.[…]

Fig. 1a Participant performing an upper limb exercise (Grasping) with the MindMotion ™ PRO technology; b Participant doing the Reaching exercise; c Participant doing a Fruitchamp exercise

 

Continue —>  Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , , , , ,

Leave a comment

[ARTICLE] Effects of action observation therapy and mirror therapy after stroke on rehabilitation outcomes and neural mechanisms by MEG: study protocol for a randomized controlled trial – Full Text

Abstract

Background

Loss of upper-extremity motor function is one of the most debilitating deficits following stroke. Two promising treatment approaches, action observation therapy (AOT) and mirror therapy (MT), aim to enhance motor learning and promote neural reorganization in patients through different afferent inputs and patterns of visual feedback. Both approaches involve different patterns of motor observation, imitation, and execution but share some similar neural bases of the mirror neuron system. AOT and MT used in stroke rehabilitation may confer differential benefits and neural activities that remain to be determined. This clinical trial aims to investigate and compare treatment effects and neural activity changes of AOT and MT with those of the control intervention in patients with subacute stroke.

Methods/design

An estimated total of 90 patients with subacute stroke will be recruited for this study. All participants will be randomly assigned to receive AOT, MT, or control intervention for a 3-week training period (15 sessions). Outcome measurements will be taken at baseline, immediately after treatment, and at the 3-month follow-up. For the magnetoencephalography (MEG) study, we anticipate that we will recruit 12 to 15 patients per group. The primary outcome will be the Fugl-Meyer Assessment score. Secondary outcomes will include the modified Rankin Scale, the Box and Block Test, the ABILHAND questionnaire, the Questionnaire Upon Mental Imagery, the Functional Independence Measure, activity monitors, the Stroke Impact Scale version 3.0, and MEG signals.

Discussion

This clinical trial will provide scientific evidence of treatment effects on motor, functional outcomes, and neural activity mechanisms after AOT and MT in patients with subacute stroke. Further application and use of AOT and MT may include telerehabilitation or home-based rehabilitation through web-based or video teaching.

Background

Stroke is the leading cause of long-term adult disability worldwide [1]. Most patients with stroke experience upper-extremity (UE) motor impairment [2] and show minimal recovery of the affected arm even 6 months after stroke [3]. Due to the potentially severe adverse effects after stroke, it is critical in clinical practice to develop effective and specific stroke interventions to improve arm function and to explore the neural mechanisms involved [45]. Action observation therapy (AOT) and mirror therapy (MT) are two examples of novel approaches concerning stroke motor recovery that are supported by neuroscientific foundations [67]. However, the relative efficacy of AOT versus MT has not been validated in patients with stroke.

AOT is a promising approach grounded in basic neuroscience and the recent discovery of the mirror neuron system (MNS) [6]. AOT commonly includes action observation and action execution and allows patients to safely practice movements and motor tasks. AOT is recommended to help patients with stroke to form accurate images of motor actions [8] and to mediate their motor relearning process after stroke [6]. Researchers have found that AOT can induce stronger cognitive activity than motor imagery in patients with stroke and have suggested that AOT could be an effective approach for patients who have difficulty with motor representation [9]. AOT is a new approach in stroke rehabilitation; therefore, only a few studies have targeted enhancement of UE motor recovery and investigated the effects of AOT in patients with stroke [81011121314]. Based on these studies, AOT has been shown to be a beneficial and effective approach to improve patient motor function. However, the heterogeneity of study designs and small sample sizes of the studies lead to no clear conclusions about the efficacy of AOT in stroke rehabilitation.

MT has emerged as another novel stroke-rehabilitation approach during the last decade [151617]. In this treatment, participants are instructed to move their arms and watch the action reflection of the non-affected arm in the mirror, as if it were the affected one. The process creates the visual illusion of the non-affected arm as the affected arm is normally moving. MT focuses on visual and proprioceptive feedback of the non-affected limb, which may provide substitute inputs for absent or reduced proprioceptive feedback from the affected side of the body [18]. A growing amount of academic literature has demonstrated that patients with stroke gain improvements in motor and daily function, movement control strategies, and activities of daily living [1617] after treatment with MT, which supports its use in stroke rehabilitation. In short, MT is potentially a simpler, less expensive, and effective stroke-rehabilitation approach for practical implementation in clinical settings.

Action observation is based on activities of the MNS and mainly involves brain areas of the inferior parietal lobe, inferior frontal gyrus, and ventral premotor cortex [19]. Mirror neurons discharge both during the execution of motor acts or goal-directed actions and during the observation of other people performing the same or similar actions [20]. Experimental studies in healthy adults have demonstrated that the MNS was activated during both the observation and execution of movements, which helped to form new motor patterns during action observation [212223]. In addition, although positive effects of MT have been demonstrated in patients with stroke [24], there is no consensus about the underlying neural mechanisms of MT. Three hypotheses have been recently proposed to explain the beneficial effects of MT on motor recovery [7]. Accordingly, MT may affect perceptual motor processes via three functional neural networks: (1) activation of brain regions associated with MNS [2526], (2) recruitment of ipsilateral motor pathways [27], and (3) substitution of abnormal proprioception from the affected limb with feedback from the non-affected limb [1518]. Few AOT and MT neurophysiological or imaging studies have been conducted in patients with stroke. No studies have directly compared and unraveled the similarities or differences in neural plastic changes between AOT and MT in these patients. It is crucial to compare neuroplasticity mechanisms between these intervention regimens to optimize rehabilitative outcomes.

Objectives

The main purposes of this clinical trial are to (1) compare the immediate and retention treatment effects of AOT and MT on different outcomes with those of a dose-matched control group and (2) explore and compare the neural mechanisms and changes in cortical neural activity associated with the effects of AOT and MT in stroke patients, using magnetoencephalography (MEG).[…]

Continue —> Effects of action observation therapy and mirror therapy after stroke on rehabilitation outcomes and neural mechanisms by MEG: study protocol for a randomized controlled trial | Trials | Full Text

Fig. 2 Action observation therapy. a Observation of task. b Execution of task

, , , , ,

Leave a comment

%d bloggers like this: