Posts Tagged VR

[WEB SITE] New Anatomy VR App Lets You Look Inside Your Own Body

IN BRIEF

Curiscope, a startup, aims to blend VR and AR. Their Virtuali-Tee allows users to take a peek inside their own chest cavities.

TAKE A LOOK AT YOURSELF

Most people feel confident that they know a fair amount about their own body, in terms of general health and what they look like from the outside. However, most of us haven’t taken a look inside—literally speaking. Ed Barton and his UK-based startup Curiscope is hoping to change that with a unique blend of virtual reality (VR) and augmented reality (AR). Using an anatomy VR app and the company’s Virtuali-Tee, a t-shirt, they are allowing people to see inside of their own chest cavities.

Barton explained to Wired: “We use a mix of VR and AR to see inside the anatomy…With positionally tracked AR, you can position VR experiences physically within your environment.”

Barton and Curiscope co-founder Ben Kidd have so far raised almost $1 million in seed funding from LocalGlobe, and they’ve already sold almost 3,000 of the Virtuali-Tees.

HIGH TECH T-SHIRT

Barton told Wired that, using positional tracking, “we have a blurring of physical and digital items, and an experience more tightly connected to reality.” He continued, “With the Virtuali-Tee, AR is your interface and VR is used to transport you somewhere else. The technologies should be merging.”

This technology works using a highly-stylized QR code printed onto the front of the t-shirt. When you scan the code with the corresponding app, you can explore throughout the chest cavity, including the heart and lungs.

AR technology hit the mainstream with the release of Pokémon Go, but its applications have shown that it can reach far beyond games. From smartphone usage to vehicle blueprint design, AR is quickly developing. The combination of both AR and VR could not only make the Virtuali-Tee device fully immersive, but also lead to a whole host of other technologies that combine AR and VR.

This t-shirt, specifically, could be a fantastic tool for the curious. It can be used for educational purposes, allowing anatomy and biology to be a fun experience that students can really wrap their minds around. Even outside of a formal educational setting, this device could allow us to better connect with our own biology. Virtuali-Tee could help people to better understand their own inner workings, and how the things we do every day—from what we eat to how we exercise—might affect our health.

Source: New Anatomy VR App Lets You Look Inside Your Own Body

Advertisements

, , ,

Leave a comment

[BLOG POST] Virtual reality for people with stroke or Parkinson’s disease: bringing therapy home – Evidently Cochrane

Virtual reality for people with stroke or Parkinson’s disease: bringing therapy home

BY 

In this blog, neuropsychologist Marta Bieńkiewicz explores the potential of virtual reality to help people with Parkinson’s disease, and after stroke, and looks at the evidence from Cochrane reviews.

By 2020 it is estimated that there will be 120 million active users of Virtual Reality (VR) via mobile headsets; nearly a fifth of whom will be using it for healthcare solutions (ABI report, 2015). The hype about VR is currently reaching fever pitch, thanks mostly to the increased accessibility of it for the average Joe (via solutions such as smartphones add-ons spectacles). All over the globe VR setups are being tested and investigated as a novel means of enabling more fun and efficient physical exercise as part of rehabilitation. But is all the money that goes into research and development for this technology justifiable? Could it be better spent – for example on training more therapists or providing activity groups for patients?

In an attempt to answer this question, let’s walk through some facts to get a better picture as to what VR is and what it might hold for people with stroke and Parkinson’s disease (PD).

The virtual reality (VR) environment

My first exposure to VR was during my PhD days. My future husband (as it turned out 5 years later) was doing his doctorate on the non-clinical applications of what was, at the time, a technology in its infancy. In the simplest of definitions, VR is a computer designed environment that can be displayed in a headset glasses or a cave (special room) to create a feeling of full immersion that you are somewhere else; completely detached from the real world yet fully engaged with the virtual world. The high immersion display might trick you into thinking you are on a tennis court playing a game at Wimbledon for example. The low immersion VR environments comprise computer displays – usually tablets or regular screens. In this case you can still enjoy a game or follow on-screen instructions, but your brain keeps check of its whereabouts.

So, the main concept behind VR-based rehabilitation games is twofold. Firstly, they provide a clear, visual means of prompting users’ movements (i.e. in the example of picking up an apple, the user might be guided toward it). Secondly, they increase the personal motivation of the user. The higher the engagement with the environment and varied scenarios, the higher the enjoyment and willingness to repeat the same exercise all over again (Lewis & Rosie, 2012). A Cochrane review (French et al. 2016) reported that repetitive training may improve walking distance and is probably effective for improving upper limb rehabilitation. For a fantastic example of how this field is moving forward see the KATA project based at John Hopkins University which uses a combination of VR (Pixar like!) display with robotic-assisted therapy for stroke.

The reality of stroke and Parkinson’s disease

Stroke and Parkinson’s disease are two different neurological conditions. The first one happens suddenly and changes mobility overnight, which may mean changing from being a fully active person to being limited in one’s independence. The second is characterised by gradual and sneaky progression of compromised mobility. Either condition may make everyday life increasingly a real struggle. When it is not easy to get dressed, the idea of doing physical exercise seems totally unattainable. People find themselves not being able to do the tasks they previously took for granted – preparing a sandwich, driving a car, or simply going out of the house, and now add to it catching up with the modern technology.

Exercise may help

If you are a sufferer, these two aspects might discourage you from reading on – exercise and VR sounds too hard to even bother! But here is the thing. While guidelines on how to improve mobility in neurological conditions are scarce, the ones that are there (Keus et al., 2014)suggest that the power of exercise might help. Studies suggests that intense exercise in Parkinson’s may slow down the progression of the disease due to neuroprotective benefits (Alberts et al., 2016Corcos et al., 2013) and help maintain independence (van Nimwegen, 2011). After stroke, physiotherapy is usually started straight away or during the hospitalisation period. In fact, many research teams are convinced that the time window for the real functional recovery of lost limb power (i.e. regaining the previous dexterity) is quite short and is limited to 6 months post accident or shorter (Cortes et al., 2017). This is the window of opportunity for brain reorganisation, after which improvement is maybe not impossible, but certainly more challenging.

Depending on patients’ needs, exercise should target general mobility, dexterity, walking, or specific daily activities. There are exercise-based interventions in particular that were reported to show improvement in people with Parkinson’s Disease: such as tandem or automated stationary cycling (Ridgiel et al., 2015) and pole-striding (Bombieri et al., 2017Krishnamurthi et al., 2017), and for stroke: physical rehabilitation (Pollock et al., 2014) or robot-assisted interventions (Mehrholz et al., 20152017). In both conditions, it is thought to be important to start as soon as possible and introduce exercise regime as a regular part of daily life.

For people with PD or after stroke who are keen to become more fit and actively steer their rehabilitation, VR could be their new best friend.

Does virtual reality offer real life benefits?

The Cochrane review of VR (Dockx et al., 2016) and gaming for Parkinson’s, with a focus on walking and balance, provides us with evidence that VR based training may lead to better improvements for stride length, but overall may have similar effects on walking parameters and balance as conventional therapy, while the effect on quality of life is uncertain. The upper limb interventions were not included.

On the contrary, the Cochrane review of VR in stroke focused interventions (Laver et al., 2015) was primarily focused on upper limb function and found that VR based interventions may lead to greater improvements in both function and daily task performance compared to conventional therapy. Global mobility and grip strength remained on level par. It is not clear how long-lasting those effects are, nor which characteristics are the most meaningful for patients’ recovery. The number of studies examined was small and information insufficient to look into other dimensions such as quality of life or cognitive functions.

So what does this all mean? The interventions using VR were overall found to be probably similar to the conventional therapies, with the potential added value in the form of accurate feedback and the ability to stimulate users by creating personalised, motivational and fun interventions (Dockx et al., 2016Laver et al., 2015). If more evidence is found to confirm those findings, it would mean VR can be potentially be as good as a supervised therapy, which is great news. Why? Because it means you can bring it home.

Why Occupational Therapists can sleep well at night (for now…)

Let’s make it clear, this is not an overnight take-over of conventional therapy. VR and gaming solutions have the potential to provide a similar level of care to traditional exercise-based therapy, without having to replace it. At least for the next decades, think of it as a potential complementary therapy subsidised by the NHS or private insurance: part of a medical treatment that would encourage patients to do meaningful exercise in between the supervised physiotherapy sessions. Conversely, VR-based exercise units in hospitals could train patients in daily tasks, emulating their home environment. Beyond that, the technology is simply not mature enough to match that of a human eye and brain in terms of assessment and choice of best treatment. However, with Artificial Intelligence looming on the distant horizon, this is not beyond the realms of possibility…some day.

Tread carefully though when it comes to any products or apps that are advertised as a rehabilitation tool on the consumer market. In order for it to be a relevant training tool it needs to be paired with sensors (attached to your body or embedded in a special clothing) in order to provide feedback.

Looking to the future: Extended Reality

The future however, might lie in a newly born sister of VR, namely Extended Reality (ER). This technology is also based on wearable headsets (such as Hololens) but allows the user to be immersed in the virtual reality while seeing the physical environment.

The idea is that the juxtaposed feedback information is relevant and not interruptive for your current activity (e.g. walking a dog). It is also a safer mode of exercise as it does not require being detached from one’s surroundings despite a high level of immersion in the virtual environment/of immersion. At least four labs so far have been investigating this idea for stroke and Parkinson’s (Technical University of MunichUniversity of RochesterUniversity of Connecticut and Northeastern University). Along with ER developments, the level of immersion and therefore enjoyment can be increased with the sound spatialisation and touch sensation (i.e. Ultrahaptics). One could easily imagine that ER opens new horizons for combining a very accurate feedback tool with, for example, robotic therapy.

Hopefully the next years will bring answers to questions such as the level of transferability of VR/ER training into real life skills. Further research is necessary to inform tailored technology-based exercise regimes and to clarify whether or not rehabilitation with limited supervision is a feasible model.

The take home message

While certainly the technological development in the current era is both exciting and a little daunting, it brings solutions that were not previously available at such affordable cost. VR essentially offers a therapy that is likely to become almost as good as conventional therapy from within the comforts of your own home. VR and gaming can be fun, can provide excitement of immersion and prevent boredom while also achieving exercise goals for task-specific rehabilitation. While current solutions are not yet up to the ‘buy now’ level, this area should definitely make your watchlist.

References may be found here.

Marta Bieńkiewicz has nothing to disclose.

Source: Virtual reality for people with stroke or Parkinson’s disease: bringing therapy home – Evidently Cochrane

, , , , , , ,

Leave a comment

[WEB SITE] Physical rehabilitation goes high tech with the help of virtual reality

Advances in technology are continually shaping the future of medical treatment, but could devices utilising virtual reality (VR), which were once considered the realm of gamers, be the next frontier for physical rehabilitation?

Rohan O’Reilly is a movement therapist in Newcastle, New South Wales, who has been using alternative therapies involving virtual reality devices to help his clients with rehabilitation.

“It really came back to the point of listening to people’s stories who had had large-scale traumas, and their experiences of what they went through, from their initial accident through to therapy,” Mr O’Reilly said.

“For most of them it was really [boring] and quite uncomfortable and not inspiring.

“So we thought ‘We need to make this feel better’.

“Lucky for us we’re living in a time where there’s an amazing new array of technologies that are not widely known about.

“Virtual reality would be the one that’s hot at the moment, and essentially that is a game changer. It’s phenomenal what can be done with that as a platform for putting people in a state where they want to play.”

Making therapy fun

Mr O’Reilly said virtual reality helped clients to exercise their bodies in non-traditional ways.

“It’s about emotions,” he said.

“If your rehabilitation just tended to be based around the fact that you had to pick up an inanimate object, which you had no real emotional connection to, repetitively … for most people, they would think ‘OK, I can do this for a little while’, but they’re quickly going to run out of steam.

“If you put someone in virtual reality with everything that reminds them of the things that they love to do, they’re essentially just going to give themselves therapy.

“We’re just simply creating an environment where they can explore their own capabilities.”

Client notices big improvements in health

Almost four years ago, Angus McConnell had an accident that changed his life.

He was riding his bicycle down a hill in Newcastle when a car turned across him.

“I hit the windscreen, bumped off down the road, and ended up with a spinal cord injury — a C7 complete quadriplegic,” Mr McConnell said.

“It hits you on and off, and still does.”

Mr McConnell went through traditional hospital rehabilitation, but was looking for other options to continue his treatment.

“As your journey goes along, you want to work out whether you’re going to ignore the parts of the body that aren’t working, or you’re going to make them move,” he said.

Mr McConnell said he had noticed big improvements in his health after the alternative therapy.

“Originally we started on building up the muscles and hopefully a nerve signal that’s coming through,” he said.

“I can feel further down into my body, with electrodes on parts of my body where the nerves come close to the skin.

“I’m standing up now with the help of electrodes, and that’s something I hadn’t thought possible two-and-a-half years ago.”

Academic says VR effective, but people should be cautious

Associate Professor Coralie English, a stroke researcher at the University of Newcastle, said people should approach alternative therapies with a degree of cautiousness.

“There is a reasonable amount of evidence for the effectiveness of virtual reality training for people after stroke,” she said.

“This sort of therapy is useful for people who’ve already got some movement. There’s certainly no evidence to suggest that if you can’t move at all, trying to move within these environments is going to result in any recovery of function.

“It needs to ensure that the person is practising what they need to practice, and that it’s based on a thorough assessment by a qualified health professional.”

Source: Physical rehabilitation goes high tech with the help of virtual reality – ABC News (Australian Broadcasting Corporation)

, , ,

Leave a comment

[ARTICLE] The Efficacy of a Haptic-enhanced Virtual Reality System for Precision Grasp Acquisition in Stroke Rehabilitation – Full Text PDF

ABSTRACT
Stroke is a leading cause of long-term disability, and virtual reality (VR)-based stroke rehabilitation is effective in increasing motivation and the functional performance in people with stroke. Although much of the functional reach and grasp capabilities of the upper extremities is regained, the pinch
movement remains impaired following stroke. In this study, we developed a haptic-enhanced VR system to simulate haptic pinch tasks to assist in long-term post-stroke recovery of upper-extremity fine motor function. We recruited 16 adults with stroke to verify the efficacy of this new VR system.
Each patient received 30-min VR training sessions 3 times per week for 8 weeks; all participants attended all 24 training sessions. Outcome measures, Fugl Meyer Assessment (FMA), Test Evaluant les Membres superieurs des Personnes Agees (TEMPA), Wolf Motor Function Test (WMFT), Box and
Block Test (BBT), and Jamar Grip Dynamometer, showed statistically significant progress from pretest to posttest and follow-up, indicating that the proposed system effectively promoted fine motor recovery of function. Additionally, our evidence suggests that this system was also effective under certain challenging conditions such as being in the chronic stroke phase or a co-side of lesion and dominant hand (non- dominant hand impaired). System usability assessment indicated the participants strongly intended to continue using this VR-based system in rehabilitation.

Download Full Text PDF

, , , , , , , , , , , ,

Leave a comment

[WEB SITE] How neuroscience can pave the way for VR’s

For Noah Falstein, the future of virtual reality depends not only on understanding the technology and the market, but understanding the fundamental underpinnings of the human brain.

“It’s like you’re going through a mountain pass,” he said at VRDC Fall 2017 in San Francisco today, speaking to an audience made up of game developers as well as people in other industries. Right now, VR is still new territory, and on the other side of that mountain pass, a fertile valley might open up, or maybe not. “Along the way, it’s easy to get stuck,” he said.

But Falstein, who is a true believer in the future of VR, AR, and MR, says that neuroscience is the compass to point this new technology in the correct direction.

A history of conveying images

Falstein is a true veteran of game development, working at companies including Williams Electronics and LucasArts, and most recently was chief game designer at Google. He now runs his own design consultancy company, The Inspiracy.

Falstein briefly went over humankind’s quest to share images, using the example of a 20,000-year-old cave painting. “Our ancestors have been struggling with this for a long time,” he said—the desire to convey something one might personally see to other people. From cave paintings to camcorders, to smartphones with advanced cameras, to VR today, humans have been trying all kinds of ways to convey images that inform or evoke emotions in other people.

Falstein’s approach to understanding the uses and applications of immersive computing lies in trying to understand how the brain itself works and how it has evolved.

Motion

“One of the first things that comes up in VR is the potential of motion sickness,” Falstein said. “I think we’re always going to have some people at the end of that spectrum who just have trouble in VR when they move too swiftly,” he said, but there are some ways to minimize motion sickness.

Falstein explained how motion sickness is evolutionary—when a person is poisoned, it disrupts the inner ear, creating a disconnect between actual movement and the movement one feels in their head. This leads to nausea, which is a great way to throw up and purge a poison mushroom or food that has turned.

He acknowledged that there’s always a person in the studio who’s the most susceptible to motion sickness who is used as the motion sickness guinea pig. “I frankly don’t think we’ll have a better [motion sickness testing] system than that for some time to come,” he said.

He stated some well-known (among VR game devs) facts about preventing VR motion sickness: you need a fast frame rate (90+ is best); devs must minimize lag when the head moves (20ms or less); they should get all visual cues right; minimize acceleration; and come up with creative anti-sickness solutions based on how our visual field and vestibular system interact.

He also explained how blurring or eliminating peripheral vision during acceleration can help fight motion sickness. Some games and Google Earth in VR use this method, and as eye tracking systems become more advanced, users will have more comfortable VR experiences, he said.

Emotion

“It turns out that VR is really good at scaring people,” he said. Movie directors figured this out fairly early in film, and VR developers have found this out too.

“Why is horror in VR so strong?” Falstein explained how the human brain—particularly the amygdala—does the quick, raw processing of fear, anger, and aggression (fight of flight), and also arousal and intimacy.

“In video games, we’re really good at the fight or flight stuff, but the intimacy and empathy stuff, we’re still working on that,” he said.

But with VR, as it “tricks” more of your senses, there’s opportunity for more intimacy and it also appeals stronger to empathy, he said.

Falstein also talked about the possibilities in storytelling when it comes to movies shown in VR, such as short stories in VR (like Google’s Spotlight Stories series), 180-degree movie viewing, or shared or single-viewer experiences. “There’s going to be strong ‘replay’ value for things they missed [on first view],” Falstein said. There are also opportunities for monetization through ads and product placement.

Beyond Emotion

Falstein briefly pointed out how games as medicine is a new market with massive opportunity, and VR can be part of this in treating issues like phobias, PTSD, acute pain, and strokes, as well as training doctors and caregivers.

“It’s really exciting stuff,” he said, “and the future is in your hands.”

Source: Gamasutra – How neuroscience can pave the way for VR’s

, ,

Leave a comment

[WEB SITE] Game On: Virtual Reality as Pain Treatment Shows Promise in Early Trials

Imagine being in pain, but happily distracted from your suffering by being totally immersed in floating lazily down a river or tossing fish to hungry otters that pop up out of nowhere. Such scenarios of a 360-degree world are possible via virtual reality (VR), whereby a patient sits in a chair wearing a head visor connected to a computer and holds a small wireless device in his or her hand to change direction.

“Although [VR] is very early in its inception for treating painful conditions, we are hopeful that VR will interest other research and payors,” said James Choo, MD, owner and medical director of Pain Consultants of East Tennessee, in Knoxville, which conducted two clinical studies of VR. “I think there is a lot of potential for VR, especially if you marry VR to other pain treatments that are not widely available but that we know work, such as cognitive-behavioral therapy and mindfulness meditation for lower back pain.”

However, he added that few pain psychologists are practicing in the United States, and cognitive-behavioral therapy is time-consuming. “We have never had scalable treatments that work and that can be highly disseminated,” Dr. Choo said. “With VR, if you have the right software, there is an enormous potential to disseminate that type of care to millions of people rather than just a handful of patients who have access to the one pain psychologist that might be in their region.”

Similarly, mindfulness-based instruction through VR may be plausible.

“The effects of the type of VR program that we used derive from a game,” Dr. Choo said. “It is not just a passive immersive experience of looking around at the scene. You are actually playing a game—interacting with the environment itself. Besides distracting pain, VR is fun, like playing a video game.”

Dr. Choo said the immersive experience of being in a virtual environment and simply being distracted from pain are helpful. In addition, “perhaps even the immersive experience has its own analgesic effect,” he said. “But we do not understand quite yet the neuropathways that are being affected that cause the analgesic effect. Once we do, then we will be able to better target the type of VR programs that best suit the patient and their particular pain needs.”

Ted Jones, PhD, a clinical psychologist at Pain Consultants of East Tennessee, heard a conference speaker last year refer to VR as a syringe, meaning its effect “depends on the content.” He added, “Historically, since the late 1980s, VR has been used for procedural pain—basically for burn pain and injections in an inpatient setting or a burn unit. However, the majority of pain [treated by clinicians] is outpatient pain. So we are taking what has been used for inpatient procedural pain and using it for outpatient pain.”

To date, VR treatments at the clinic have been isolated to two completed studies, using software called Cool! developed by Firsthand Technology.

“What we have found is that if you give someone doses of VR, it cuts their pain dramatically,” said Dr. Jones, who was principal investigator of both trials. “However, there is no [long-term] effect. A week later, the patient is right back where he or she started, both painwise and depression-wise and stresswise. It is similar to a person coming to a pain clinic, giving them a dose of medicine and sending them home.”

The first study, conducted in 2015 and published last year in PLOS ONE (2016;11:e0167523), consisted of 30 patients with chronic pain. Participants were asked about their pain before and after a single, five-minute session of VR conducted at the clinic.

“The study decreased pain by 55% to 60%,” Dr. Jones said. “VR is like distractionon steroids, because when your brain is in a virtual world, it is like you are there. In comparison, morphine reduces pain by only one-third.”

The second study, performed last year at the clinic, involved 10 patients with neuropathic pain. The protocol was three sessions of VR, each lasting 20 minutes and spaced one week apart.

“Pain was cut by roughly 70%, due to the longer exposure sessions and multiple treatments,” Dr. Jones said. “There was also a lingering effect. Most patients reported that their pain continued to be less for about one day on average after each session.”

‘Still Out of Reach’

However, depression, anxiety, beliefs about pain and how to cope with pain did not change over time. “In other words, VR did not provide patients any emotional or cognitive benefit,” Dr. Jones said.

Dr. Jones said a single VR unit costs between $3,000 and $4,000. Although it’s a dramatic drop from the previous $8,000 cost, “it is still out of reach for most patients,” he said. “Further, many of the units currently available have a lot of wires and require a high-end machine. You cannot take it home with you—physically or financially.”

To address these shortcomings, Pain Consultants of East Tennessee and the University of Tennessee plan on conducting a pilot study of 10 to 20 patients this fall with the portable Samsung Gear VR, which has an easy-to-use headset and some pain and relaxation applications, along with a Fitbit fitness mobile device to detect activity level and record pain.

“We will determine if daily VR home use is effective, which should be the case, based on our two previous studies,” Dr. Jones said. “Using VR at home several times a day is like being prescribed a pain reliever to be taken two or three times daily. VR has the chance to replace as-needed pain medicine at home.”

The occupational therapy department at the pain clinic is also scheduled to incorporate VR into therapy for conditions such as phantom limb pain and stroke pain. “For this application, VR acts like a mirror, so patients can see and restore movement,” Dr. Jones said.

Despite enthusiasm about VR for pain, there are several hurdles and challenges to make the modality effective in the clinical space. Besides no payors yet, “we need more in-depth studies to show its efficacy for [specific] conditions,” Dr. Choo said.

Apart from employing VR as simply a game, VR may be used as a substitute therapist in certain cases, or for biometric functioning and rehabilitation. “These are completely different programs,” Dr. Choo said. “Therefore, we have to be very specific on the types of software programs we use and the way they deliver care.”

For instance, VR could be used to help patients meditate or provide biofeedback.

“One of the key [goals] is for VR to become a scalable model,” Dr. Choo said. “The unit we are using is not portable. But in the future, we envision all VR units being extremely portable, easy to use and accessible.”

Dr. Jones added, “VR has a lot of potential. We just need to match it to the right patient at the correct setting and the right cost.”

—Bob Kronemyer

Source: Game On: Virtual Reality as Pain Treatment Shows Promise in Early Trials – Pain Medicine News

, , ,

Leave a comment

[WEB SITE] Samsung Develops VR Systems For Mental Health Care

A project involving South Korean hospital, FNI and Samsung will create mental health diagnostic tools in VR.

Virtual reality (VR) has seen a rise in use by the healthcare industry. From teaching medical students about trauma procedures, to helping tackle the loneliness and isolation of long-term medical care, VR has seen a variety of uses in medicine. Now Samsung are aiming to develop VR system that can help in the field of mental health.

Mental health care is a complex field, with many of the mechanisms surrounding mental health conditions still poorly understood. Working with VR content creator FNI and the Gangnam Severence Hospital in South Korea, Samsung hopes to gain some insight into this area, and make advances in the field of mental health care.

Gear VR Controller

The project will be aimed at developing systems in the areas of cognitive behaviour therapy, suicide prevention and psychological assessment. A combination of the Samsung Gear VR headset, Gear S3 smartwatch, S Health app and AI virtual assistant Bixby will be used to develop diagnosis kits and other physical products and applications. Medical data from the hospital will be used to ‘teach’ the AI about the medical conditions it will encounter.

The three companies are hoping to be able to turn the products into a commercial product that can be rolled out to hospitals, dementia centres and schools at some point in 2018. There are also plans to make the products available to patients for home use at some point.

VRFocus will bring you further information on Samsung’s VR health applications as it becomes available.

Source: Samsung Develops VR Systems For Mental Health Care – VRFocus

, , ,

Leave a comment

[WEB SITE] Stroke rehabilitation gets personalised and interactive – CORDIS

Stroke rehabilitation gets personalised and interactive

The significant socioeconomic costs of stroke coupled with the rise in Europe’s ageing population highlights the need for effective but affordable stroke rehabilitation programmes. EU researchers made considerable headway in this regard through novel rehabilitation paradigms.
Stroke rehabilitation gets personalised and interactive
Computer-mediated rehabilitation tools require a high degree of motor control and are therefore inadequate for patients with significant impairment in motor control. Consequently, many stroke survivors are unable to benefit. The REHABNET (REHABNET: Neuroscience based interactive systems for motor rehabilitation) project came up with an innovative approach to address this critical need.

Researchers successfully developed a hybrid brain-computer interface (BCI)-virtual reality (VR) system that assesses user capability and dynamically adjusts its difficulty level. This motor imagery-based BCI system is tailored to meet the needs of patients using a VR environment for game training coupled with neurofeedback through multimodal sensing technologies.

The game training scenarios address both cognitive and motor abilities. The four rehabilitation scenarios include bimanual motor training, dual motor cognitive-motor training and a simulated city for training on daily living activities.

Pilot and longitudinal studies demonstrated the benefits of longitudinal VR training as compared to existing rehabilitation regimens. The self-report questionnaires also revealed a high user acceptance of the novel system.

Designed for at-home use, the REHABNET toolset is platform-independent and freely available globally as an app (Reh@Mote). Besides deeper insight on factors affecting stroke recovery, this could aid in further improvement of rehabilitation strategies. More importantly, these low-cost toolsets could also address the needs of patients with severe motor and cognitive deficits. Efforts are ongoing to facilitate future commercial exploitation through a technology transfer agreement.

Related information

Source: European Commission : CORDIS : Projects and Results : Stroke rehabilitation gets personalised and interactive

, , , , , , , ,

Leave a comment

[WEB SITE] Benefits of Virtual Reality for Stroke Rehabilitation – Saebo

Virtual reality (VR) is the new must-have technology tool for gaming, training, or just trying to immerse yourself in a new and virtual environment. From Google Cardboard to Oculus Rift, this technology is becoming more and more accessible to the everyday person. Now anyone can put on a headset and suddenly be transported to a world where they have full control and no consequences.

VR technology isn’t just useful for gaming. It has been shown to help in a variety of applications, from military training activities to treatment for anxiety disorders and phobias to functioning as an art form. Another application where VR shows a lot of promise is stroke recovery.

Virtual Reality and Stroke Recovery

Virtual Reality has emerged as a new approach to treatment in stroke rehabilitation settings over the last ten years. By simulating real-life activities, stroke patients are able to work on self-care skills in a setting that is usually impossible to create in a hospital environment.

There are two main types of VR:

Immersive

In immersive VR, the virtual environment is delivered by equipment worn by the user (like goggles) or the person is situated within a virtual environment. This fully immersive system gives the user a strong sense of presence through the use of head-mounted displays, special gloves, and large, concave screen projections to create the sense of immersion.

Non-Immersive

Non-immersive VR is usually two-dimensional and delivered through a computer screen. The user can control what is happening on screen by using a device such as a joystick, mouse, or sensor.

After a stroke, mass practice, task-oriented arm training of the upper and lower limbs can help the brain “re-program” itself and form new neural connections. These new connections stimulate recovery of motor skills in patients following stroke. So VR may be useful to augment rehabilitation of the upper and lower limbs in patients suffering from stroke and other neurological injuries.

In some studies, therapists have manipulated the image onscreen to make the patient’s limb appear to be moving faster and more accurately than it was in real life. Doing this increased the patient’s confidence and made them more likely to use their affected limb spontaneously. Spontaneous use of the affected limb can help the limb recover more completely.

SaeboVR

SaeboVR is the world’s only virtual rehabilitation system exclusively focusing on ADL’s (activities of daily living). The proprietary platform was specifically designed to engage clients in both physical and cognitive challenges involving daily functional activities. In addition to interacting with meaningful every-day tasks, the SaeboVR uses a virtual assistant that appears on the screen to educate and facilitate performance by providing real-time feedback.

 

 

SaeboVR’s ADL-focused virtual world provides clients with real-life challenges. Users will incorporate their impaired upper limb to perform simulated self-care tasks that involve picking up, transferring, and manipulating virtual objects.

 

Why SaeboVR?

  • It’s the only virtual system available that focuses on real-life self-care tasks.
  • Let’s you practice repetitive movements with fun and motivating activities.
  • Activities are adaptable to the individual client to maximize success and outcomes.
  • ADL tasks can be customized to challenge endurance, speed, range of motion, coordination, timing, and cognitive demand.
  • It includes a clinical provider dashboard to view client performance and participation trends.
  • Reports are graphically displayed for easy viewing.

Saebo’s other products can also be used in conjunction with the SaeboVR to facilitate recovery. The SaeboMAS and SaeboMAS mini use unweighting technology that will allow clients with proximal weakness to participate in proven treatment techniques that would otherwise have been impossible. The SaeboGlove can engage and position the hand so it can be incorporated in virtual grasp-and-release activities.

The Future of Stroke Rehabilitation

Virtual reality is here to stay, and we have likely only scratched the surface of its medical applications. It’s having a powerful impact on those who have had strokes. Stroke survivors are taking advantage of how VR enables them to practice necessary routine activities, create new connections in the brain, and build up their confidence. With more and more survivors retraining their limbs using this technology, the future of VR in stroke recovery looks bright.

 

All content provided on this blog is for informational purposes only and is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. If you think you may have a medical emergency, call your doctor or 911 immediately. Reliance on any information provided by the Saebo website is solely at your own risk.

Source: Benefits of Virtual Reality for Stroke Rehabilitation | Saebo

, , , ,

Leave a comment

[WHITE PAPER] Virtual and augmented reality based balance and gait training – Full Text PDF

The use of virtual and augmented reality for rehabilitation has become increasingly popular and has received much attention in scientific publications (over 1,000 papers). This white paper aims to summarize the scientific background and efficacy of using virtual and augmented reality for balance and gait training. For many patients with movement disorders, balance and gait training is an important aspect of their rehabilitation process and physical therapy treatment. Indications for such training include, among others, stroke, Parkinson’s disease, multiple sclerosis, cerebral palsy, vestibular disorders, neuromuscular diseases, low back pain, and various orthopedic complaints, such as total hip or knee replacement. Current clinical practice for balance training include exercises, such as standing on one leg, wobble board exercises and standing with eyes closed. Gait is often trained with a treadmill or using an obstacle course. Cognitive elements can be added by asking the patient to simultaneously perform a cognitive task, such as counting down by sevens. Although conventional physical therapy has proven to be effective in improving balance and gait,1,2 there are certain limitations that may compromise treatment effects. Motor learning research has revealed some important concepts to optimize rehabilitation: an external focus of attention, implicit learning, variable practice, training intensity, task specificity, and feedback on performance.3 Complying with these motor learning principles using conventional methods is quite challenging. For example, there are only a limited number of exercises, making it difficult to tailor training intensity and provide sufficient variation. Moreover, performance measures are not available and thus the patient usually receives little or no feedback. Also, increasing task specificity by simulating everyday tasks, such as walking on a crowded street, can be difficult and time consuming. Virtual and augmented reality could provide the tools needed to overcome these challenges in conventional therapy. The difference between virtual and augmented reality is that virtual reality offers a virtual world that is separate from the real world, while augmented reality offers virtual elements as an overlay to the real world (for example virtual stepping stones projected on the floor). In the first part of this paper we will explain the different motor learning principles, and how virtual and augmented reality based exercise could help to incorporate these principles into clinical practice. In the second part we will summarize the scientific evidence regarding the efficacy of virtual reality based balance and gait training for clinical rehabilitation.

Full Text PDF

, , , , ,

Leave a comment

%d bloggers like this: