Posts Tagged Video games

[Abstract] Active exergames to improve cognitive functioning in neurological disabilities: a systematic review and meta-analysis

INTRODUCTION: Exergames represent a way to perform physical activity through active video games, serving as potentially useful tool in the field of neurorehabilitation. However, little is known regarding the possible role of exergames in improving cognitive functions in persons suffering from neurological disabilities.

 

EVIDENCE ACQUISITION: A search for relevant articles was carried out on PubMed/Medline, Scopus, PEDro, and Google Scholar. Only randomized controlled studies and non-randomized but controlled studies were retained. The following additional inclusion criteria were applied: studies focused on physical activity interventions carried out by means of exergames; populations targeted were affected by neurological disabilities; and reported results were related to cognitive outcomes. We calculated standardized mean differences (SMD) and pooled results using a random effects meta-analysis.

EVIDENCE SYNTHESIS: Of 520 abstracts screened, thirteen studies met the criteria to be included yielding a total of 465 participants, 233 randomized to exergames, and 232 allocated to the alternative or no intervention. The included studies varied in terms of studied populations (e.g., multiple sclerosis, post-stroke hemiparesis, Parkinson’s disease, dementia, dyslexia, Down syndrome), type and duration of interventions, and cognitive outcome measures. Exergames significantly improved executive functions (SMD=0.53, P=0.005; 8 studies, N.=380) and visuo-spatial perception (SMD=0.65, P<0.0001; 5 studies, N.=209) when compared to the alternative or no intervention. There were no significant differences for attention (SMD=0.57, P=0.07; 7 studies, N.=250) and global cognition (SMD=0.05, P=0.80; 6 studies, N.=161).

CONCLUSIONS: Exergames are a highly-flexible tool for rehabilitation of both cognitive and motor functions in adult populations suffering from various neurological disabilities and developmental neurological disorders. Additional high-quality clinical trials with larger samples and more specific cognitive outcomes are needed to corroborate these preliminary findings.

CLINICAL REHABILITATION IMPACT: Exergames could be considered either as a supplemental treatment to conventional rehabilitation, or as strategy to extend benefits of conventional programs at home.

PDF

via Active exergames to improve cognitive functioning in neurological disabilities: a systematic review and meta-analysis – European Journal of Physical and Rehabilitation Medicine 2018 June;54(3):450-62 – Minerva Medica – Journals

, , ,

Leave a comment

[WEB SITE] Power up! Sunset Park hospital’s new video game helps stroke victims recover

Power glove: Susan Chan used the NYU Langone Hospital-Brooklyn’s weighted joystick to play video games as part of her stroke-recovery therapy.

By Colin Mixson

This treatment is next level!

A Sunset Park medical center is using new video-game technology to help stroke survivors and victims of other brain injuries regain motor function, a treatment one hospital honcho called effective — and fun.

“There was a boredom factor to try and get a person to cooperate through the whole treatment,” said Vincent Cavallaro, NYU Langone Hospital–Brooklyn’s vice president of neurology and rehabilitation. “This is much more engaging.”

But patients at the 55th Street hospital between First and Second avenues don’t play with your run-of-the-mill Nintendo controller. Instead, they guide digital avatars — including cartoon go-kart racers in a game similar to Mario Kart — using a motorized machine that challenges them to keep theirmotor functionwhile helping their recovering brains develop new ways to communicate with their bodies.

And the machine, called Kore Balance, isn’t just loaded with the go-karting program. It features a variety of games that also includes one in which patients guide a penguin as it slides down a ski slope, which allows them to track their progress and even play against others in recovery, according to another hospital employee.

“You get to compete against yourself, and other patients as well,” said Kara Nizolek, who directs rehabilitation at the hospital.

The Kore Balance contraption is the latest in the medical center’s fleet of video-game-like devices that assist those recuperating, which also include a sensor-equipped glove and corresponding program that helps fine tune motor skills by allowing patients to play music by making various gestures with their hands, and a joystick with a weighted support that allows people who can only partially move their arms to improve their range of motion.

Those devices have proven extremely effective in aiding recovery over the years, according to Nizolek, who said video-game-assisted rehabilitation is no longer the future, but the present.

“This is the new hot topic,” she said. “Virtual reality and robotic interventions are seen as best practices.”

via Power up! Sunset Park hospital’s new video game helps stroke victims recover | Brooklyn Daily

, , ,

Leave a comment

[ARTICLE] Virtual Reality for Stroke Rehabilitation – Full Text

The use of virtual reality programs specifically designed for stroke rehabilitation is increasing as is the use of commercial video game devices in clinical settings. This review is an update of our review published first in 2011 and then in 2015.1

Objectives

The primary objective of this review was to examine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity. Our secondary objective was to examine the efficacy on gait and balance, global motor function, cognitive function, activity limitation, participation restriction, quality of life, and adverse events.

Methods

We searched the Cochrane Stroke Group Trials Register (April 2017), CENTRAL, MEDLINE, Embase, and 7 additional databases as well as trials registries. We included randomized and quasi-randomized trials of virtual reality in adults after stroke. The primary outcome of interest was upper limb function and activity. Two review authors independently selected trials, extracted data, and assessed risk of bias with input from a third author to moderate disagreements when required.

Main Results

A total of 72 trials (with 2470 participants) were included in the review. This review includes 35 new studies in addition to the studies included in the previous version of this review (published in 2015). Most studies involved small sample sizes and interventions varied in terms of both the goals of treatment and the virtual reality program or device used. Although there are a relatively large number of randomized controlled trials, the evidence remains mostly low quality when rated using the GRADE system because of the risk of bias in the studies and inconsistent findings between studies. Control groups in the included studies usually received either no therapy or conventional therapy which was provided by an occupational therapist or physiotherapist. Primary outcome: when virtual reality was compared with the same dose of conventional therapy the results were not statistically significant for upper limb function (standardized mean difference, 0.07; 95% confidence interval, −0.05–0.20; 22 studies, 1038 participants, low-quality evidence). However, when virtual reality was used to supplement usual care (thereby providing participants in the intervention group with a higher dose of therapy), there was a statistically significant difference between groups (standardized mean difference, 0.49; 95% confidence interval, 0.21–0.77, 10 studies, 210 participants, low-quality evidence). Secondary outcomes: when compared with conventional therapy approaches there were no statistically significant effects for gait speed or balance. Results were statistically significant for the activities of daily living outcome (standardized mean difference, 0.25; 95% confidence interval, 0.06–0.43; 10 studies, 466 participants, moderate-quality evidence); however, we were unable to pool results for cognitive function, participation restriction, or quality of life. There were few adverse events experienced in the 23 studies which reported on this and adverse events were relatively mild. There was a trend suggesting that customized virtual reality programs were preferable to commercial game products, however, these findings were not statistically significant (Figure).

Figure.

Figure. Virtual reality versus conventional therapy: upper limb function: subgroup analyses, specialized, or gaming program. CI indicates confidence interval.

Implications for Practice

We found that virtual reality therapy may not be more effective than conventional therapy for upper limb outcomes, but there is low-quality evidence that virtual reality may be used to improve outcomes in the absence of other therapy interventions after stroke. Clinicians who currently have access to virtual reality programs should be reassured that their use as part of a comprehensive rehabilitation program seems reasonable, taking into account the patient’s goals, abilities, and preferences.

Sources of Funding

Dr Laver is supported by a National Health and Medical Research Council-Australian Research Council fellowship. Dr Saposnik is supported by the 2017 to 2021 Heart and Stroke Foundation of Canada Career Award following an open and peer-reviewed competition. He also served as the Topic Editor for the Emerging Therapies Section (Stroke Journal).

Disclosures

None.

Footnotes

  • This paper is based on a Cochrane Review published in The Cochrane Library 2017, Issue 11 (see www.thecochranelibrary.com for information). Cochrane Reviews are regularly updated as new evidence emerges and in response to feedback, and The Cochrane Library should be consulted for the most recent version of the review.

  • Received December 13, 2017.
  • Revision received December 13, 2017.
  • Accepted December 21, 2017.

Reference

  1. 1.

View Abstract

via Virtual Reality for Stroke Rehabilitation | Stroke

, , , ,

Leave a comment

[WEB SITE] Video Games Suggested as Mobility Aids for Stroke Patients

Published on 

http://www.dreamstime.com/royalty-free-stock-photography-video-games-hand-written-image28837617

 

Researchers propose that video games be used as a complement to physiotherapy treatments to help improve the mobility of patients who have experienced ischemic strokes.

In their study, published in the PNAS Journal, researchers from Basque Center on Cognition, Brain and Language (BCBL) in San Sebastian and the London Imperial College analyzed the architecture of brain injuries in stroke patients.

They propose a new therapeutic pathway that complements the physical treatments received by these patients with therapies to overcome attention deficit disorders, such as working with video games.

“Patients with brain injuries in attention control areas also suffer motility control problems, even when the movement required by the task is very simple,” says BCBL researcher David Soto, in a media release from FECYT – Spanish Foundation for Science and Technology.

The team explored the extent and location of brain injuries in 167 stroke patients for more than 3 years. Through a “mapping” performed with magnetic resonance, they identified the affected part and the type and size of the lesion, and analyzed the connectivity between the different areas of the brain.

Next, they subjected the patients to various motor tasks, some very simple, such as grabbing an object with force. After the tests, the researchers found that these tasks were “impaired” in those patients who had injuries in the area of the brain “involved” in attention, the release explains.

Soto notes that before this study was conducted it was thought that the control of movement and the attention control aspect were “different systems” with little relation to each other, and that the treatments enabled for the patients with cognitive injuries could not serve for those who had mobility problems. However, their research appears to suggest otherwise.

“We have to know first how our brain controls and moves to design effective therapeutic tools for stroke patients and specific therapies for each individual depending on where the injury has occurred,” he concludes.

To confirm these results, the next step will be to establish a clinical trial with patients suffering motor skills disorders due to a stroke and divide them into two groups: one of them undergoing physiotherapy treatment and the other with complementary cognitive training, per the release.

[Source(s): FECYT – Spanish Foundation for Science and Technology, Science Daily]

 

via Video Games Suggested as Mobility Aids for Stroke Patients – Rehab Managment

, ,

Leave a comment

[Abstract] Active exergames to improve cognitive functioning in neurological disabilities: a systematic review and meta-analysis

INTRODUCTION: Exergames represent a way to perform physical activity through active video games, serving as potentially useful tool in the field of neurorehabilitation. However, little is known regarding the possible role of exergames in improving cognitive functions in persons suffering from neurological disabilities.
EVIDENCE ACQUISITION: A search for relevant articles was carried out on PubMed/Medline, Scopus, PEDro, and Google Scholar. Only randomized controlled studies and non-randomized but controlled studies were retained. The following additional inclusion criteria were applied: studies focused on physical activity interventions carried out by means of exergames; populations targeted were affected by neurological disabilities; and reported results were related to cognitive outcomes. We calculated standardized mean differences (SMD) and pooled results using a random effects meta-analysis.
EVIDENCE SYNTHESIS: Of 520 abstracts screened, thirteen studies met the criteria to be included yielding a total of 465 participants, 233 randomized to exergames, and 232 allocated to the alternative or no intervention. The included studies varied in terms of studied populations (e.g., multiple sclerosis, post-stroke hemiparesis, Parkinson’s disease, dementia, dyslexia, Down syndrome), type and duration of interventions, and cognitive outcome measures. Exergames significantly improved executive functions (SMD=0.53, p=0.005; 8 studies, n=380) and visuo-spatial perception (SMD=0.65, p<0.0001; 5 studies, n=209) when compared to the alternative or no intervention. There were no significant differences for attention (SMD=0.57, p=0.07; 7 studies, n=250) and global cognition (SMD=0.05, p=0.80; 6 studies, n=161).
CONCLUSIONS: Exergames are a highly-flexible tool for rehabilitation of both cognitive and motor functions in adult populations suffering from various neurological disabilities and developmental neurological disorders. Additional high-quality clinical trials with larger samples and more specific cognitive outcomes are needed to corroborate these preliminary findings.
CLINICAL REHABILITATION IMPACT: Exergames could be considered either as a supplemental treatment to conventional rehabilitation, or as strategy to extend benefits of conventional programs at home.

Full Text  PDF  

via Active exergames to improve cognitive functioning in neurological disabilities: a systematic review and meta-analysis – European Journal of Physical and Rehabilitation Medicine 2017 Oct 25 – Minerva Medica – Journals

, , ,

Leave a comment

[Abstract] Virtual reality for stroke rehabilitation – Review

Abstract

BACKGROUND:
Virtual reality and interactive video gaming have emerged as recent treatment approaches in stroke rehabilitation with commercial gaming consoles in particular, being rapidly adopted in clinical settings. This is an update of a Cochrane Review published first in 2011 and then again in 2015.

OBJECTIVES:
Primary objective: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity.Secondary objectives: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on: gait and balance, global motor function, cognitive function, activity limitation, participation restriction, quality of life, and adverse events.

SEARCH METHODS:
We searched the Cochrane Stroke Group Trials Register (April 2017), CENTRAL, MEDLINE, Embase, and seven additional databases. We also searched trials registries and reference lists.

SELECTION CRITERIA:
Randomised and quasi-randomised trials of virtual reality (“an advanced form of human-computer interface that allows the user to ‘interact’ with and become ‘immersed’ in a computer-generated environment in a naturalistic fashion”) in adults after stroke. The primary outcome of interest was upper limb function and activity. Secondary outcomes included gait and balance and global motor function.

DATA COLLECTION AND ANALYSIS:
Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data, and assessed risk of bias. A third review author moderated disagreements when required. The review authors contacted investigators to obtain missing information.

MAIN RESULTS:
We included 72 trials that involved 2470 participants. This review includes 35 new studies in addition to the studies included in the previous version of this review. Study sample sizes were generally small and interventions varied in terms of both the goals of treatment and the virtual reality devices used. The risk of bias present in many studies was unclear due to poor reporting. Thus, while there are a large number of randomised controlled trials, the evidence remains mostly low quality when rated using the GRADE system. Control groups usually received no intervention or therapy based on a standard-care approach.

PRIMARY OUTCOME:
results were not statistically significant for upper limb function (standardised mean difference (SMD) 0.07, 95% confidence intervals (CI) -0.05 to 0.20, 22 studies, 1038 participants, low-quality evidence) when comparing virtual reality to conventional therapy. However, when virtual reality was used in addition to usual care (providing a higher dose of therapy for those in the intervention group) there was a statistically significant difference between groups (SMD 0.49, 0.21 to 0.77, 10 studies, 210 participants, low-quality evidence).

SECONDARY OUTCOMES:
when compared to conventional therapy approaches there were no statistically significant effects for gait speed or balance. Results were statistically significant for the activities of daily living (ADL) outcome (SMD 0.25, 95% CI 0.06 to 0.43, 10 studies, 466 participants, moderate-quality evidence); however, we were unable to pool results for cognitive function, participation restriction, or quality of life. Twenty-three studies reported that they monitored for adverse events; across these studies there were few adverse events and those reported were relatively mild.

AUTHORS’ CONCLUSIONS:
We found evidence that the use of virtual reality and interactive video gaming was not more beneficial than conventional therapy approaches in improving upper limb function. Virtual reality may be beneficial in improving upper limb function and activities of daily living function when used as an adjunct to usual care (to increase overall therapy time). There was insufficient evidence to reach conclusions about the effect of virtual reality and interactive video gaming on gait speed, balance, participation, or quality of life. This review found that time since onset of stroke, severity of impairment, and the type of device (commercial or customised) were not strong influencers of outcome. There was a trend suggesting that higher dose (more than 15 hours of total intervention) was preferable as were customised virtual reality programs; however, these findings were not statistically significant.

Update of
Virtual reality for stroke rehabilitation. [Cochrane Database Syst Rev. 2015]

via Virtual reality for stroke rehabilitation. – PubMed – NCBI

, , , , , ,

Leave a comment

[Abstract] Active exergames to improve cognitive functioning in neurological disabilities: a systematic review and meta-analysis.

Exergames represent a way to perform physical activity through active video games, serving as potentially useful tool in the field of neurorehabilitation. However, little is known regarding the possible role of exergames in improving cognitive functions in persons suffering from neurological disabilities.A search for relevant articles was carried out on PubMed/Medline, Scopus, PEDro, and Google Scholar. Only randomized controlled studies and non-randomized but controlled studies were retained. The following additional inclusion criteria were applied: studies focused on physical activity interventions carried out by means of exergames; populations targeted were affected by neurological disabilities; and reported results were related to cognitive outcomes. We calculated standardized mean differences (SMD) and pooled results using a random effects meta-analysis.Of 520 abstracts screened, thirteen studies met the criteria to be included yielding a total of 465 participants, 233 randomized to exergames, and 232 allocated to the alternative or no intervention. The included studies varied in terms of studied populations (e.g., multiple sclerosis, post-stroke hemiparesis, Parkinson’s disease, dementia, dyslexia, Down syndrome), type and duration of interventions, and cognitive outcome measures. Exergames significantly improved executive functions (SMD=0.53, p=0.005; 8 studies, n=380) and visuo-spatial perception (SMD=0.65, p<0.0001; 5 studies, n=209) when compared to the alternative or no intervention. There were no significant differences for attention (SMD=0.57, p=0.07; 7 studies, n=250) and global cognition (SMD=0.05, p=0.80; 6 studies, n=161).Exergames are a highly-flexible tool for rehabilitation of both cognitive and motor functions in adult populations suffering from various neurological disabilities and developmental neurological disorders. Additional high-quality clinical trials with larger samples and more specific cognitive outcomes are needed to corroborate these preliminary findings.Exergames could be considered either as a supplemental treatment to conventional rehabilitation, or as strategy to extend benefits of conventional programs at home.

via Active exergames to improve cognitive functioning in neurological disabilities: a systematic… – Abstract – Europe PMC

, ,

Leave a comment

[ARTICLE] Effect of Robot-Assisted Game Training on Upper Extremity Function in Stroke Patients – Full Text

ObjectiveTo determine the effects of combining robot-assisted game training with conventional upper extremity rehabilitation training (RCT) on motor and daily functions in comparison with conventional upper extremity rehabilitation training (OCT) in stroke patients.

MethodsSubjects were eligible if they were able to perform the robot-assisted game training and were divided randomly into a RCT and an OCT group. The RCT group performed one daily session of 30 minutes of robot-assisted game training with a rehabilitation robot, plus one daily session of 30 minutes of conventional rehabilitation training, 5 days a week for 2 weeks. The OCT group performed two daily sessions of 30 minutes of conventional rehabilitation training. The effects of training were measured by a Manual Function Test (MFT), Manual Muscle Test (MMT), Korean version of the Modified Barthel Index (K-MBI) and a questionnaire about satisfaction with training. These measurements were taken before and after the 2-week training.

ResultsBoth groups contained 25 subjects. After training, both groups showed significant improvements in motor and daily functions measured by MFT, MMT, and K-MBI compared to the baseline. Both groups demonstrated similar training effects, except motor power of wrist flexion. Patients in the RCT group were more satisfied than those in the OCT group.

ConclusionThere were no significant differences in changes in most of the motor and daily functions between the two types of training. However, patients in the RCT group were more satisfied than those in the OCT group. Therefore, RCT could be a useful upper extremity rehabilitation training method.

INTRODUCTION

stroke is a central nervous system disease caused by cerebrovascular problems such as infarction or hemorrhage. Stroke may lead to impairment of various physical functions, including hemiplegia, language disorder, swallowing disorder or cognitive disorder, according to the location and degree of morbidity [1]. Among these, hemiplegia is a common symptom occurring in 85% of stroke patients. In particular, upper extremity paralysis is more frequent and requires longer recovery time than lower extremity paralysis [23]. To maintain the basic functions of ordinary life, the use of the upper extremities is essential; therefore, upper extremity paralysis commonly causes problems in performing the activities of daily living [2].

Robot-assisted rehabilitation treatment has recently been widely investigated as an effective neurorehabilitation approach that may augment the effects of physical therapy and facilitate motor recovery [4]. Robot-assisted rehabilitation treatments have been developed in recent decades to reduce the expenditure of therapists’ effort and time, to reproduce accurate repetitive motions and to interact with force feedback [56]. The most important advantage of using robot-assisted rehabilitation treatment is the ability to deliver high-dosage and high-intensity training [7].

In rehabilitation patients may find such exercises monotonous and boring, and may lose motivation over time [8]. Upper extremity rehabilitation training using video games, such as Nintendo Wii games and the PlayStation EyeToy games, enhanced upper extremity functions and resulted in greater patient satisfaction than conventional rehabilitation treatment [910111213].

The objective of this study was to determine the effects of combining robot-assisted game training with conventional upper extremity rehabilitation training (RCT) on motor and daily functions in comparison to conventional upper extremity rehabilitation training (OCT) in stroke patients. This study was a randomized controlled trial and we evaluated motor power, upper extremity motor function, daily function and satisfaction. […]

Continue —> KoreaMed Synapse

Fig. 1. (A) Neuro-X, an upper extremity rehabilitation robot, consisting of a video monitor, a robot arm and a computer. (B) The patient performing robot-assisted game training with the upper extremity rehabilitation robot.

, , , , , , ,

1 Comment

[Abstract] Enhancing clinical implementation of virtual reality

Abstract:

Despite an emerging evidence base and rapid increases in the development of clinically accessible virtual reality (VR) technologies for rehabilitation, clinical adoption remains low. This paper uses the Theoretical Domains Framework to structure an overview of the known barriers and facilitators to clinical uptake of VR and discusses knowledge translation strategies that have been identified or used to target these factors to facilitate adoption. Based on this discussion, we issue a ‘call to action’ to address identified gaps by providing actionable recommendations for development, research and clinical implementation.

Source: Enhancing clinical implementation of virtual reality – IEEE Xplore Document

, , , , , , , , ,

Leave a comment

[WEB SITE] How video games affect the brain 

There is increasing research focused on the impact of video gaming on the brain.

 

Video gaming is clearly a popular form of entertainment, with video gamers collectively spending 3 billion hours per week in front of their screens. Due to their widespread use, scientists have researched how video games affect the brain and behavior. Are these effects positive or negative? We examine the evidence.

Source: How video games affect the brain – Medical News Today

,

Leave a comment

%d bloggers like this: