Posts Tagged NMES

[ARTICLE] Feasibility and preliminary efficacy of a combined virtual reality, robotics and electrical stimulation intervention in upper extremity stroke rehabilitation – Full Text

Fig. 1
Fig. 1 a Overall view of robotic rehabilitation system. b Screen capture of virtual scene. c Arm/hand support system

Abstract

Background

Approximately 80% of individuals with chronic stroke present with long lasting upper extremity (UE) impairments. We designed the perSonalized UPper Extremity Rehabilitation (SUPER) intervention, which combines robotics, virtual reality activities, and neuromuscular electrical stimulation (NMES). The objectives of our study were to determine the feasibility and the preliminary efficacy of the SUPER intervention in individuals with moderate/severe stroke.

Methods

Stroke participants (n = 28) received a 4-week intervention (3 × per week), tailored to their functional level. The functional integrity of the corticospinal tract was assessed using the Predict Recovery Potential algorithm, involving measurements of motor evoked potentials and manual muscle testing. Those with low potential for hand recovery (shoulder group; n = 18) received a robotic-rehabilitation intervention focusing on elbow and shoulder movements only. Those with a good potential for hand recovery (hand group; n = 10) received EMG-triggered NMES, in addition to robot therapy. The primary outcomes were the Fugl-Meyer UE assessment and the ABILHAND assessment. Secondary outcomes included the Motor Activity Log and the Stroke Impact Scale.

Results

Eighteen participants (64%), in either the hand or the shoulder group, showed changes in the Fugl-Meyer UE or in the ABILHAND assessment superior to the minimal clinically important difference.

Conclusions

This indicates that our personalized approach is feasible and may be beneficial in improving UE function in individuals with moderate to severe impairments due to stroke.

Introduction

Approximately 80% of individuals with stroke experience hemiparesis of the upper extremity (UE) [1] leading to chronic impairments such as weakness, loss of motor control, edema, pain and spasticity. These have important consequences for quality of life as impairments in hand and arm function limit participation in activities of daily living [23]. Accordingly, recovery of UE function is seen as highly important by individuals with chronic stroke, caregivers and rehabilitation professionals [4].

According to the Canadian Stroke Best Practices [5], UE rehabilitation should involve the affected limb in “training that is meaningful, engaging, repetitive, progressively adapted, task-specific and goal-oriented”. Advances in rehabilitation technology, in particular robotics, virtual reality (VR) and neuromuscular electrical stimulation (NMES), have been shown to be individually effective for improving UE function of individuals with stroke, through the provision of such repetitive and task-oriented training. Robotic devices can be used to assist individuals who are unable to complete arm movements by themselves [6]. Robotic rehabilitation has demonstrated functional gains in individuals with mild and moderate stroke impairments [7,8,9]. Likewise, some of our recent work [10] has shown that individuals with severe, chronic stroke can improve their arm range of motion and clinical scores after ten sessions of robotic therapy. However, it should be noted that functional gains in robotic therapy are not greater than those obtained with similar intensity conventional therapy [8]. While the intensity of practice is a determining factor in stroke recovery, higher improvements might have been achieved by robotic therapy if its focus was not only on shoulder and elbow movements, but also on hand function. This may be possible by integrating robotic therapy in a rehabilitation program that also includes other modalities that better target hand function.

VR activities constitute another approach to UE stroke rehabilitation, where patients typically perform movements without physical assistance. Reviews examining the use of VR for the improvement of UE function show promising results [1112]. In our view, VR could consolidate the UE functional gains obtained through robotic rehabilitation. While most VR activities typically focus on shoulder and elbow movements, some recent technical advances now allow the inclusion of hand movements as well. Specifically, the Microsoft Kinect version 2, used to track movements in VR, can detect hand opening and closing in addition to shoulder, elbow and wrist movements. These capabilities have been included in a new rehabilitation application, targeting UE reaching and grasping movements [13], which was part of our rehabilitation approach.

Electromyographically (EMG)-triggered NMES is a muscle stimulation modality that has been used to facilitate motor recovery of the hand after stroke [14]. The individual with stroke needs to activate the muscle(s) volitionally to trigger the NMES [15]. Thus, EMG-triggered NMES provides wrist and/or finger extension time-locked to the cognitive movement intent to actively extend the wrist and open the hand, making the training ecological and functionally relevant. EMG-triggered NMES has been shown to improve voluntary activation of isolated muscles, particularly in task-specific patterns [16].

While advances in robotics, VR and NMES have led to new treatment modalities targeting UE function post-stroke, further progress is needed for these technologies to have a true impact. Despite numerous studies attempting to identify the most effective rehabilitation interventions, post-stroke UE recovery remains disappointing [17] with sensorimotor deficits persisting in a large proportion of stroke survivors for more than 6 months (up to 62% [18]). Improvements in clinical scores have been small and often fail to meet the criteria for minimal clinically important differences (MCID) [19]. While most of the recent clinical trials have failed to demonstrate improvements on UE function that favour new interventions such as robotics or VR, over conventional, dose-matched therapy [20], combination of different modalities may have a greater impact on stroke recovery than each individual modality alone [21]. Thus, there is a need to look beyond the ‘one-size-fits-all’ approach, where a single UE modality is applied to a group of post-stroke individuals. Another possible reason for the relatively small gains in UE function, and in particular the low gains in hand function [17], is that an individual’s potential for recovery is not always considered [20]. In clinical practice, therapists typically prescribe UE exercises to their clients based on initial clinical measures, which turn out to be poor predictors of future UE function [22]. However, assessing the integrity of the affected corticospinal tract (CST), by means of motor evoked potentials (MEPs) elicited by non-invasive transcranial magnetic stimulation (TMS), was found to strongly predict the changes in UE function that could be elicited by rehabilitation [23]. In particular, the work by Milot et al. [24] showed that amongst several brain measures (e.g., magnetic resonance imaging, diffusion tensor imaging), baseline MEP amplitude was the best predictor of the response to robotic training of the affected UE in chronic stroke survivors. The presence of a MEP indicates that the CST, linking the motor areas of the brain to the hand musculature, is at least partially preserved.

Considering that (1) an individualized intervention to post stroke UE rehabilitation is desirable, (2) CST integrity is a strong predictor of hand function recovery, and (3) combination of different modalities may have a greater impact on stroke recovery than each individual modality alone, our proposed approach was to combine multiple modalities in an individualized intervention, tailored to each stroke participant’s functional status and recovery potential. Recovery may be enhanced by first assessing CST integrity in order to determine the potential for recuperating hand function, and then combining multiple purposefully selected combinations of modalities to target motor deficits of each individual. Specifically, our perSonalized UPper Extremity Rehabilitation (SUPER) program included: (1) robotic activities to work on physically assisted UE reaching movements; (2) VR activities to work on unassisted reaching and grasping movements; and (3) NMES to facilitate hand opening and closing movements. The frequency of incorporation of each modality during the intervention was determined according to the individual’s potential for hand recovery. Our objectives were to determine the feasibility and the treatment effect of the SUPER program in individuals with moderate/severe chronic stroke. Our hypotheses were that (1) the SUPER program would be feasible in terms of process, resources, management and safety indicators and (2) stroke participants with a low potential for hand recovery would benefit from a shoulder/elbow-centered intervention, while those with a high potential would benefit from an intervention involving the whole arm.[…]

Continue Reading

, , , , , , , , , , , , ,

Leave a comment

[VIDEO] Electrical Stimulation Therapies and Technology • Lucinda Baker, PhD – YouTube


The Brain Recovery Project

Lucinda Baker, PhD, PT, is a retired associate professor of biokinesiology and physical therapy at the University of Southern California.Her research has focused on electrical stimulation for wound healing for patients with spinal cord injury and diabetes, as well as rehabilitation of sensory and motor deficits for patients with stroke and traumatic brain injury.

Her talk summarizes efficacy neuromuscular electric simulation, the convenience of wearable technology, and the effectiveness of NMES for spasticity and strength.

Dr. Baker is the author of many scientific papers and co-author of the leading book on the subject NeuroMuscular Electrical Stimulation – A Practical Guide.

, , , , , , ,

Leave a comment

[VIDEO] Neuromuscular Electrical Stimulation (NMES) – YouTube

PhysioU redefines online rehabilitation education through the latest technology to help students and clinicians to become expert clinicians, the easy way. The top-rated guideline-based rehabilitation guide used by experts globally.

, , ,

Leave a comment

[ARTICLE] A comparison of the rehabilitation effectiveness of neuromuscular electrical stimulation robotic hand training and pure robotic hand training after stroke: A randomized controlled trial – Full Text

Highlights

The rehabilitation effects of the NMES robotic hand and robotic hand were compared.

Both training systems could significantly improve the motor function of upper limb.

The NMES robot was more effective than the pure robot.

NMES applied on distal muscle could benefit the recovery in the entire upper limb.

 

Abstract

Objective

To compare the rehabilitation effects of the electromyography (EMG)-driven neuromuscular electrical stimulation (NMES) robotic hand and EMG-driven robotic hand for chronic stroke.

Methods

This study was a randomized controlled trial with a 3-month follow-up. Thirty chronic stroke patients were randomly assigned to receive 20-session upper limb training with either EMG-driven NMES robotic hand (NMES group, n = 15) or EMG-driven robotic hand (pure group, n = 15). The training effects were evaluated before and after the training, as well as 3 months later, using the clinical scores of Fugl-Meyer Assessment (FMA), Modified Ashworth Scale (MAS), Action Research Arm Test (ARAT), and Functional Independence Measure (FIM). Session-by-session EMG parameters, including the normalized EMG activation level and co-contraction indexes (CIs) of the target muscles were applied to monitor the recovery progress in muscular coordination patterns.

Results

Both groups achieved significantly increased FMA and ARAT scores (p < 0.05), and the NMES group improved more (p < 0.05). A significant improvement in MAS was obtained in the NMES group (p < 0.05) but absence in the pure group. Meanwhile, better performance could be obtained in the NMES group in releasing the EMG activation levels and CIs than the pure group across the training sessions (p < 0.05).

Conclusion

Both training systems were effective in improving the long-term distal motor functions in upper limb, where the NMES robot-assisted training achieved better voluntary motor recovery and muscle coordination and more release in muscle spasticity.

Significance

This study indicated more effective distal rehabilitation using the NMES robot than the pure robot-assisted rehabilitation.

1. Introduction

Upper limb motor deficits are common after stroke, and observed in over 80% of stroke survivors [1,2]. Various rehabilitation devices have been purposed to assist human physical therapists to provide effective long-term rehabilitation programs [[3][4][5]]. Among them, rehabilitation robots and neuromuscular electrical stimulation (NMES) are most widely used in stroke rehabilitation practices. Rehabilitation robots have been recognized as efficient in such cases and could represent a cost-effective addition to conventional rehabilitation services because they provide highly intensive and repetitive training [[6][7][8][9]]. It has been reported that the integration of voluntary effort (e.g. electromyography, EMG) into robotic design could contribute significantly to motor recovery in stroke patients [6,10]. This is because an EMG-driven strategy can maximize the involvement of voluntary effort in the training, and its effectiveness at improving upper limb voluntary motor functions have been proved by many EMG-driven robot-assisted upper-limb training systems [[11][12][13]]. However, rehabilitation robots are unable to directly activate the desired muscle groups, which may only assist, or even dominate limb movement such as continuous passive motions (CPM) [14]. In addition, stroke patients usually cooperate with compensatory motions from other muscular activities to activate the target muscles, which may lead to ‘learned disuse’ [15]. However, NMES can effectively limit compensatory motions by stimulating specific muscles via cyclic electrical currents, which provides repetitive sensorimotor experiences [16]. With the advantage of precisely activating the target muscle, NMES has been reported to be effective in evoking sensory feedback, improving muscle force, and thus promoting motor function in stroke patients [17,18]. Nevertheless, training programs assisted by NMES alone are also suboptimal due to the difficulty of controlling movement trajectories and the early appearance of fatigue [19,20].

Accordingly, various NMES robot-assisted upper-limb training programs which combine these two unique techniques have been proposed to integrate the benefits and minimize the disadvantages [7,12,14,21,22]. The rehabilitation effectiveness of these combined systems has been investigated and reported to be effective in improving motor recovery. Several studies have compared the training outcomes of NMES robot-assisted training and other training programs. For example, Qian et al. [22] reported that NMES-robot-assisted upper-limb training could achieve better motor outcomes when compared with conventional therapies for subacute stroke patients. Meanwhile, another study which compared the training effects between robot-aided training with NMES and robot-aided training solely using the InMotion ARM™ Robot in the subacute period demonstrated that the active ranges of motion of the NMES robot-training group were significantly higher compared with the robot-training group [23]. Coincidentally, investigations into applications in chronic stroke patients have also been carried out. For instance, Hu et al. [14] proposed an EMG-driven NMES robot system for wrist training; this combined device improved muscle activation levels related to the wrist and reduced compensatory muscular activities at the elbow, while these training outcomes were absent for the EMG-driven robot-assisted training alone. Indeed, a similar study by another research group also achieved better rehabilitation outcomes on some clinical assessments using the combined system compared to robot-assisted therapy alone [21].

In the literature, most studies on current rehabilitation devices combining the NMES and robotic systems targeted the elbow and wrist joints [7,[21][22][23]], while very few focused on the hand and fingers [24]. In addition, a comparison of the training effects for hand rehabilitation between the NMES robot and other hand rehabilitation devices has not yet been adequately conducted. Indeed, the primary upper-limb disability post-stroke is the loss of hand function, and rehabilitation of the distal joints after stroke is much more difficult than the motor recovery of the proximal joints due to the compensatory motions from the proximal joints [25]. Hence, developing effective rehabilitation devices to minimize compensatory movements for hand motor recovery is especially meaningful for stroke rehabilitation. In our previous work, we developed an EMG-driven NMES robotic hand and suggested it for use in hand rehabilitation after stroke [26]. Our device provides fine control of hand movements and activates the target muscles selectively for finger extension/flexion, and its feasibility and effectiveness have been verified by a single group trial [12]. However, whether the long-term rehabilitation effect of this EMG-driven NMES robotic hand is comparable or even better than other hand rehabilitation devices are still unclear and need to be investigated quantitively. Therefore, the objective of this study is to compare the training effects of hand rehabilitation assisted by an NMES robotic hand and by a pure robotic hand though a randomized controlled trial with a 3-month follow-up (3MFU).

2. Methodology

2.1. Participants

This work was approved by the Human Subjects Ethics Sub-Committee of the Hong Kong Polytechnic University. A total of 53 stroke survivors were screened for the training from local districts. 30 participants with chronic stroke satisfied the following inclusion criteria: (1) The participants were at least 6 months after the onset of a singular and unilateral brain lesion due to stroke, (2) both the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints could be extended to 180° passively, (3) muscle spasticity during extension at the finger joints and the wrist joint was below 3 as measured by the Modified Ashworth Scale (MAS) [27], ranged from 0 (no increase in muscle tone) to 4 (affected part rigid), (4) detectable voluntary EMG signals from the driving muscle on the affected side (three times of the standard deviation (SD) above the EMG baseline), and (5) no visual deficit and able to understand and follow simple instructions as assessed by the Mini-Mental State Examination (MMSE > 21) [28].

This work involved a randomized controlled trial with a 3-month follow-up (3MFU). The potential participants were first told that the training program they would receive could be either NMES robotic hand training or pure robotic hand training, and all recruited participants submitted their written consent before randomization. Then, the recruited participants were randomly assigned into two groups according to a computer-based random number generator, i.e., the computer program generated either “1” (denoting the NMES robotic hand training group) or “2” (the pure robotic hand group) with an equal probability of 0.5 (Matlab, 2017, Mathworks, Inc.). Fig. 1 shows the Consolidated Standards of Reporting Trials flowchart of the training program.

Fig. 1

Fig. 1. The consolidated standards of reporting trials flowchart of the experimental design.

2.2. Interventions

For both groups, each participant was invited to attend a 20-session robotic hand training with an intensity of 3–5 sessions/week, completed within 7 consecutive weeks. The training setup of both groups is shown in Fig. 2. This robotic hand training system can assist with finger extension and flexion of the paretic limb for patients after stroke. In this work, real-time voluntary EMG detected from the abductor pollicis brevis (APB) and extensor digitorum (ED) muscles were used to control the respective hand closing and opening movements, and the threshold level of each motion phase was set at three times the SD above the EMG baseline at resting state [12]. For example, during the motions of finger flexion, once the EMG activation level of the APB muscle reached a preset threshold, the robotic hand would provide mechanical assistance for hand closing. Similarly, during the motions of finger extension, the robotic hand would assist with hand opening when the EMG activation level of the ED muscle reached a preset threshold. For the NMES robot group, synchronized support from the NMES and the robot were both provided. The NMES electrode pair (30 mm diameter; Axelgaard Corp., Fallbrook, CA, USA) was attached over the ED muscle to provide stimulation during finger extension. The outputs of NMES were square pulses with a constant amplitude of 70 V, a stimulation frequency of 40 Hz, and a manually adjustable pulse width in the range 0–300 μs. Before the training, the pulse width was set at the minimum intensity, which achieved a fully extended position of the fingers in each patient. During the training, NMES would be triggered by the EMG from the ED muscle first and then provided stimulation to the ED muscle to assist hand-opening motions for the entire phase of finger extension, while no assistance from NMES was provided during finger flexion to avoid the possible increase of finger spasticity after stimulation [29]. For the pure robot group, the difference between the two groups was that no NMES was applied in the pure robot group. A detailed account of the working principles of the robotic hand have been described in our previous work [12,30,31].

Fig. 2

Fig. 2. The experimental setup of the robotic hand training: (A) pure robotic hand group; (B) neuromuscular electrical stimulation (NMES) robotic hand group.

 […]

 

Continue —-> A comparison of the rehabilitation effectiveness of neuromuscular electrical stimulation robotic hand training and pure robotic hand training after stroke: A randomized controlled trial – ScienceDirect

, , , , , , , , , , , ,

Leave a comment

[Wikipedia audio article] Electrical stimulation

This is an audio version of the Wikipedia Article: https://en.wikipedia.org/wiki/Functio…

00:01:21 1 Principles

00:09:14 2 History

00:10:01 3 Common applications

00:10:11 3.1 Spinal cord injury

00:11:09 3.1.1 Walking in spinal cord injury

00:15:01 3.2 Stroke and upper limb recovery

00:16:21 3.3 Drop foot

00:18:08 3.4 Stroke

00:18:58 3.5 Multiple sclerosis

00:20:06 3.6 Cerebral palsy

00:21:07 3.7 National Institute for Health and Care Excellence Guidelines (NICE) (UK)

00:21:47 4 In popular culture

00:22:10 5 See also

Listening is a more natural way of learning, when compared to reading. Written language only began at around 3200 BC, but spoken language has existed long ago.

Learning by listening is a great way to:

  • – increases imagination and understanding
  • – improves your listening skills
  • – improves your own spoken accent
  • – learn while on the move
  • – reduce eye strain

Now learn the vast amount of general knowledge available on Wikipedia through audio (audio article). You could even learn subconsciously by playing the audio while you are sleeping! If you are planning to listen a lot, you could try using a bone conduction headphone, or a standard speaker instead of an earphone.

Listen on Google Assistant through Extra Audio: https://assistant.google.com/services…

Other Wikipedia audio articles at: https://www.youtube.com/results?searc…

Upload your own Wikipedia articles through: https://github.com/nodef/wikipedia-tts

Speaking Rate: 0.9170272343252982 Voice name: en-AU-Wavenet-B

“I cannot teach anybody anything, I can only make them think.” – Socrates

SUMMARY 

Functional electrical stimulation (FES) is a technique that uses low-energy electrical pulses to artificially generate body movements in individuals who have been paralyzed due to injury to the central nervous system. More specifically, FES can be used to generate muscle contraction in otherwise paralyzed limbs to produce functions such as grasping, walking, bladder voiding and standing. This technology was originally used to develop neuroprostheses that were implemented to permanently substitute impaired functions in individuals with spinal cord injury (SCI), head injury, stroke and other neurological disorders. In other words, a person would use the device each time he or she wanted to generate a desired function. FES is sometimes also referred to as neuromuscular electrical stimulation (NMES).FES technology has been used to deliver therapies to retrain voluntary motor functions such as grasping, reaching and walking. In this embodiment, FES is used as a short-term therapy, the objective of which is restoration of voluntary function and not lifelong dependence on the FES device, hence the name functional electrical stimulation therapy, FES therapy (FET or FEST). In other words, the FEST is used as a short-term intervention to help the central nervous system of the person to re-learn how to execute impaired functions, instead of making the person dependent on neuroprostheses for the rest of her or his life.

, , , , , , ,

Leave a comment

[Abstract] Investigation of multi-joint coordinated upper limb rehabilitation assisted with electromyography (EMG)-driven neuromuscular electrical stimulation (NMES)-robot after stroke

Abstract

More than 80% of stroke survivors worldwide suffer from permanent upper limb motor deficits. Restoration of upper limb motor functions in conventional rehabilitation remains challenging; the main difficulties are as follows: 1) lack of intensive, repetitive practice in manually delivered treatment; 2) lack of coordination management of upper limb motor tasks, particularly those involving the distal joints, e.g., the wrist and the hand; and 3) lack of understanding of the optimal joint supportive scheme in task-oriented upper limb training. More effective training strategies are necessary for upper limb rehabilitation following stroke. Robots have proved to be valuable assistants in labour-demanding post-stroke rehabilitation, with a controllable mechanical design and repeatable dynamic support in physical training. A series of rehabilitation robots for multi-joint practices were successfully designed in our previous works. In this work, we proposed a device-assisted multi-joint coordinated strategy for post-stroke upper limb training. The objectives of the study were as follows: 1) To evaluate the rehabilitation effectiveness of multi-joint coordinated upper limb practice assisted by an electromyography (EMG)-driven neuromuscular electric stimulation (NMES)-robot for stroke survivors in both the subacute and chronic stages. 2) To compare different joint supportive schemes using NMES-robots and identify the optimized scheme for upper limb rehabilitation. The objectives were achieved through three independent clinical trials using common clinical assessments, namely, the Fugl-Meyer Assessment (FMA), Modified Ashworth Scales (MAS), Action Research Arm Test (ARAT), and Functional Independence Measurement (FIM), and cross-session EMG evaluations to trace the recovery progress of individual muscle activities (i.e. EMG activation level) and muscular coordination (i.e. Co-contraction Index, CI) between a pair of muscles.
The first clinical randomized controlled trial (RCT) was conducted to investigate the clinical effects and rehabilitation effectiveness of the new training strategy in the subacute stroke period. Subjects were randomly assigned to two groups and received either 20 sessions of NMES-robot-assisted training (NMES-robot group, n=14) or time-matched conventional treatments (control group, n=10). Significant improvements were achieved in FMA (full score and shoulder/elbow), ARAT, and FIM for both groups [P<0.001, effect sizes (EFs)>0.279], whereas significant improvements in FMA (wrist/hand) and MAS (wrist) after treatment were only observed in the NMES-robot group (P<0.05, EFs>0.145), with the outcomes maintained for 3 months. In the NMES-robot group, CIs of the muscle pairs of biceps brachii and flexor carpi radialis (BIC&FCR) and biceps brachii and triceps brachii (BIC&TRI) were significantly reduced and the EMG activation level of the FCR decreased significantly. The result indicated comparable proximal motor improvements in both groups and better distal motor outcomes and more effective release of muscle spasticity across the whole upper limb in the NMES-robot group. The second part of the work was a clinical trial with a single-group design. Recruited chronic stroke patients (n=17) received 20 sessions of NMES-robot-assisted multi-joint coordinated upper limb training. Significant improvements were observed in FMA (full score and shoulder/elbow), ARAT, and FIM (P<0.05, EFs>0.157) and maintained for 3 months. CIs of the FCR&TRI and BIC&TRI muscle pairs and EMG activation levels of the FCR and BIC significantly decreased. The results indicated that the new training strategy was effective for upper limb recovery in the chronic stroke, with the long sustainability of the motor outcomes. In the third trial, another clinical RCT was conducted to investigate the training effects of different joint supportive schemes. The recruited chronic subjects were randomly assigned to receive task-oriented multi-joint practices with NMES-robotic support either to the finger-palm (hand group, n=15) or to the wrist-elbow (sleeve group, n=15). Significant improvements in FMA (full score and shoulder/elbow) and ARAT (P<0.05, EFs>0.147) were observed in both groups, whereas significant improvements in FMA (wrist/hand) and MAS (finger, wrist, and elbow) (P<0.05, EFs>0.149) were only observed in the hand group. These results indicated that the distal supportive scheme was more effective in distal motor recovery and whole arm spasticity control than the proximal supportive one under the same training strategy. In conclusion, NME-robot-assisted multi-joint coordinated training was able to achieve significant motor outcomes and effective muscle spasticity control in the entire upper limb, especially at the distal segments, i.e., the wrist and the fingers, in both subacute and chronic stroke patients. Moreover, the distal supportive scheme proved more effective than the proximal supportive scheme in multi-joint coordinated upper limb training.

via Investigation of multi-joint coordinated upper limb rehabilitation assisted with electromyography (EMG)-driven neuromuscular electrical stimulation (NMES)-robot after stroke | PolyU Institutional Research Archive

 

, , , , , , , , , , ,

Leave a comment

[Abstract + References] A Wearable Hand Neuroprosthesis for Hand Rehabilitation After Stroke: Preliminary Results of the RETRAINER S2 Randomized Controlled Trial – Conference paper

Abstract

Stroke is the main cause of permanent and complex long-term disability in adults. RETRAINER S2 is a system able to recover and support person’s ability to perform Activities of Daily Living (ADL) in early stage after stroke. The system is based on exercises for hand and wrist performed using Neuro Muscular Electrical Stimulation (NMES). This work describes the preliminary results of a multi-center Randomized Controlled Trial (RCT) aimed at evaluating effectiveness of the system. The preliminary results were calculated on 18 patients who completed the protocol. Data is promising, the RETRANER S2 system seems to be a good tool for stroke rehabilitation. Data confirms also a general good usability of the system.

via A Wearable Hand Neuroprosthesis for Hand Rehabilitation After Stroke: Preliminary Results of the RETRAINER S2 Randomized Controlled Trial | SpringerLink

, , , , , , ,

Leave a comment

[Abstract] Effectiveness of Neuromuscular Electrical Stimulation on Lower Limb Hemiplegic Patients following Chronic Stroke: A Systematic Review

Abstract

Objective

To investigate the effectiveness of neuromuscular electrical stimulation (NMES) with or without other interventions in improving lower limb activity after chronic stroke.

Data Source

Electronic databases including PubMed, EMBase, Cochrane Library, PEDro (Physiotherapy Evidence Database) and PsycINFO were searched from the inception to January, 2017.

Study Selection

We selected the randomized controlled trials (RCTs) involving chronic stroke survivors with lower limb dysfunction and comparing NMES or combined with other interventions with control of no electrical-stimulated treatment.

Data Extraction

The primary outcome was defined as lower limb motor function, and the secondary outcomes included gait speed, Berg Balance scale, Timed Up and Go, Six-Minute Walk Test, Modified Ashworth Scale and Range of Motion .

Data Synthesis

Twenty-one RCTs involving 1,481 participants were identified from 5,759 retrieved articles. Pooled analysis showed that NMES had a moderate but statistically significant benefits on lower limb motor function (SMD 0.42, 95% CI 0.26 to 0.58), especially when NMES combined with other interventions or treatment time within either 6 or 12 weeks. NMES also had significant benefits on gait speed, balance, spasticity and range of motion but had no significant difference in walking endurance after NMES.

Conclusion

NMES combined with or without other interventions has beneficial effects in lower limb motor function in chronic stroke survivors. These data suggest that NMES should be a promising therapy to apply in chronic stroke rehabilitation to improve the capability of lower extremity in performing activities.

via Effectiveness of Neuromuscular Electrical Stimulation on Lower Limb Hemiplegic Patients following Chronic Stroke: A Systematic Review – Archives of Physical Medicine and Rehabilitation

, , , , ,

Leave a comment

[WEB SITE] NeuroRecovery Network clinical rehabilitation centers adopt Restorative Therapies’ Xcite System for Neuromuscular Electrical Stimulation (NMES)

 

The Christopher & Dana Reeve Foundation’s NeuroRecovery Network® (NRN) nine rehabilitation centers will receive 30 Restorative Therapies’ Xcite electrical stimulation systems.

Xcite multichannel electrical stimulation for neuro re-education

BALTIMORE, MD (PRWEB) JUNE 28, 2017

The Christopher & Dana Reeve Foundation’s NeuroRecovery Network® (NRN) supports cutting-edge Clinical Rehabilitation Centers and Community Fitness and Wellness Facilities (CFWs) that make up two branches of care for people living with spinal cord injury and other physical disabilities.

The nine NRN rehabilitation centers and CFWs will receive 30 Restorative Therapies’ Xcite systems which will be used to implement NRN’s cutting edge NMES rehabilitation program for patients across the US. The acquisition was funded by the Reeve NRN Network and the University of Louisville in conjunction with the rehabilitation centers and CFWs.

NMES is a physical therapy rehabilitation modality used to evoke sensory feedback, functional movements and exercise not otherwise possible for individuals with a neurological impairment such as a spinal cord injury, stroke, multiple sclerosis or cerebral palsy.

The Xcite system delivers up to 12 channels of electrical stimulation to nerves which activate core, leg and arm muscles. Easy to use sequenced stimulation evokes functional movement enabling a patient’s paralyzed or weak muscles to move through dynamic task specific movement patterns.

“Xcite is the first truly practical electrical stimulation rehabilitation system of this kind that I have seen. In addition to combining several valuable neuro-rehabilitation interventions, task-specific electrical stimulation, mass practice and neuromuscular re-education, Xcite is portable and easy enough to use that it could be used in the patient’s home,” said Prof. Susan Harkema of the Kentucky Spinal Cord Injury Research Center, University of Louisville. “In the context of rehabilitation influencing neural plasticity as a means for neural restoration, training in the home is an essential component of progress and I see Xcite as a great tool in achieving this,” concludes Harkema.

“The NRN clinical rehabilitation centers and CFWs played a key role during the development of the Xcite system.” says Andrew Barriskill, CEO of Restorative Therapies. “Xcite is designed to be integrated into the cutting edge therapy programs being developed and utilized by the Reeve Foundation’s NRN while at the same time being easy to use within any physical therapy or occupational therapy.”

About Restorative Therapies
Restorative Therapies is the designer of medical devices providing clinic and in-home restoration therapy. Xcite is the next in the series of FES powered physical therapy systems that started with the company’s hugely successful RT300 FES cycle.

Restorative Therapies mission is to help people with a neurological impairment or in critical care achieve their full recovery potential. Restorative Therapies combines activity-based physical therapy and Functional Electrical Stimulation as a rehabilitation therapy for immobility associated with paralysis such as stroke, multiple sclerosis and spinal cord injury or for patients in critical care.

Restorative Therapies is a privately held company headquartered in Baltimore. To learn more about Restorative Therapies please visit us at http://www.restorative-therapies.com

, , , ,

Leave a comment

[Abstract] Effects of low-frequency repetitive transcranial magnetic stimulation and neuromuscular electrical stimulation on upper extremity motor recovery in the early period after stroke: a preliminary study

 

Objective: To assess the efficacy of inhibitory repetitive transcranial magnetic stimulation (rTMS) and neuromuscular electrical stimulation (NMES) on upper extremity motor function in patients with acute/subacute ischemic stroke.

Methods: Twenty-five ischemic acute/subacute stroke subjects were enrolled in this randomized controlled trial. Experimental group 1 received low frequency (LF) rTMS to the primary motor cortex of the unaffected side + physical therapy (PT) including activities to improve strength, flexibility, transfers, posture, balance, coordination, and activities of daily living, mainly focusing on upper limb movements; experimental group 2 received the same protocol combined with NMES to hand extensor muscles; and the control group received only PT. Functional magnetic resonance imaging (fMRI) scan was used to evaluate the activation or inhibition of the affected and unaffected primary motor cortex.

Results: No adverse effect was reported. Most of the clinical outcome scores improved significantly in all groups, however no statistically significant difference was found between groups due to the small sample sizes. The highest percent improvement scores were observed in TMS + NMES group (varying between 48 and 99.3%) and the lowest scores in control group (varying between 13.1 and 28.1%). Hand motor recovery was significant in both experimental groups while it did not change in control group. Some motor cortex excitability changes were also observed in fMRI.

Conclusion: LF-rTMS with or without NMES seems to facilitate the motor recovery in the paretic hand of patients with acute/subacute ischemic stroke. TMS or the combination of TMS + NMES may be a promising additional therapy in upper limb motor training. Further studies with larger numbers of patients are needed to establish their effectiveness in upper limb motor rehabilitation of stroke.

Source: Effects of low-frequency repetitive transcranial magnetic stimulation and neuromuscular electrical stimulation on upper extremity motor recovery in the early period after stroke: a preliminary study: Topics in Stroke Rehabilitation: Vol 24, No 5

, , , , , , , ,

Leave a comment

%d bloggers like this: