Posts Tagged NMES

[WEB SITE] NeuroRecovery Network clinical rehabilitation centers adopt Restorative Therapies’ Xcite System for Neuromuscular Electrical Stimulation (NMES)

 

The Christopher & Dana Reeve Foundation’s NeuroRecovery Network® (NRN) nine rehabilitation centers will receive 30 Restorative Therapies’ Xcite electrical stimulation systems.

Xcite multichannel electrical stimulation for neuro re-education

BALTIMORE, MD (PRWEB) JUNE 28, 2017

The Christopher & Dana Reeve Foundation’s NeuroRecovery Network® (NRN) supports cutting-edge Clinical Rehabilitation Centers and Community Fitness and Wellness Facilities (CFWs) that make up two branches of care for people living with spinal cord injury and other physical disabilities.

The nine NRN rehabilitation centers and CFWs will receive 30 Restorative Therapies’ Xcite systems which will be used to implement NRN’s cutting edge NMES rehabilitation program for patients across the US. The acquisition was funded by the Reeve NRN Network and the University of Louisville in conjunction with the rehabilitation centers and CFWs.

NMES is a physical therapy rehabilitation modality used to evoke sensory feedback, functional movements and exercise not otherwise possible for individuals with a neurological impairment such as a spinal cord injury, stroke, multiple sclerosis or cerebral palsy.

The Xcite system delivers up to 12 channels of electrical stimulation to nerves which activate core, leg and arm muscles. Easy to use sequenced stimulation evokes functional movement enabling a patient’s paralyzed or weak muscles to move through dynamic task specific movement patterns.

“Xcite is the first truly practical electrical stimulation rehabilitation system of this kind that I have seen. In addition to combining several valuable neuro-rehabilitation interventions, task-specific electrical stimulation, mass practice and neuromuscular re-education, Xcite is portable and easy enough to use that it could be used in the patient’s home,” said Prof. Susan Harkema of the Kentucky Spinal Cord Injury Research Center, University of Louisville. “In the context of rehabilitation influencing neural plasticity as a means for neural restoration, training in the home is an essential component of progress and I see Xcite as a great tool in achieving this,” concludes Harkema.

“The NRN clinical rehabilitation centers and CFWs played a key role during the development of the Xcite system.” says Andrew Barriskill, CEO of Restorative Therapies. “Xcite is designed to be integrated into the cutting edge therapy programs being developed and utilized by the Reeve Foundation’s NRN while at the same time being easy to use within any physical therapy or occupational therapy.”

About Restorative Therapies
Restorative Therapies is the designer of medical devices providing clinic and in-home restoration therapy. Xcite is the next in the series of FES powered physical therapy systems that started with the company’s hugely successful RT300 FES cycle.

Restorative Therapies mission is to help people with a neurological impairment or in critical care achieve their full recovery potential. Restorative Therapies combines activity-based physical therapy and Functional Electrical Stimulation as a rehabilitation therapy for immobility associated with paralysis such as stroke, multiple sclerosis and spinal cord injury or for patients in critical care.

Restorative Therapies is a privately held company headquartered in Baltimore. To learn more about Restorative Therapies please visit us at http://www.restorative-therapies.com

Advertisements

, , , ,

Leave a comment

[Abstract] Effects of low-frequency repetitive transcranial magnetic stimulation and neuromuscular electrical stimulation on upper extremity motor recovery in the early period after stroke: a preliminary study

 

Objective: To assess the efficacy of inhibitory repetitive transcranial magnetic stimulation (rTMS) and neuromuscular electrical stimulation (NMES) on upper extremity motor function in patients with acute/subacute ischemic stroke.

Methods: Twenty-five ischemic acute/subacute stroke subjects were enrolled in this randomized controlled trial. Experimental group 1 received low frequency (LF) rTMS to the primary motor cortex of the unaffected side + physical therapy (PT) including activities to improve strength, flexibility, transfers, posture, balance, coordination, and activities of daily living, mainly focusing on upper limb movements; experimental group 2 received the same protocol combined with NMES to hand extensor muscles; and the control group received only PT. Functional magnetic resonance imaging (fMRI) scan was used to evaluate the activation or inhibition of the affected and unaffected primary motor cortex.

Results: No adverse effect was reported. Most of the clinical outcome scores improved significantly in all groups, however no statistically significant difference was found between groups due to the small sample sizes. The highest percent improvement scores were observed in TMS + NMES group (varying between 48 and 99.3%) and the lowest scores in control group (varying between 13.1 and 28.1%). Hand motor recovery was significant in both experimental groups while it did not change in control group. Some motor cortex excitability changes were also observed in fMRI.

Conclusion: LF-rTMS with or without NMES seems to facilitate the motor recovery in the paretic hand of patients with acute/subacute ischemic stroke. TMS or the combination of TMS + NMES may be a promising additional therapy in upper limb motor training. Further studies with larger numbers of patients are needed to establish their effectiveness in upper limb motor rehabilitation of stroke.

Source: Effects of low-frequency repetitive transcranial magnetic stimulation and neuromuscular electrical stimulation on upper extremity motor recovery in the early period after stroke: a preliminary study: Topics in Stroke Rehabilitation: Vol 24, No 5

, , , , , , , ,

Leave a comment

[ARTICLE] A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke – Full Text

Abstract

Background

It is a challenge to reduce the muscular discoordination in the paretic upper limb after stroke in the traditional rehabilitation programs.

Method

In this study, a neuromuscular electrical stimulation (NMES) and robot hybrid system was developed for multi-joint coordinated upper limb physical training. The system could assist the elbow, wrist and fingers to conduct arm reaching out, hand opening/grasping and arm withdrawing by tracking an indicative moving cursor on the screen of a computer, with the support from the joint motors and electrical stimulations on target muscles, under the voluntary intention control by electromyography (EMG). Subjects with chronic stroke (n = 11) were recruited for the investigation on the assistive capability of the NMES-robot and the evaluation of the rehabilitation effectiveness through a 20-session device assisted upper limb training.

Results

In the evaluation, the movement accuracy measured by the root mean squared error (RMSE) during the tracking was significantly improved with the support from both the robot and NMES, in comparison with those without the assistance from the system (P < 0.05). The intra-joint and inter-joint muscular co-contractions measured by EMG were significantly released when the NMES was applied to the agonist muscles in the different phases of the limb motion (P < 0.05). After the physical training, significant improvements (P < 0.05) were captured by the clinical scores, i.e., Modified Ashworth Score (MAS, the elbow and the wrist), Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), and Wolf Motor Function Test (WMFT).

Conclusions

The EMG-driven NMES-robotic system could improve the muscular coordination at the elbow, wrist and fingers.

Background

Stroke is a main cause of long-term disability in adults [1]. Approximately 70 to 80% stroke survivors experienced impairments in their upper extremity, which greatly affects the independency of their daily living [23]. In the upper limb rehabilitation, it also has been found that the recovery of the proximal joints, e.g., the shoulder and the elbow, is much better than the distal, e.g., the wrist and fingers [45]. The main possible reasons are: 1) The spontaneous motor recovery in early stage after stroke is from the proximal to the distal; and 2) the proximal joints experienced more effective physical practices than the distal joints throughout the whole rehabilitation process, since the proximal joints are easier to be handled by a human therapist and are more voluntarily controllable by most of stroke survivors [2]. However, improved proximal functions in the upper limb without the synchronized recovery at the distal makes it hard to apply the improvements into meaningful daily activities, such as reaching out and grasping objects, which requires the coordination among the joints of the upper limb, including the hand. More effective rehabilitation methods which may benefit the functional restoration at both the proximal and the distal are desired for post-stroke upper limb rehabilitation.

Besides the weakness and spasticity of muscles in the paretic upper limb, discoordination among muscles is also one of the major impairments after stroke, mainly reflected as abnormal muscular co-activating patterns and loss of independent joint control [26]. Stereotyped movements of the entire limb with compensation from the proximal joints are commonly observed in most of persons with chronic stroke who have passed six months after the onset of the stroke, during which abnormal motor synergies were gradually developed. Neuromuscular electrical stimulation (NMES) is a technique that can generate limb movements by applying electrical current on the paretic muscles [7]. Post-stroke rehabilitation assisted with NMES has been found to effectively prevent muscle atrophy and improve muscle strength [7], and the stimulation also evokes sensory feedback to the brain during muscle contraction to facilitate motor relearning [8]. It has been found that NMES can improve muscular coordination in a paralysed limb by limiting ‘learned disuse’ that stroke survivors are gradually accustomed to managing their daily activities without using certain muscles, which has been considered as a significant barrier to maximizing the recovery of post-stroke motor function [9]. However, difficulties have been found in NMES alone to precisely activate groups of muscles for dynamic and coordinated limb movements with desired accuracy in kinematics, for example, speeds and trajectories. It is because most of the NMES systems adopted transcutaneous stimulation with surface electrodes only recruiting muscles located closely to the skin surface with limited stimulation channels [8]. Therefore, the muscular force evoked may not be enough to achieve the precise limb motions. However, limb motions with repeated and close-to-normal kinematic experiences are necessary to enhance the sensorimotor pathways in rehabilitation, which has been found to contribute to the motor recovery after stroke [10]. Furthermore, faster muscular fatigue would be experienced when using NMES with intensive stimuli, in comparison with the muscle contraction by biological neural stimulation [11].

The use of rehabilitation robots is one of the solutions to the shortage of affordable professional manpower in the industry of physical therapy, to cope with the long-term and labour-demanding physical practices [10]. In comparison with the NMES, robots can well control the limb movements with electrical motors. Various robots have been proposed for upper limb training after stroke [1213]. Among them, the robots with the involvement of voluntary efforts from persons after stroke demonstrated better rehabilitation effects than those with passive limb motions, i.e., the limb movements are totally dominated by the robots [10]. Physical training with passive motions only contributed to the temporary release of muscle spasticity; whereas, voluntary practices could improve the motor functions of the limb with longer sustainability [1014]. In our previous studies, we designed a series of voluntary intention-driven rehabilitation robotics for physical training at the elbow, the wrist and fingers [1415161718]. Residual electromyography (EMG) from the paretic muscles was used to control the robots to provide assistive torques to the limb for desired motions. The results of applying these robots in post-stroke physical training showed that the target joint could obtain motor improvements after the training; however, more significant improvements usually appeared at its neighbouring proximal joint mainly due to the compensatory exercises from the proximal muscles [1517]. In order to improve the muscle coordination during robot-assisted training, we integrated NMES into the EMG-driven robot as an intact system for wrist rehabilitation [1619]. It has been found that the combined assistance with both robot and NMES could reduce the excessive muscular activities at the elbow and improve the muscle activation levels related to the wrist, which was absent in the pure robot assisted training [16]. More recently, combined treatment with robot and NMES for the wrist by other research group also demonstrated more promising rehabilitation effectiveness in the upper limb functions than pure robot training [20]. However, most of the proposed devices are for single joint treatment, and cannot be used for multi-joint coordinated upper limb training. Furthermore, the training tasks provided by these devices are not easy to be directly translated into daily activities. We hypothesized that multi-joint coordinated upper limb training assisted by both NMES and robot could improve the muscular coordination in the whole upper limb and promote the synchronized recovery at both the proximal and distal joints. In this work, we designed a multi-joint robot and NMES hybrid system for the coordinated upper limb physical practice at the elbow, wrist and fingers. Then, the rehabilitation effectiveness with the assistance of the device was evaluated by a pilot single-group trial. EMG signals from target muscles were used for voluntary intention control for both the robot and NMES parts.

Methods

The NMES-robot system

The system developed is a wearable device as shown in Fig. 1. It can support a stroke subject to perform sequencing limb movements, i.e., 1) elbow extension, 2) wrist extension associated with hand open, 3) wrist flexion and 4) elbow flexion, with the purpose of simulating the coordination of the joints in arm reaching out, hand open for grasping, and withdrawing in daily activities. The starting position of the motion cycle was set at the elbow joint extended at 180° and the wrist extended at 45°, which is also the end point for a motion cycle. In each phase of the motion, visual guidance on a computer screen was provided to a subject by following a moving cursor on the computer screen with a constant angular velocity at 10°/s for the movement of the wrist and the elbow. The subject was asked to minimize the target and actual joint positions during the tracking. In the limb tasks, assistances would be provided from the mechanical motors and NMES at the same time related to the wrist and elbow flexion/extension. NMES alone was applied for finger extension, and there was no assistance from the system for finger flexion (hand grasp). It is because that the main impairment in the hand for persons with chronic stroke is hand open, and the hand grasp can be achieved passively due to spasticity in finger flexors, and one channel NMES has demonstrated the capacity to achieve the gross open of the hand with finger extensions in clinical practices [2]. With the attempt to reduce the overall weight of the system, especially at the distal joints, for the coordinated multi-joint training of the whole upper limb, finger motions were only supported by the NMES in this work. The robot and NMES combined effects on individual finger motions in chronic stroke have been investigated in our previous work [21]. A hanging system was used to lift up the testing limb to a horizontal level (Fig. 1), to compensate the limb gravity and the weight of the wearable part of the system (totally 895 g).

Fig. 1 a The schematic diagram of the experimental setup, b a photo of a subject who is conducting the tracking task with the NMES-robot, c a photo of a subject wearing the mechanical parts of the system, d the configuration of the NMES electrodes and EMG electrodes on a driving muscle. The driving muscles in the study are BIC, TRI, FCR and the muscle union of ECU-ED

Continue —> A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke | Journal of NeuroEngineering and Rehabilitation | Full Text

 

, , , , , , , , , ,

Leave a comment

[ARTICLE] Hybrid Assistive Neuromuscular Dynamic Stimulation Therapy: A New Strategy for Improving Upper Extremity Function in Patients with Hemiparesis following Stroke – Full Text

Abstract

Hybrid Assistive Neuromuscular Dynamic Stimulation (HANDS) therapy is one of the neurorehabilitation therapeutic approaches that facilitates the use of the paretic upper extremity (UE) in daily life by combining closed-loop electromyography- (EMG-) controlled neuromuscular electrical stimulation (NMES) with a wrist-hand splint. This closed-loop EMG-controlled NMES can change its stimulation intensity in direct proportion to the changes in voluntary generated EMG amplitudes recorded with surface electrodes placed on the target muscle. The stimulation was applied to the paretic finger extensors. Patients wore a wrist-hand splint and carried a portable stimulator in an arm holder for 8 hours during the daytime. The system was active for 8 hours, and patients were instructed to use their paretic hand as much as possible. HANDS therapy was conducted for 3 weeks. The patients were also instructed to practice bimanual activities in their daily lives. Paretic upper extremity motor function improved after 3 weeks of HANDS therapy. Functional improvement of upper extremity motor function and spasticity with HANDS therapy is based on the disinhibition of the affected hemisphere and modulation of reciprocal inhibition. HANDS therapy may offer a promising option for the management of the paretic UE in patients with stroke.

1. Functional Recovery of Upper Extremity Motor Function following Stroke

Stroke is a common health-care problem that causes physical impairment, disability, and problems in social participation. The most common impairment caused by stroke is motor impairment. Motor impairment affects the control of the unilateral upper and lower extremities. Recovery of function in the hemiparetic upper extremity is noted in fewer than 15% of patients after stroke [1].

Patients often compensate for their paretic upper extremity by using their intact upper extremity in the performance of everyday tasks [2]. It is supposed that strong reliance on compensatory overuse of the intact upper extremity inhibits functional recovery of the impaired upper extremity. This may explain the limited improvement of the functional capability of the paretic upper extremity in activities of daily living (ADL).

Principles of motor rehabilitation following stroke have been described as being dose-dependent and task-specific [3]. High-intensity practice and task-specific training are recommended for functional recovery. Several systematic reviews [4, 5] have explored whether high-intensity therapy improves recovery, and the principle that increased intensive training is helpful is widely accepted. Task-specific training is a well-accepted principle in motor rehabilitation. Training should target the goals that are relevant for the needs of the patients and preferably be given in the patient’s own environment.

The goal of upper extremity rehabilitation is to improve the capability of the paretic upper extremity for ADL. Constraint-induced movement therapy (CIMT) has been developed to enhance the forced use of the paretic hand in ADL with reduction of the compensatory overuse of the intact upper extremity. However, to participate in CIMT, the candidates must be able to voluntary extend their fingers and wrist at least 10 degrees, practice for 6 hours daily in a 2-week course, and spend waking hours with their nonparetic hand in a mitt [6].

To counter potential problems inherent in the intensive services needed for CIMT, we developed an alternative therapeutic approach that provides high-intensity training to facilitate the use of the paretic upper extremity in daily living by combining closed-loop electromyography- (EMG-) controlled neuromuscular electrical stimulation (NMES) with a wrist-hand splint for patients with moderate to severe hemiparesis. Fujiwara et al. called this hybrid assistive neuromuscular dynamic stimulation (HANDS) therapy [7].

2. HANDS Therapy

A PubMed literature search was conducted using the MeSH terms stroke, rehabilitation, upper extremity function, and neuromuscular electrical stimulation, and 71 articles were identified. A further search of PubMed with the terms stroke, rehabilitation, upper extremity function, neuromuscular electrical stimulation, and splint identified 4 articles, all regarding HANDS therapy.

HANDS therapy facilitates the use of the paretic upper extremity in daily living by combining closed-loop EMG-controlled NMES with a wrist-hand splint for patients with moderate to severe hemiparesis. This HANDS system is active for 8 hours, and patients are instructed to use their paretic hand as much as possible while wearing the HANDS system. Their nonparetic upper extremity is not restrained. The patients are also instructed to practice bimanual activities in their ADL. All participants in HANDS therapy are admitted, and the length of the intervention is 21 days. They receive 90 minutes of occupational therapy per day, 5 days a week. Each session of occupational therapy consists of gentle stretching exercise of the paretic upper extremity and active muscle reeducation exercise. All participants are instructed how to use their paretic hand in ADL with the HANDS system. Occupational therapists are directed toward participants’ goals and focused on their particular impairments and disabilities; thus, the specific therapy that each patient receives varies [7, 8].

Fujiwara et al. [7, 8] reported the indications for HANDS therapy as follows: () no cognitive deficits; () no pain in the paretic upper extremity; () passive extension range of motion (ROM) greater than 0 degrees of the affected wrist and −10 degrees of the metacarpophalangeal joints; () detectable surface EMG signals in the affected extensor digitorum communis (EDC) or extensor pollicis longus (EPL) when the patient intends to extend their fingers; () ability to raise the paretic hand to the height of the nipple; () scores of Fugl-Meyer test position sense of joints in the glenohumeral joint, elbow, wrist, and thumb of 1 or more; and () the ability to walk without physical assistance in daily life (e.g., including patients who can walk independently with a cane and/or an orthosis). The exclusion criteria were () history of major psychiatric or previous neurological disease, including seizures; () cognitive impairment precluding appropriately giving informed consent or the patient’s Mini Mental Examination Scale score was below 25; () patients with severe pain in the paretic upper extremity; () patients with a pacemaker or other implanted stimulator; and () patients with visuospatial neglect or apraxia.

Previous reports showed that none of the patients experienced any discomfort or significant disability with the HANDS therapy.

2.1. Closed-Loop Electromyography- (EMG-) Controlled Neuromuscular Electrical Stimulation (NMES)

Twenty-nine articles were found in PubMed using the terms stroke, electromyography, neuromuscular electrical stimulation, and upper extremity. Thirteen of 29 articles were on EMG-triggered NMES. Six of 29 articles were on EMG-controlled NMES. Two involved contralaterally controlled electrical stimulation.

EMG-triggered NMES applies preset electrical stimulation when EMG activity reaches a target threshold. The stimulus intensity and duration are determined and not changeable. EMG-controlled NMES applies electrical stimulation during voluntary contraction and changes the stimulation intensity in proportion to the changes in EMG amplitude.

For assistive stimulation, HANDS therapy used closed-loop EMG-controlled NMES, which was developed by Muraoka [9] and commercially available with MURO stimulation (Pacific Supply, Osaka, Japan). This closed-loop EMG-controlled NMES is portable and attaches to the arm (Figure 1). The surface electrodes pick up EMG signals at the target muscle and simultaneously stimulate it in direct proportion to the picked-up EMG signal, with the exception of the 25 ms after delivering each stimulation pulse, in which stimulation artifacts and M wave are observed. The external adjustment unit sets () range of stimulus intensity; () sensitivity of the EMG; () threshold of EMG amplitude that starts stimulation; and () gradient of stimulus intensity change to the change of EMG amplitude. Once these parameters were set with the external adjustment unit, the stimulator memorized these parameters.

Continue —>  Hybrid Assistive Neuromuscular Dynamic Stimulation Therapy: A New Strategy for Improving Upper Extremity Function in Patients with Hemiparesis following Stroke

, , , , , , , ,

Leave a comment

[Abstract] BCI controlled neuromuscular electrical stimulation enables sustained motor recovery in chronic stroke victims – PDF

R. Leeb1,2,#, A. Biasiucci2,#, T. Schmidlin1 , T. Corbet2 , P. Vuadens3 , JdR. Millán2,*

  1. Center for Neuroprosthetics (CNP), École Polytechnique Fédérale de Lausanne, Sion, Switzerland;
  2. Chair in Brain-Machine Interface (CNBI), École Polytechnique Fédérale de Lausanne, Geneva, Switzerland;
  3. SUVACare – Clinique Romande de Réadaptation, Sion, Switzerland

Equal contributions; * Campus Biotech, Chemin des Mines 9, CH-1202 Geneva, Switzerland; E-mail: jose.millan@epfl.ch

Introduction: Recently, it has been shown that brain-computer interfaces (BCI) can be used in stroke rehabilitation to decode motor attempts from brain signals and to trigger movements of the paralyzed limb [1]. Among other available practices in rehabilitation, neuromuscular electrical stimulation (NMES) is often used to directly engage muscles on the affected parts of the body during physical therapy. Nevertheless, the benefits of a combined approach, to directly link the brain intention with a muscular response, are not yet fully validated. In this abstract, we report first results of a BCI-NMES system for stroke rehabilitation.

Material and Methods: Up to now, we enrolled 18 chronic stroke victims (minimum 10 months past the incident) suffering from an impairment of the upper limb in a randomized controlled clinical trial. Half of the subjects were assigned to the BCI group and half to a “sham” group, whereby the criteria such as motor impairment –measured via the Fugl-Meyer scale for upper extremity (FM) score–, age, time since incident and lesion location were balanced. Generally, the experimental protocol consisted of three different phases: (i) patients underwent a preevaluation to check the motor capabilities, to characterize the initial state of the brain and to calibrate the BCI classifier (see BCI details in [2]). (ii) In the following weeks, they were trained with an online BCI twice a week for 10 sessions (45 to 90 minutes including setup). (iii) Finally, they performed a post-experimental screening to determine changes in EEG patterns and in motor functions following the treatment, and a 6-month follow-up to evaluate the sustainment. Patients in the BCI group received NMES of the extensor digitorum muscles triggered by the BCI detecting the intention of movement at the cortical level (modulation of the sensorimotor rhythm in the contralateral motor cortex). For patients in the sham group the NMES was not correlated with the brain activity. All subjects were asked to attempt to open their paretic hand (full sustained finger extension) with the aim of activating the NMES upon detection of a suitable sensorimotor rhythms (Fig. 1-a). Subjects in the two groups (BCI and sham) received comparable amount of NMES.

Results: Remarkably, subjects in the BCI group improved their motor function (post minus pre) by 8.6±5.0 FM points (which is more than the minimal clinical change of 5.25 FM points), while those in the sham group improved only by 2.4±3.4 FM points (Fig. 1-b). As expected, the features used by the BCI classifier were mostly located over the affected hemisphere and the motor cortex (see topographic presentation in Fig. 1-c).

Discussion: We hypothesize that the motor improvement in the BCI group (in contrast to the sham group) is triggered by the tight timed and functional link between the intended action in the brain, and the executed and perceived motor action, through the activation of the body’s natural efferent and afferent pathways.

Significance: In our randomized controlled trial, we demonstrate that the modulation of sensorimotor rhythms driving contingent neuromuscular stimulation is more effective than sham stimulation with active motor attempt, and that the proposed therapy dosage produces a clinically important recovery in chronic stroke survivors having a moderate-to-severe motor impairment.

References: [1] Ramos-Murguialday A, et al. Brain-machine interface in chronic stroke rehabilitation. Ann Neurol, 74(1):100-108, 2013. [2] Leeb R, et al. Transferring brain-computer interfaces beyond the laboratory: Successful application control for motor-disabled users. Artif Intell Med, 59: 121-132, 2013.

Download PDF file

, , , , , , , , ,

Leave a comment

[Abstract] Upper-Limb Recovery After Stroke. A Randomized Controlled Trial Comparing EMG-Triggered, Cyclic, and Sensory Electrical Stimulation – 

Abstract

Background and purpose. This study compared the effect of cyclic neuromuscular electrical stimulation (NMES), electromyographically (EMG)-triggered NMES, and sensory stimulation on motor impairment and activity limitations in patients with upper-limb hemiplegia.

Methods. This was a multicenter, single-blind, multiarm parallel-group study of nonhospitalized hemiplegic stroke survivors within 6 months of stroke. A total of 122 individuals were randomized to receive either cyclic NMES, EMG-triggered NMES, or sensory stimulation twice every weekday in 40-minute sessions, over an 8 week-period. Patients were followed for 6 months after treatment concluded.

Results. There were significant increases in the Fugl-Meyer Assessment [F(1, 111) = 92.6, P < .001], FMA Wrist and Hand [F(1, 111) = 66.7, P < .001], and modified Arm Motor Ability Test [mAMAT; time effect: F(1, 111) = 91.0, P < .001] for all 3 groups. There was no significant difference in the improvement among groups in the FMA [F(2, 384) = 0.2, P = .83], FMA Wrist and Hand [F(2, 384) = 0.4, P = .70], or the mAMAT [F(2, 379) = 1.2, P = .31].

Conclusions. All groups exhibited significant improvement of impairment and functional limitation with electrical stimulation therapy applied within 6 months of stroke. Improvements were likely a result of spontaneous recovery. There was no difference based on the type of electrical stimulation that was administered.

 

Source: Upper-Limb Recovery After Stroke

, , , , ,

Leave a comment

[ARTICLE] Effects of combining robot-assisted therapy with neuromuscular electrical stimulation on motor impairment, motor and daily function, and quality of life in patients with chronic stroke: a double-blinded randomized controlled trial – Full Text HTML

The electronic version of this article is the complete one and can be found online at:http://www.jneuroengrehab.com/content/12/1/96

Abstract

Background

Robot-assisted therapy (RT) is a widely used intervention approach to enhance motor recovery in patients after stroke, but its effects on functional improvement remained uncertain. Neuromuscular electrical stimulation (NMES) is one potential adjuvant intervention approach to RT that could directly activate the stimulated muscles and improve functional use of the paretic hand.

Methods

This was a randomized, double-blind, sham-controlled study. Thirty-nine individuals with chronic stroke were randomly assigned to the RT combined with NMES (RT + ES) or to RT with sham stimulation (RT + Sham) groups. The participants completed the intervention 90 to 100 minutes/day, 5 days/week for 4 weeks. The outcome measures included the upper extremity Fugl-Meyer Assessment (UE-FMA), modified Ashworth scale (MAS), Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and Stroke Impact Scale 3.0 (SIS). All outcome measures were assessed before and after intervention, and the UE-FMA, MAL, and SIS were reassessed at 3 months of follow-up.

Results

Compared with the RT + Sham group, the RT + ES group demonstrated greater improvements in wrist flexor MAS score, WMFT quality of movement, and the hand function domain of the SIS. For other outcome measures, both groups improved significantly after the interventions, but no group differences were found.

Conclusion

RT + ES induced significant benefits in reducing wrist flexor spasticity and in hand movement quality in patients with chronic stroke.

Continue —> http://www.jneuroengrehab.com/content/12/1/96/

Flow diagram of participants who enrolled and completed the study. Abbreviations: RT, robot-assistive therapy; ES, electrical stimulation Lee et al. Journal of NeuroEngineering and Rehabilitation 2015 12:96 doi:10.1186/s12984-015-0088-3 Download authors’ original image

, , , , , , , ,

Leave a comment

[ARTICLE] Effects of repetitive facilitative exercise with neuromuscular electrical stimulation, vibratory stimulation and repetitive transcranial magnetic stimulation of the hemiplegic hand in chronic stroke patients

Abstract

Aim: Repetitive facilitative exercise (RFE) is a developed approach to the rehabilitation of hemiplegia. RFE can be integrated with neuromuscular electrical stimulation (NMES), direct application of vibratory stimulation (DAVS) and repetitive transcranial magnetic stimulation (rTMS). The aims of the present study were to retrospectively compare the effects of RFE and NMES, DAVS with those of RFE and rTMS, and to determine the maximal effect of the combination of RFE with NMES, DAVS, rTMS and pharmacological treatments in stroke patients.

Subjects and methods: Thirty-three stroke patients were enrolled and divided into three groups: 15 who received RFE with rTMS (4 min) (TMS4 alone), 9 who received RFE with NMES, DAVS (NMES, DAVS alone) and 9 who received RFE with NMES, DAVS and rTMS (10 min) (rTMS10 + NMES, DAVS). The subjects performed the Fugl-Meyer Assessment (FMA) and Action Research Arm Test (ARAT) before and after the 2-week session. The 18 patients in the NMES, DAVS alone and rTMS10 + NMES, DAVS group underwent the intervention for 4 weeks.

Result: There were no significant differences in the increases in the FMA, ARAT scores in the three groups. The FMA or ARAT scores in the NMES, DAVS alone and the rTMS10 + NMES, DAVS group were increased significantly. The FMA and ARAT scores were significantly improved after 4 weeks in the NMES, DAVS alone group.

Discussion: RFE with NMES, DAVS may be more effective than RFE with rTMS for the recovery of upper-limb function. Patients who received RFE with NMES, DAVS and pharmacological treatments showed significant functional recovery.

Source: Taylor & Francis Online

, , , , , , , , ,

Leave a comment

[ARTICLE] Effects of Electrical Stimulation in Spastic Muscles After Stroke Systematic Review and Meta-Analysis of Randomized Controlled Trials – Full Text PDF

Background and Purpose—Neuromuscular electric stimulation (NMES) has been used to reduce spasticity and improve range of motion in patients with stroke. However, contradictory results have been reported by clinical trials. A systematic review of randomized clinical trials was conducted to assess the effect of treatment with NMES with or without association to another therapy on spastic muscles after stroke compared with placebo or another intervention.

Methods—We searched the following electronic databases (from inception to February 2015): Medline (PubMed), EMBASE, Cochrane Central Register of Controlled Trials and Physiotherapy Evidence Database (PEDro). Two independent reviewers assessed the eligibility of studies based on predefined inclusion criteria (application of electric stimulation on the lower or upper extremities, regardless of NMES dosage, and comparison with a control group which was not exposed to electric stimulation), excluding studies with ❤ days of intervention. The primary outcome extracted was spasticity, assessed by the Modified Ashworth Scale, and the secondary outcome extracted was range of motion, assessed by Goniometer.

Results—Of the total of 5066 titles, 29 randomized clinical trials were included with 940 subjects. NMES provided reductions in spasticity (−0.30 [95% confidence interval, −0.58 to −0.03], n=14 randomized clinical trials) and increase in range of motion when compared with control group (2.87 [95% confidence interval, 1.18–4.56], n=13 randomized clinical trials) after stroke.

Conclusions—NMES combined with other intervention modalities can be considered as a treatment option that provides improvements in spasticity and range of motion in patients after stroke.

Full Text PDF

, , , ,

Leave a comment

[ARTICLE] Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke

Abstract

Background: Augmented physical training with assistance from robot and neuromuscular electrical stimulation (NMES) may introduce intensive motor improvement in chronic stroke.

Objective: To compare the rehabilitation effectiveness achieved by NMES robot–assisted wrist training and that by robot-assisted training.

Methods: This study was a single-blinded randomized controlled trial with a 3-month follow-up. Twenty-six hemiplegic subjects with chronic stroke were randomly assigned to receive 20-session wrist training with an electromyography (EMG)-driven NMES robot (NMES robot group, n = 11) and with an EMG-driven robot (robot group, n = 15), completed within 7 consecutive weeks. Clinical scores, Fugl-Meyer Assessment (FMA), Modified Ashworth Score (MAS), and Action Research Arm Test (ARAT) were used to evaluate the training effects before and after the training, as well as 3 months later. An EMG parameter, muscle co-contraction index, was also applied to investigate the session-by-session variation in muscular coordination patterns during the training.

Results: The improvement in FMA (shoulder/elbow, wrist/hand) obtained in the NMES robot group was more significant than the robot group (P < .05). Significant improvement in ARAT was achieved in the NMES robot group (P < .05) but absent in the robot group. NMES robot–assisted training showed better performance in releasing muscle co-contraction than the robot-assisted across the training sessions (P < .05).

Conclusions: The NMES robot–assisted wrist training was more effective than the pure robot. The additional NMES application in the treatment could bring more improvements in the distal motor functions and faster rehabilitation progress.

Source: Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke

, , , , , , ,

Leave a comment

%d bloggers like this: