Archive for category Neuroplasticity

[WEB SITE] The Brain Can Give Birth To New Cells Throughout Life, Study Finds

uncaptioned

GETTY

Researchers used to think that after adolescence, people were pretty well stuck with the brain cells they’d already formed. No so anymore. Discoveries in recent years have shown that neurogenesis—the formation of new neurons—can occur much later than this, well into adulthood. And now, a new study from the University of Illinois at Chicago finds that brain cells can form into one’s nineties, even if one has cognitive decline and Alzheimer’s disease (though at a much decelerated rate). The question is how the late-in-life growth of new neurons fits into what’s already known about degenerative diseases.

The study was published last week in the journal Cell Stem Cell.

The researchers looked at the postmortem brains of people aged 79-99, some of whom had had cognitive decline or Alzheimer’s disease. They targeted markers for two kinds of burgeoning cells—neuroblasts (stem cells that would one day give rise to neurons), and immature neurons—in the hippocampus, the brain area that’s most affected in Alzheimer’s disease.

People who had died without cognitive problems had proliferation of both kinds of cells in their brains. People with cognitive decline and Alzheimer’s also had evidence of the cells, but in much lower numbers.

Lazarov, neurogenesis study

COURTESY, ORLY LAZAROV, ET AL.

“We found that there was active neurogenesis in the hippocampus of older adults well into their 90s,” said study author Orly Lazarov in a statement. “The interesting thing is that we also saw some new neurons in the brains of people with Alzheimer’s disease and cognitive impairment.”

What was interesting was the finding that people who had scored higher on tests of cognition during their later lives had more neuroblasts in their hippocampi, compared to those who’d scored lower—and this was independent of the level of degeneration that was visible in the brain.

“In brains from people with no cognitive decline who scored well on tests of cognitive function, these people tended to have higher levels of new neural development at the time of their death, regardless of their level of pathology,” Lazarov said. “The mix of the effects of pathology and neurogenesis is complex and we don’t understand exactly how the two interconnect, but there is clearly a lot of variation from individual to individual.”

The finding is intriguing since it’s long been known that a person’s level of brain “gunk” (the plaques and tangles associated with Alzheimer’s disease) doesn’t always correlate with their cognitive and behavioral symptoms. So it’s possible that these new findings helps explain why this disconnect exists—perhaps the level of neurogenesis matters as much or more than the amount of plaques and tangles that develop. If that’s true, then the big question would be how to harness this for therapeutic purposes.

“The fact that we found that neural stem cells and new neurons are present in the hippocampus of older adults means that if we can find a way to enhance neurogenesis, through a small molecule, for example, we may be able to slow or prevent cognitive decline in older adults, especially when it starts, which is when interventions can be most effective,” said Lazarov.

More research will obviously be needed to understand all of this, but preventing cognitive decline and dementia is probably the way to go, especially since medications to treat Alzheimer’s after the fact have fallen flat in recent years. In the meantime, the study is encouraging on another level: Certain lifestyle habits—most notably exercise—have consistently been shown to boost neurogenesis. The findings suggest we’d do well to pick up exercise, and other brain-healthy habits, and engage in them for as much of our lives as we can, as regularly as we’re able.

 

via The Brain Can Give Birth To New Cells Throughout Life, Study Finds

, , , ,

Leave a comment

[WEB SITE] When it Comes to Stroke Recovery, Who You See Matters

(a) Top view of the experiment. A tablet monitor was placed over the participant’s right forearms on the desk in front of them. (b) Diagrammatic view of the experiment from the left. There is a space to open the hand, which made it easier to imagine the opening-clench hand movement. (Photo courtesy of Toshihisa Tanaka, TUAT)

For stroke patients, observing their own hand movements in a video-assisted therapy – as opposed to someone else’s hand – could enhance brain activity and speed up rehabilitation, according to researchers.

The scientists, from Tokyo University of Agriculture and Technology (TUAT), published their findings in IEEE Transactions on Neural Systems and Rehabilitation Engineering.

Brain plasticity, where a healthy region of the brain fulfills the function of a damaged region of the brain, is a key factor in the recovery of motor functions caused by stroke. Studies have shown that sensory stimulation of the neural pathways that control the sense of touch can promote brain plasticity, essentially rewiring the brain to regain movement and senses.

To promote brain plasticity, stroke patients may incorporate a technique called motor imagery in their therapy. Motor imagery allows a participant to mentally simulate a given action by imagining themselves going through the motions of performing that activity. This therapy may be enhanced by a brain-computer interface technology, which detects and records the patients’ motor intention while they observe the action of their own hand or the hand of another person, a media release from Tokyo University of Agriculture and Technology explains.

“We set out to determine whether it makes a difference if the participant is observing their own hand or that of another person while they’re imagining themselves performing the task,” says co-author Toshihisa Tanaka, a professor in the Department of Electrical and Electrical Engineering at TUAT in Japan and a researcher at the RIKEN Center for Brain Science and the RIKEN Center for Advanced Intelligent Project.

The researchers monitored brain activity of 15 healthy right-handed male participants under three different scenarios. In the first scenario, participants were asked to imagine their hand moving in synchrony with hand movements being displayed in a video clip showing their own hand performing the task, together with corresponding voice cues.

In the second scenario, they were asked to imagine their hand moving in synchrony with hand movements being displayed on a video clip showing another person’s hand performing the task, together with voice cues. In the third scenario, the participants were asked to open and close their hands in response to voice cues only.

Using electroencephalography (EEG), brain activity of the participants was observed as they performed each task.

The team found meaningful differences in EEG measurements when participants were observing their own hand movement and that of another person. The findings suggest that, in order for motor imagery-based therapy to be most effective, video footage of a patient’s own hand should be used.

“Visual tasks where a patient observes their own hand movement can be incorporated into brain-computer interface technology used for stroke rehabilitation that estimates a patient’s motor intention from variations in brain activity, as it can give the patient both visual and sense of movement feedback,” Tanaka explains.

[Source(s): Tokyo University of Agriculture and Technology, EurekAlert]

via When it Comes to Stroke Recovery, Who You See Matters – Rehab Managment

, , , , , , , , ,

Leave a comment

[VIDEO] What’s, Why’s and How’s of the Vagus Nerve Stimulator

Dr Nemechek Discusses the Vagus Nerve Stimulator, how it’s used and what it can do for a patient.

, , , , ,

Leave a comment

[Abstract] Cognitive Training in Young Patients With Traumatic Brain Injury: A Fixel-Based Analysis

Background. Traumatic brain injury (TBI) is associated with altered white matter organization and impaired cognitive functioning.

Objective. We aimed to investigate changes in white matter and cognitive functioning following computerized cognitive training.

Methods. Sixteen adolescents with moderate-to-severe TBI (age 15.6 ± 1.8 years, 1.2-4.6 years postinjury) completed the 8-week BrainGames program and diffusion weighted imaging (DWI) and cognitive assessment at time point 1 (before training) and time point 2 (after training). Sixteen healthy controls (HC) (age 15.6 ± 1.8 years) completed DWI assessment at time point 1 and cognitive assessment at time point 1 and 2. Fixel-based analyses were used to examine fractional anisotropy (FA), mean diffusivity (MD), and fiber cross-section (FC) on a whole brain level and in tracts of interest.

Results. Patients with TBI showed cognitive impairments and extensive areas with decreased FA and increased MD together with an increase in FC in the body of the corpus callosum and left superior longitudinal fasciculus (SLF) at time point 1. Patients improved significantly on the inhibition measure at time point 2, whereas the HC group remained unchanged. No training-induced changes were observed on the group level in diffusion metrics. Exploratory correlations were found between improvements on verbal working memory and reduced MD of the left SLF and between increased performance on an information processing speed task and increased FA of the right precentral gyrus.

Conclusions. Results are indicative of positive effects of BrainGames on cognitive functioning and provide preliminary evidence for neuroplasticity associated with cognitive improvements following cognitive intervention in TBI.

via Cognitive Training in Young Patients With Traumatic Brain Injury: A Fixel-Based Analysis – Helena Verhelst, Diana Giraldo, Catharine Vander Linden, Guy Vingerhoets, Ben Jeurissen, Karen Caeyenberghs,

, , , , ,

Leave a comment

[Abstract] Optimizing brain performance: Identifying mechanisms of adaptive neurobiological plasticity

Highlights

  • Neural processes interact with dynamic environments to generate adaptive functions.
  • Neural plasticity is differentially influenced by individual and context specific variables.
  • Targeted training enhances adaptive neuroplasticity across the lifespan.

Abstract

Although neuroscience research has debunked the late 19th century claims suggesting that large portions of the brain are typically unused, recent evidence indicates that an enhanced understanding of neural plasticity may lead to greater insights related to the functional capacity of brains. Continuous and real-time neural modifications in concert with dynamic environmental contexts provide opportunities for targeted interventions for maintaining healthy brain functions throughout the lifespan. Neural design, however, is far from simplistic, requiring close consideration of context-specific and other relevant variables from both species and individual perspectives to determine the functional gains from increased and decreased markers of neuroplasticity. Caution must be taken in the interpretation of any measurable change in neurobiological responses or behavioral outcomes, as definitions of optimal functions are extremely complex. Even so, current behavioral neuroscience approaches offer unique opportunities to evaluate adaptive functions of various neural responses in an attempt to enhance the functional capacity of neural systems.

via Optimizing brain performance: Identifying mechanisms of adaptive neurobiological plasticity – ScienceDirect

, , , , , ,

Leave a comment

[Abstract] Bilateral Contralaterally Controlled Functional Electrical Stimulation Reveals New Insights Into the Interhemispheric Competition Model in Chronic Stroke

Background. Upper-limb chronic stroke hemiplegia was once thought to persist because of disproportionate amounts of inhibition imposed from the contralesional on the ipsilesional hemisphere. Thus, one rehabilitation strategy involves discouraging engagement of the contralesional hemisphere by only engaging the impaired upper limb with intensive unilateral activities. However, this premise has recently been debated and has been shown to be task specific and/or apply only to a subset of the stroke population. Bilateral rehabilitation, conversely, engages both hemispheres and has been shown to benefit motor recovery. To determine what neurophysiological strategies bilateral therapies may engage, we compared the effects of a bilateral and unilateral based therapy using transcranial magnetic stimulation.

Methods. We adopted a peripheral electrical stimulation paradigm where participants received 1 session of bilateral contralaterally controlled functional electrical stimulation (CCFES) and 1 session of unilateral cyclic neuromuscular electrical stimulation (cNMES) in a repeated-measures design. In all, 15 chronic stroke participants with a wide range of motor impairments (upper extremity Fugl-Meyer score: 15 [severe] to 63 [mild]) underwent single 1-hour sessions of CCFES and cNMES. We measured whether CCFES and cNMES produced different effects on interhemispheric inhibition (IHI) to the ipsilesional hemisphere, ipsilesional corticospinal output, and ipsilateral corticospinal output originating from the contralesional hemisphere.

Results. CCFES reduced IHI and maintained ipsilesional output when compared with cNMES. We found no effect on ipsilateral output for either condition. Finally, the less-impaired participants demonstrated a greater increase in ipsilesional output following CCFES.

Conclusions. Our results suggest that bilateral therapies are capable of alleviating inhibition on the ipsilesional hemisphere and enhancing output to the paretic limb.

 

via Bilateral Contralaterally Controlled Functional Electrical Stimulation Reveals New Insights Into the Interhemispheric Competition Model in Chronic Stroke – David A. Cunningham, Jayme S. Knutson, Vishwanath Sankarasubramanian, Kelsey A. Potter-Baker, Andre G. Machado, Ela B. Plow, 2019

, , , , , , , , , , , ,

Leave a comment

[Abstract] Forced, Not Voluntary, Aerobic Exercise Enhances Motor Recovery in Persons With Chronic Stroke

Background. The recovery of motor function following stroke is largely dependent on motor learning–related neuroplasticity. It has been hypothesized that intensive aerobic exercise (AE) training as an antecedent to motor task practice may prime the central nervous system to optimize motor recovery poststroke.

Objective. The objective of this study was to determine the differential effects of forced or voluntary AE combined with upper-extremity repetitive task practice (RTP) on the recovery of motor function in adults with stroke.

Methods. A combined analysis of 2 preliminary randomized clinical trials was conducted in which participants (n = 40) were randomized into 1 of 3 groups: (1) forced exercise and RTP (FE+RTP), (2) voluntary exercise and RTP (VE+RTP), or (3) time-matched stroke-related education and RTP (Edu+RTP). Participants completed 24 training sessions over 8 weeks.

Results. A significant interaction effect was found indicating that improvements in the Fugl-Meyer Assessment (FMA) were greatest for the FE+RTP group (P = .001). All 3 groups improved significantly on the FMA by a mean of 11, 6, and 9 points for the FE+RTP, VE+RTP, and Edu+RTP groups, respectively. No evidence of a treatment-by-time interaction was observed for Wolf Motor Function Test outcomes; however, those in the FE+RTP group did exhibit significant improvement on the total, gross motor, and fine-motor performance times (P ≤ .01 for all observations).

Conclusions. Results indicate that FE administered prior to RTP enhanced motor skill acquisition greater than VE or stroke-related education. AE, FE in particular, should be considered as an effective antecedent to enhance motor recovery poststroke.

via Forced, Not Voluntary, Aerobic Exercise Enhances Motor Recovery in Persons With Chronic Stroke – Susan M. Linder, Anson B. Rosenfeldt, Sara Davidson, Nicole Zimmerman, Amanda Penko, John Lee, Cynthia Clark, Jay L. Alberts, 2019

, , , , , , , , , ,

Leave a comment

[ARTICLE] Paired Associative Stimulation as a Tool to Assess Plasticity Enhancers in Chronic Stroke – Full Text

Background and Purpose: The potential for adaptive plasticity in the post-stroke brain is difficult to estimate, as is the demonstration of central nervous system (CNS) target engagement of drugs that show promise in facilitating stroke recovery. We set out to determine if paired associative stimulation (PAS) can be used (a) as an assay of CNS plasticity in patients with chronic stroke, and (b) to demonstrate CNS engagement by memantine, a drug which has potential plasticity-modulating effects for use in motor recovery following stroke.

Methods: We examined the effect of PAS in fourteen participants with chronic hemiparetic stroke at five time-points in a within-subjects repeated measures design study: baseline off-drug, and following a week of orally administered memantine at doses of 5, 10, 15, and 20 mg, comprising a total of seventy sessions. Each week, MEP amplitude pre and post-PAS was assessed in the contralesional hemisphere as a marker of enhanced or diminished plasticity. Strength and dexterity were recorded each week to monitor motor-specific clinical status across the study period.

Results: We found that MEP amplitude was significantly larger after PAS in baseline sessions off-drug, and responsiveness to PAS in these sessions was associated with increased clinical severity. There was no observed increase in MEP amplitude after PAS with memantine at any dose. Motor threshold (MT), strength, and dexterity remained unchanged during the study.

Conclusion: Paired associative stimulation successfully induced corticospinal excitability enhancement in chronic stroke subjects at the group level. However, this response did not occur in all participants, and was associated with increased clinical severity. This could be an important way to stratify patients for future PAS-drug studies. PAS was suppressed by memantine at all doses, regardless of responsiveness to PAS off-drug, indicating CNS engagement.

Introduction

The capacity of the brain to make structural, physiological, and genetic adaptations following stroke, otherwise known as plasticity, is likely to be critical for improving sensorimotor impairments and functional activities. Promotion of adaptive plasticity in the central nervous system (CNS) leading to sustained functional improvement is of paramount importance, given the personal suffering and cost associated with post-stroke disability (Ma et al., 2014). In addition to rehabilitation therapies to retrain degraded motor skills, animal and human studies have tried to augment recovery with neuropharmacologic interventions. Unfortunately, few if any have had a notable effect in patients or have come into routine use (Martinsson et al., 2007Chollet et al., 2011Cramer, 2015Simpson et al., 2015). Methods to screen drugs based on their presumed mechanism of action on plasticity in human motor systems could speed translation to patients. However, there is currently no accepted method in stroke patients for evaluating the potential effectiveness or individual responsiveness to putative “plasticity enhancing” drugs in an efficient, low-cost, cross-sectional manner, in order to establish target engagement in humans and to avoid the extensive time and cost of protracted clinical trials.

Paired associative stimulation (PAS) is a safe, painless, and non-invasive technique known to result in short-term modulation of corticospinal excitability in the adult human motor system, lasting ∼90 min (Stefan et al., 2000Wolters et al., 2003). Post-PAS excitability enhancement has been considered an LTP-like response thought to relate to transient changes in synaptic efficacy in the glutamatergic system at the N-methyl-D-aspartate (NMDA) receptor, since both human NMDA receptor deficiency (Volz et al., 2016) and pharmacological manipulation with dextromethorphan (Stefan et al., 2002) can block the effect. While PAS has been explored as a potential therapeutic intervention in patients with residual motor deficits after stroke (Jayaram and Stinear, 2008Castel-Lacanal et al., 2009), it has not previously been investigated for its potential use as an assay of motor system plasticity in this context. Prior studies have suggested that motor practice and PAS share the same neuronal substrates, modulating LTP and LTD-like plasticity in the human motor system (Ziemann et al., 2004Jung and Ziemann, 2009); therefore, as an established non-invasive human neuromodulation method (Suppa et al., 2017), we reasoned that PAS would be a suitable assay in the present study to examine the effect of a drug on motor system plasticity.

Here, we examine the effect of memantine, a drug used for treatment of Alzheimer’s disease, on the PAS response in patients with chronic stroke. Memantine is described pharmacologically as a low affinity, voltage dependent, non-competitive, NMDA antagonist (Rogawski and Wenk, 2003). At high concentrations, like other NMDA-R antagonists, it can inhibit synaptic plasticity. At lower, clinically relevant concentrations, memantine can, under some circumstances, promote synaptic plasticity by selectively inhibiting extra-synaptic glutamate receptor activity while sparing normal synaptic transmission, and hence may have clinical utility for rehabilitation (Xia et al., 2010). Interest in specifically using the drug for its interaction with stroke pathophysiology stems from animal models of both prevention (Trotman et al., 2015), in which pre-conditioning reduced infarct size, as well as for functional recovery, in which chronic oral administration starting >2 h post-stroke resulted in improved function through a non-neuroprotective mechanism (López-Valdés et al., 2014). In humans, memantine taken over multiple days has been used to demonstrate that the NMDA receptor is implicated in specific transcranial magnetic paired-pulse measures (Schwenkreis et al., 1999), and short-term training-induced motor map reorganization (Schwenkreis et al., 2005). In studies of neuromodulation, memantine blocked the facilitatory effect of intermittent theta-burst stimulation (iTBS) (Huang et al., 2007). Similarly, LTP-like plasticity induced by associative pairing of painful laser stimuli and TMS over primary motor cortex (M1) can also be blocked by memantine (Suppa et al., 2013). The effects of memantine on the PAS response have not yet been demonstrated, including examination of potential dose-response effects, which would be important for the potential clinical application of memantine for stroke recovery.

In our study, we set out to determine whether PAS might be a useful tool to probe the potential for plasticity after stroke in persons with chronic hemiparesis and apply PAS as an assay to look at drug effects on motor system plasticity using memantine. We hypothesized that (a) PAS would enhance corticospinal excitability in the contralesional hemisphere of stroke patients, and that (b) since PAS-induced plasticity is thought to involve a short-term change in glutamatergic synaptic efficacy, memantine would have a dose-dependent effect on PAS response. We predicted that at low doses, memantine would enhance PAS-induced plasticity through selective blockade of extrasynaptic NMDA receptors, whereas higher doses would inhibit PAS-induced plasticity.[…]

 

Continue —> Frontiers | Paired Associative Stimulation as a Tool to Assess Plasticity Enhancers in Chronic Stroke | Neuroscience

Figure 1. Axial MR/CT images for individual patients illustrating the stroke lesion. Images are displayed in radiological convention. Images are labeled by participant number.

 

, , , , , , ,

Leave a comment

[Abstract] Optimizing brain performance: Identifying mechanisms of adaptive neurobiological plasticity

Abstract

Although neuroscience research has debunked the late 19th century claims suggesting that large portions of the brain are typically unused, recent evidence indicates that an enhanced understanding of neural plasticity may lead to greater insights related to the functional capacity of brains. Continuous and real-time neural modifications in concert with dynamic environmental contexts provide opportunities for targeted interventions for maintaining healthy brain functions throughout the lifespan. Neural design, however, is far from simplistic, requiring close consideration of context-specific and other relevant variables from both species and individual perspectives to determine the functional gains from increased and decreased markers of neuroplasticity. Caution must be taken in the interpretation of any measurable change in neurobiological responses or behavioral outcomes, as definitions of optimal functions are extremely complex. Even so, current behavioral neuroscience approaches offer unique opportunities to evaluate adaptive functions of various neural responses in an attempt to enhance the functional capacity of neural systems.

via Optimizing brain performance: Identifying mechanisms of adaptive neurobiological plasticity – ScienceDirect

, , , , , ,

Leave a comment

[Abstract] Pharmacological interventions and rehabilitation approach for enhancing brain self-repair and stroke recovery

Abstract

Neuroplasticity is a natural process occurring in the brain for entire life. Stroke is the leading cause of long term disability and huge medical and financial problem throughout the world. Research conducted over the past decade focused mainly on neuroprotection in the acute phase of stroke while very little studies targets chronic stage. Recovery after stroke depends on the ability of our brain to reestablish structural and functional organization of neurovascular networks. Combining adjuvant therapies and drugs may enhance the repair processes and restore impaired brain functions. Currently, there are some drugs and rehabilitative strategies that can facilitate brain repair and improve clinical effect even years after stroke onset. Moreover, some of compounds such as citicoline, fluoxetine, niacin, levodopa etc. are already in clinical use or are being trial in clinical issues. Many studies testing also cell therapies, in our review we will focused on studies where cells have been implemented at the early stage of stroke. Next, we discuss pharmaceutical interventions. In this section selected methods of cognitive, behavioral and physical rehabilitation as well as adjuvant interventions for neuroprotection including non invasive brain stimulation and extremely low frequency electromagnetic field. The modern rehabilitation represents new model of physical interventions with limited therapeutic window up to six months after stroke. However, last studies suggest, that time window for stroke recovery is much longer than previous thought. This review attempts to present the progress in neuroprotective strategies, both pharmacological and non-pharmacological that can stimulate the endogenous neuroplasticity in post stroke patients.

 

via Pharmacological interventions and rehabilitation approach for enhancing brain self-repair and stroke recovery | Bentham Science

, , , , , , ,

Leave a comment

%d bloggers like this: