Posts Tagged Video games

[ARTICLE] Improving executive function deficits by playing interactive video-games: secondary analysis of a randomized controlled trial for individuals with chronic stroke

BACKGROUND: Executive function deficits negatively impact independence and participation in everyday life of individuals with chronic stroke. Therefore, it is important to explore therapeutic interventions to improve executive functions.
AIM: The aim of this study was to determine the effectiveness of a 3-month interactive video-game group intervention compared to a traditional motor group intervention for improving executive functions in individuals with chronic stroke.
DESIGN: This study is a secondary analysis of a single-blind randomized controlled trial for improving factors related to physical activity of individuals with chronic stroke. Assessments were administered pre and post the intervention and at 3-month follow-up by assessors blind to treatment allocation.
METHODS: Thirty-nine individuals with chronic stroke with executive function deficits participated in an interactive video-game group intervention (N.=20) or a traditional group intervention (N.=19). The intervention included two 1-hour group sessions per week for three months, either playing video-games or performing traditional exercises/activities. Executive function deficits were assessed using The Trail Making Test (Parts A and B) and by two performance-based assessments; the Bill Paying Task from the Executive Function Performance Test (EFPT) and the Executive Function Route-Finding Task (EFRT).
RESULTS: Following intervention, scores for the Bill Paying Task (EFPT) decreased by 27.5% and 36.6% for the participants in the video-game and traditional intervention, respectively (F=17.3, P<0.000) and continued to decrease in the video-game group with small effect sizes. Effect size was small to medium for the TMT-B (F=0.003, P=0.954) and EFRT (F=1.2, P=0.28), without any statistical significance difference.
CONCLUSIONS: Interactive video-games provide combined cognitive-motor stimulation and therefore have potential to improve executive functioning of individuals with chronic stroke. Further research is needed.
CLINICAL REHABILITATION IMPACT: These findings highlight the potential of utilizing interactive video-games in a small group for keeping these individuals active, while maintaining and improving executive functioning especially for individuals with chronic stroke, who have completed their formal rehabilitation.

Source: Improving executive function deficits by playing interactive video-games: secondary analysis of a randomized controlled trial for individuals with chronic stroke – European Journal of Physical and Rehabilitation Medicine 2016 August;52(4):508-15 – Minerva Medica – Journals


, , , , , ,

Leave a comment

[Review] The use of commercial video games in rehabilitation: a systematic review – Full Text


The aim of this paper was to investigate the effect of commercial video games (VGs) in physical rehabilitation of motor functions. Several databases were screened (Medline, SAGE Journals Online, and ScienceDirect) using combinations of the following free-text terms: commercial games, video games, exergames, serious gaming, rehabilitation games, PlayStation, Nintendo, Wii, Wii Fit, Xbox, and Kinect. The search was limited to peer-reviewed English journals. The beginning of the search time frame was not restricted and the end of the search time frame was 31 December 2015. Only randomized controlled trial, cohort, and observational studies evaluating the effect of VGs on physical rehabilitation were included in the review. A total of 4728 abstracts were screened, 275 were fully reviewed, and 126 papers were eventually included. The following information was extracted from the selected studies: device type, number and type of patients, intervention, and main outcomes. The integration of VGs into physical rehabilitation has been tested for various pathological conditions, including stroke, cerebral palsy, Parkinson’s disease, balance training, weight loss, and aging. There was large variability in the protocols used (e.g. number of sessions, intervention duration, outcome measures, and sample size). The results of this review show that in most cases, the introduction of VG training in physical rehabilitation offered similar results as conventional therapy. Therefore, VGs could be added as an adjunct treatment in rehabilitation for various pathologies to stimulate patient motivation. VGs could also be used at home to maintain rehabilitation benefits.


Physical rehabilitation (PR) is a long and difficult process that may be hindered by many difficulties. Clinicians might encounter patients with counterproductive conditions during the PR program, such as poor motivation, limited time to perform rehabilitation exercises, financial issues, and difficulties reaching the PR location. Over the last few years, the user experience in video games (VGs) has changed from passive (i.e. a relatively passive player is seated with the controller in one hand) to active (i.e. the VG software tracks real physical displacement of the player’s body parts to control the game) participation. Such active game control requires a higher level of physical activity (Taylor et al., 2011). The integration of commercial VGs into conventional PR started about a decade ago, and several articles have reported integrating VGs with PR schemes. However, little is known about the real clinical efficacy of such integration. The evidence thus far is limited to a positive effect of VGs on PR motivation and engagement (Lohse et al., 2013). It is also important to define the limits of such interventions. The overall aim of this paper was to provide an overview of the scientific evidence from previously published studies related to the use of VGs in PR schemes and, more specifically, to determine in which clinical fields (e.g. neurology, orthopedic) and for what kind of patients (e.g. stroke, multiple sclerosis) VG research is being performed. The clinical efficacy of VGs on PR for various pathologies will also be discussed.

Continue —> The use of commercial video games in rehabilitation: a syst… : International Journal of Rehabilitation Research

Fig. 1. Flow diagram of study selection. CP, cerebral palsy; PD, Parkinson’s disease

, , , ,

Leave a comment

[WEB SITE] How Technology Is Changing Stroke Rehabilitation – Saebo


While everyday objects like clothespins and cups still play crucial roles in most patients’ journeys toward recovery, new technology is constantly changing the rehabilitation game. From video chats with doctors to robotic gloves and interactive video games, stroke recovery and rehabilitation tools have come a long way in the past decade. This new stroke recovery technology is helping link neuroplasticity and learning. A key part in recovery from a stroke.

This new stroke technology gives patients more repetitions, practice time and intensity compared to previous movement trainings. Not to mention this new technology is also more interactive, attention grabbing and really helps motivate the patient. These new technologies are really helping harness the brain’s ability to repair itself in ways that haven’t been seen before.

How Technology Kick-Starts Stroke Recovery

Just like the simple exercises that caregivers have used for years, the latest stroke recovery tools revolve around the concept of neuroplasticity. Though researchers have known about the brain’s ability to “retrain” itself for years, they now understand how crucial it is to begin this process as early as possible. That’s because the destruction of brain tissue during stroke is actually a temporary trigger for the rest of the brain.

“The tissue death that results from stroke appears to trigger a self-repair program in the brain,” says Karen Russell from The New Yorker.  

After stroke, healthy brain tissue reverts to a more malleable stage for one to three months. Neuroplasticity allows healthy brain tissue to create new connections to the affected muscles and nerves for years, but during these early months of recovery, the brain is especially open to forming these connections. Unfortunately, this is also when patients’ bodies face their most extreme limitations, preventing them from taking full advantage of their healthy brain tissue’s malleability.


That’s where modern technology comes in. Today’s stroke survivors have more recovery options than ever before, and many of them are designed to capitalize on this early recovery stage. Others allow doctors and caregivers to closely monitor patients’ progress and prevent common complications as they regain movement and retrain their brains in the months and years following stroke.

Video Games for Stroke Survivors

Perhaps one of the most innovative and exciting examples of stroke rehabilitation technology is in the video game space. Traditional low-tech stroke therapy options can be difficult and repetitive, making it less likely that patients follow through at home. Doctors are already noticing that video games are more engaging, exciting, and easy to incorporate into an at-home healing regimen.

One example of a new emerging video game gear toward stroke recovery is Bandit’s Shark Showdown. This is an interactive video game that allows players to control an animated dolphin’s movements. The version for stroke survivors incorporates a robotic sling, which patients wear to control the shark. This simulation synchronizes patients’ muscle movements with the dolphin’s leaps and dives, stimulating their brain and body simultaneously.

Stroke Technology, Video Games

(Source: Hub)

When you consider the brain itself, it’s not so unusual that a video game could recreate and reconnect key functions. John Krakauer, a neurologist who co-created the video game with a handpicked think tank, reminded The New Yorker that every simple muscle movement “requires an incredibly sophisticated set of computations“. His shark game is designed to break down “the physical-mental distinction” and restore function to impaired limbs.

“There’s no right and wrong when you’re playing as a dolphin,” John Krakauer told The New Yorker. “You’re learning the ABCs again—the building blocks of action. You’re not thinking about your arm’s limitations. You’re learning to control a dolphin. In the process, you’re going to experiment with many movements you’d never try in conventional therapy.”

Another example of this is a new therapeutic device that NYU Langone Medical Center has developed that creates an interactive canoe trip.

<iframe allowfullscreen=”true” webkitallowfullscreen=”true” mozallowfullscreen=”true” frameborder=”0″ scrolling=”no” width=”512″ height=”288″ src=”″></iframe
Though the video game and device is still in the early stages of development and testing, doctors from NYU Langone say that they are seeing patients be more motivated and engaging that with current standard therapies. They also have shown to be another promising therapeutic option for stroke survivors who are too injured for traditional therapy.


Similar to the NYU Langone Medical Center’s device is the SaeboReJoyce workstation. Saebo’s ReJoyce workstation is a computerized task-oriented training system that involves a range of activity-based games that test speed, endurance, coordination, range of motion, strength, timing and cognitive demand. This helps patients practice repetitive gross motor and fine motor tasks with fun and motivating activities.

Because the games are customizable and incorporate a wide variety of grasp patterns, this workstation is useful for patients at each stage of recovery.



Among the newest therapeutic tools used for stroke victims, those most commercially available are robotics and robotic exoskeletons, which attach directly to the affected part of the body to facilitate or enable movement. Therapeutic robotic devices include leg and arm supports that actually lift and support the limbs while reorganizing the pathways between the muscles, nerves, and healthy brain tissue. Like the robotic arm sling that researchers integrated into Bandit’s Shark Showdown robotic arm and leg devices contain sensors that track the limbs’ movements and monitor changes in force and terrain.

Bio Robotics

(Source: Bio Robotics)


The Wall Street Journal explains that robotic exoskeletons are especially useful because they are adjustable. As patients need less support, their therapists may adjust the robotic devices to let the patients’ muscles gradually resume more control. Because these exoskeletons can actually move the patients’ affected limbs until they regain movement, caregivers spend less time doing this themselves. When caregivers are free to observe patients’ movements – instead of manually moving their limbs – they can pay closer attention to the quality of each movement.

Body Weight Support Systems

Robots aren’t the only options for patients who need extra support for weak or paralyzed limbs. Because the force of gravity can turn patient’s’ own body weight into an obstacle, some of the most useful recovery devices like the SaeboMAS are designed to counteract this force. Support systems designed for the arms, legs and overall body, help support and facilitate movement to make task-oriented exercises possible. Motion that this is a much more affordable option as well.


Support systems like the SaeboMAS aren’t used just to speed up the therapy process. One study found that stroke survivors who receive extra weight support actually walk better than patients who must support their own weight during rehabilitation. This makes sense, because gait training is more effective when patients are able to move their joints and muscles more quickly after stroke.


Neuromuscular Electrical Stimulation

Our everyday voluntary movements are made possible by connections between the brain and the body’s nerves, but after this connection is severed due to stroke, the affected nerves and muscles can no longer send or receive the sensory stimulation necessary to move. This is where neuromuscular electrical stimulation can be helpful. Neuromuscular electrical stimulation applies small electrical pulses to paralyzed muscles to restore or improve their function.


Devices  like the Saebo MyoTrac Infiniti uses EMG Triggered Stimulation which is a combination of biofeedback and electrical stimulation. Stimulation by devices like these are triggered to the desired muscle group (i.e., finger extensors, elbow extensors etc.) once the client deactivates or relaxes the opposite spastic muscle group (i.e., spastic finger flexors, elbow flexors etc.)

With Sensory Electrical Stimulation (SES), it is believed to enhance the neural plasticity and activate brain areas, helping with stroke rehabilitation. Studies show that providing SES to an impaired nervous system can prime the cortex ultimately leading to improve neuroplasticity, motor recovery and function. Using a Sensory Electrical Stimulation tool like the SaeboStim Micro is perfect for SES.


Research suggests that sensory electrical stimulation (SES) can be an effective treatment strategy for improving sensory and motor function. By providing low-level stimulation, increased signals are delivered to the brain and can lead to improved function and cortical reorgainzation.

Innovative Stroke Recovery Devices

Not all stroke recovery devices need electrical stimulation to aid in task-oriented training. Neurorehabilitation researchers have also incorporated mechanical features into lightweight gloves that simply ease the burden on the hands and fingers. For example, the SaeboGlove includes an innovative tension system that connects and controls the fingers, thumb, wrist, and forearm.


(Source: Saebo)

Stroke P5glove-6sm

(Source: HWP)

Devices like the SaeboGlove and and the P5 Glove, a digital rehab glove designed to induce neural plasticity in the patient through specific and customized exercises with gamification, helps clients suffering from neurological and orthopedic injuries incorporate their hand functionally in therapy and at home.

Video Conferences with Doctors

Your odds of regaining movement after stroke are highly dependent on the speed with which you receive treatment. When stroke occurs, every second without proper diagnosis and treatment may cause more oxygen loss and damage to your brain cells. And after stroke, every moment of recovery is critical.

Ideally, all stroke patients would have immediate access to caregivers when stroke occurs, and then enjoy continuous access to rehabilitative and medical experts after they leave the hospital. In addition to caregivers who provide constant supervision, it’s important for patients’ healthcare providers to respond quickly to any concerns or questions as they monitor the patient’s progress.

Unfortunately, this isn’t always possible. Stroke is the country’s leading cause of long-term disability, and consistent, supervised therapy is one of the best ways to minimize complications and reduce a patient’s risks of suffering permanent mobility loss. But if patients can’t get to their therapist regularly – or get a proper diagnosis and treatment as soon as stroke occurs – they can face preventable setbacks. Now, the Internet is making it possible to maintain communication throughout the diagnosis, treatment, and recovery process.

Alabama’s Madison Hospital is one of many healthcare facilities that now use computers and cameras to connect neurologists with stroke patients. Patients who may be suffering a stroke – or complications during recovery – can now seek diagnosis and treatment through live conference calls with stroke experts at other hospitals. This makes incorrect diagnoses less likely, and ensures that stroke patients get the help they need immediately instead of waiting while more damage is done and experts are called in.


(Source: Froedtert)


After patients return home, they may also conduct video chats with their physical therapists as they perform at-home stroke exercises. Virtual supervision may not be a substitute for the real thing, but it’s far more useful than unsupervised exercises that could do more harm than good, and it keeps patients accountable and their progress consistent. In fact, video conferencing is so useful that some insurance companies now cover virtual checkups.

Technology for The Greater Good

As video conferencing, video games, virtual reality, and robotics take off in the consumer sphere, medicine continues to come along for the ride, and our solutions for battling debilitating disabilities grow stronger. Whether our latest technology is infused into wearables, or whether it creates new categories of products, dollars spent researching, development, testing and distributing new solutions is a major key to improving healthcare in the 21st century.


Whether you are a caregiver, occupational therapist or a stroke survivor yourself, Saebo provides stroke survivors young or old, access to transformative and life changing products. We pride ourselves on providing affordable, easily accessible, and cutting-edge solutions to people suffering from impaired mobility and function. We have several products to help with the stroke recovery and rehabilitation process. From the SaeboFlex, which allows clients to incorporate their hand functionally in therapy or at home, to the SaeboMAS, an unweighting device used to assist the arm during daily living tasks and exercise training, we are commitment to helping create innovative products for stroke recovery. Check out all of our product offerings or let us help you find which product is right for you.

Source: How Technology Is Changing Stroke Rehabilitation | Saebo

, , , , ,

Leave a comment

[Poster] Utility and Usability of the MYO Gesture Armband as a Fine Motor Virtual Reality Gaming Intervention

To establish utility and usability of the MYO Gesture Armband (MYO) as a controller for playing virtual reality (VR) games as a tool for hand motor rehabilitation.

Source: Utility and Usability of the MYO Gesture Armband as a Fine Motor Virtual Reality Gaming Intervention – Archives of Physical Medicine and Rehabilitation

, , , , , ,

Leave a comment

[ARTICLE] Self-directed arm therapy at home after stroke with a sensor-based virtual reality training system – Full Text



The effect of rehabilitative training after stroke is dose-dependent. Out-patient rehabilitation training is often limited by transport logistics, financial resources and a lack of motivation/compliance. We studied the feasibility of an unsupervised arm therapy for self-directed rehabilitation therapy in patients’ homes.


An open-label, single group study involving eleven patients with hemiparesis due to stroke (27 ± 31.5 months post-stroke) was conducted. The patients trained with an inertial measurement unit (IMU)-based virtual reality system (ArmeoSenso) in their homes for six weeks. The self-selected dose of training with ArmeoSenso was the principal outcome measure whereas the Fugl-Meyer Assessment of the upper extremity (FMA-UE), the Wolf Motor Function Test (WMFT) and IMU-derived kinematic metrics were used to assess arm function, training intensity and trunk movement. Repeated measures one-way ANOVAs were used to assess differences in training duration and clinical scores over time.


All subjects were able to use the system independently in their homes and no safety issues were reported. Patients trained on 26.5 ± 11.5 days out of 42 days for a duration of 137 ± 120 min per week. The weekly training duration did not change over the course of six weeks (p = 0.146). The arm function of these patients improved significantly by 4.1 points (p = 0.003) in the FMA-UE. Changes in the WMFT were not significant (p = 0.552). ArmeoSenso based metrics showed an improvement in arm function, a high number of reaching movements (387 per session), and minimal compensatory movements of the trunk while training.


Self-directed home therapy with an IMU-based home therapy system is safe and can provide a high dose of rehabilitative therapy. The assessments integrated into the system allow daily therapy monitoring, difficulty adaptation and detection of maladaptive motor patterns such as trunk movements during reaching.



Functional outcome following stroke is positively correlated with the dose of the applied rehabilitative intervention [1]. Therefore, post-stroke therapy should be provided at a high intensity, a high frequency and over long periods of time [1, 2]. However, the delivery of intensive physical therapy requires extensive therapist support, is expensive, and is often limited by the low compliance and lack of motivation to perform rehabilitative training at the recommended frequency [3]. This can lead to functional deterioration, e.g., by learned non-use of the affected limb [4].

Self-directed home therapy, supported by dedicated instrumented devices [5, 6, 7] or virtual reality gaming platforms [8, 9, 10, 11, 12, 13], could help to increase the dose of rehabilitation at low cost without the need for direct supervision by a therapist. It is important that such home therapy adapts to changes in the subject’s performance in order for it to remain challenging and motivating [8]. On the other hand, unsupervised rehabilitative training could lead to inefficient or harmful (i.e. maladaptive) movement sequences or pain, and could potentially worsen performance [8, 11, 14]. Home therapy should, therefore, include monitoring of movement quantity and quality. Several platforms dedicated to upper-extremity home rehabilitation have been proposed [6, 7, 15, 16, 17]. However, to the best of our knowledge only few were actually installed in the patients’ homes for several weeks and tested for feasibility beyond case studies. These home studies always involved some external supervision, in the form of e.g. on-site visits [16, 17], tele-monitoring and adaption [16, 17] or telephone calls [6, 7], which might have affected compliance and motivation and thereby therapy dosage. However, such an approach requires manpower, which limits the affordability and scalability of home-based therapy. The feasibility and compliance of completely unsupervised upper-limb stroke therapy over the course of several weeks remains to be investigated.

In this paper we investigate the feasibility of self-directed home training with the custom-designed ArmeoSenso system [18], a virtual reality arm rehabilitation platform based on wearable inertial measurement units (IMU). In a clinical study involving eleven patients with hemiparesis of the arm due to stroke, we evaluated the ability to deliver therapy at a high dose through simple-to-use and entertaining, yet functionally relevant and adaptive rehabilitation games. Unsupervised, automated assessments integrated into each therapy session allowed monitoring of arm function, and detection of undesired compensatory movements.


ArmeoSenso training system

ArmeoSenso comprises a motion capture system based on wearable sensors in combination with an all-in-one touch screen computer (Inspiron 2330, Dell Inc., Fig. 1a). The therapy software provides a user-friendly graphical user interface, two therapy games, and two short automated assessments of arm function [18]. For real-time tracking of arm and trunk movements, the patient wears three IMUs (MotionPod 3, Movea Inc.) fixed to the lower and upper arm as well as the trunk (Fig. 1a). The IMUs measure acceleration, angular velocity and the magnetic field, all in three dimensions, and stream this data wirelessly to a receiver block, which is connected to the computer via USB and serves as a docking station to charge the sensors. A kinematic reconstruction estimates the orientation of the trunk, the upper- and the lower arm based on the Madgwick algorithm [19] and the corresponding joint positions are computed with forward kinematics [20]. This reconstruction serves as input for the assessments and therapeutic virtual reality games (Fig. 1b). By using the same virtual kinematic parameters for each patient, virtual sizes, e.g. distances or the size of targets, are normalized to the patient’s body size. To discourage trunk inclination or rotation during pointing movements, the arm movements are computed and displayed relative to the trunk.

Fig. 1 System Overview and Study Outline. a: Photograph of a healthy subject using ArmeoSenso. b: Screenshot of the pointing task assessment: the virtual upper- and lower arm and the trunk are displayed. The arm points to a target. c: Sequence of a training session. Before each training session, two automated assessments are performed. d: Study outline: The ArmeoSenso system is installed in the patient’s home for six weeks. The patients are assessed clinically before the start, after three weeks, and after six weeks of training. Abbreviations: WMFT: Wolf Motor Function Test; FMA-UE: Fugl-Meyer Assessment Upper Extremity; NIHSS: National Institute of Health Stroke Scale. *system installation and patient instruction by a therapist

Visit Web Site

, , , , , , , , ,

Leave a comment

[Abstract] A robotic telerehabilitation game system for multiplayer activities.

Background. The rise in cases of motor impairing illnesses demands the research for improvements in rehabilitation therapy. The study of robotics for enhancing motor recovery has been gaining momentum, but there is still little standardization of tools.

Objectives. This paper shows the current development state of a proposed new robotic treatment platform, primarily geared towards post-stroke cases, but intended to be reusable for other kinds of motor disabilities.

Methods. This project differs from current solutions because of its modular design, distributed processing, remote interaction capabilities, and by dealing with patients motivation while treated with multiplayer video-games. Custom and commercial robotic orthoses could be used by individuals, while they are being treated, to join each other in a competitive or cooperative activity in a virtual reality environment. As network-connected participants could be separated by large distances, communication delays are minimized or compensated. For a viability test, two healthy subjects played a customized Pong game together using the system.

Results. The preliminary testing provides evidence that the designed infrastructure could become a viable platform for rehabilitation systems, as data can be synchronized across users within a tolerable deviation margin.

Conclusion. The system proves itself feasible, but improvements on handling bad communication conditions and definition of performance evaluation protocols are needed.

Source: IEEE Xplore Abstract – A robotic telerehabilitation game system for multiplayer activities

, , , , , , , ,

Leave a comment

[Slideshare] Games For Upper-limb Stroke Rehabilitation (Seminar)

Source: Pinterest • The world’s catalog of ideas

, , , , , , ,

Leave a comment

[ARTICLE] Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial – Full Text HTML/PDF



Virtual reality (VR)-based rehabilitation has been reported to have beneficial effects on upper extremity function in stroke survivors; however, there is limited information about its effects on distal upper extremity function and health-related quality of life (HRQoL). The purpose of the present study was to examine the effects of VR-based rehabilitation combined with standard occupational therapy on distal upper extremity function and HRQoL, and compare the findings to those of amount-matched conventional rehabilitation in stroke survivors.


The present study was a single-blinded, randomized controlled trial. The study included 46 stroke survivors who were randomized to a Smart Glove (SG) group or a conventional intervention (CON) group. In both groups, the interventions were targeted to the distal upper extremity and standard occupational therapy was administered. The primary outcome was the change in the Fugl–Meyer assessment (FM) scores, and the secondary outcomes were the changes in the Jebsen–Taylor hand function test (JTT), Purdue pegboard test, and Stroke Impact Scale (SIS) version 3.0 scores. The outcomes were assessed before the intervention, in the middle of the intervention, immediately after the intervention, and 1 month after the intervention.


The improvements in the FM (FM-total, FM-prox, and FM-dist), JTT (JTT-total and JTT-gross), and SIS (composite and overall SIS, SIS-social participation, and SIS-mobility) scores were significantly greater in the SG group than in the CON group.


VR-based rehabilitation combined with standard occupational therapy might be more effective than amount-matched conventional rehabilitation for improving distal upper extremity function and HRQoL.

Trial registration

This study is registered under the title “Effects of Novel Game Rehabilitation System on Upper Extremity Function of Patients With Stroke” and can be located in with the study identifier NCT02029651.


Regaining upper extremity function is one of the major goals in stroke survivors, as it is important for performing activities of daily living (ADLs). However, approximately 80 % of stroke survivors have upper extremity limitations, and these limitations persist in approximately half of these survivors in the chronic phase [1, 2]. Distal upper extremity function is vital for performing ADLs, such as holding objects like utensils, turning a doorknob or key in a lock, telephone or computer use, and writing, and is strongly related to quality of life (QoL) in stroke survivors [3]. In stroke survivors, the distal upper extremity is severely affected and is the last body part to recover [4]. Therefore, improving distal upper extremity function is of primary importance in the rehabilitation of stroke survivors.

Recent studies have emphasized the use of interventions that are focused and repetitive, relevant to real-life, and actively performed in order to promote cortical reorganization and neuroplasticity [58]. In this context, conventional interventions have been complemented by novel technologies such as virtual reality (VR).

VR-based rehabilitation is promising in stroke survivors, and many types of VR-based rehabilitation apparatus from commercial video game equipment to robotics are currently being developed and used. In the area of upper limb rehabilitation, a large number of studies have been performed in stroke survivors, and a recent systematic review concluded that the use of VR-based rehabilitation is superior to amount-matched conventional rehabilitation for improving upper limb function [9]. Nevertheless, most studies on VR-based rehabilitation for the upper extremity reported on the proximal upper extremity, with limited information on the distal upper extremity. Although 2 previous studies showed promising results regarding VR-based rehabilitation for the distal upper extremity, these studies did not include a control group [10, 11]. Randomized control trials have been performed using a VR system with different types of gloves; however, a definite conclusion about the treatment effect could not be obtained owing to the low number of participants [12, 13]. Furthermore, the effects of VR-based rehabilitation on health related quality of life (HRQoL) have not been appropriately assessed, although the QoL of stroke survivors is crucial for comprehensive rehabilitation.

Therefore, the objective of the present study was to examine the effects of VR-based rehabilitation combined with standard occupational therapy (OT) on distal upper extremity function and HRQoL, and compare the findings to those of amount-matched conventional rehabilitation in stroke survivors.

Continue —> Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial | Journal of NeuroEngineering and Rehabilitation | Full Text

Download PDF

, , , , , , ,

Leave a comment

[ARTICLE] Potential of motor recovery in upper limb after a 3-month robot assisted therapy in subacute stroke patients


Following stroke, the use of robotic in rehabilitation program leads to increase the number of movement performed on each session. The present study aimed to investigate predictive factors of upper limb motor recovery after a 3-month robot-assisted therapy added to conventional occupational therapy.


In this retrospective study, 22 post-stroke patients (9 women, 53 ± 18 y, delay post-stroke at baseline, M2, 63 ± 25 days) performed robot-assisted shoulder/elbow training in subacute phase (InMotion 2.0, 50 ± 17 sessions over 3 months). All participants underwent evaluations before (M2) and after the training (M5) using the clinical score of Fugl-Meyer (FM) and the hand mean velocity (V) measured by the robot in reaching tasks on horizontal plane toward 3 directions (forward, inside and outside). A predictive model of the patient benefit was tested using Receiver of 0.04 m/s in hand velocity.


At M5, the FM score increased by 28% (p = 1.2E−3, t-test) and V by 122% (p = 1.2E−7). Concerning the ROC analysis, based on the first criteria, +9 pts of FM score at M5, the probability (AUC) is 0.86 with a 17 pts FM cut-off at M2 (p = 4.32E−5) and 0.64 with a 0.02 m/s velocity cut-off at M2 (p = 2.62E−2). Based on the second criteria, +0.04 m/s of hand velocity at M5, the probability is 0.93 with a 20 pts FM cut-off (p = 7.34E−16), while the velocity cut-off is no significant.


The potential functional benefit (+9 pts of the Fugl-Meyer score [1]), associated with a rehabilitation program including robot-assistive training between the 2nd and the 5th months after stroke might be predicted from baseline evaluation.Keywords

Source: Potential of motor recovery in upper limb after a 3-month robot assisted therapy in subacute stroke patients

, , , , , , , ,

Leave a comment

[ARTICLE] Use of exergames for upper extremity rehabilitation in stroke patients


Virtual reality (VR) can promote functional rehabilitation of arm movements through environments allowing the practice of a variety of tasks while providing feedback [1]. We evaluated an affordable VR system for arm rehabilitation, developed by Jintronix Inc and based on the Microsoft Kinect, that provides three unilateral and two bilateral activities, each with ten difficulty levels.


Our objectives were to (1) determine which activities and levels of difficulty are appropriate for rehabilitation of arm movements in stroke patients with different degrees of motor impairment; and (2) determine the ease of use and subjective experience of patients using the VR arm rehabilitation system.


Clinicians each supervised two to four stroke patients who participated in three 20-minute sessions with the Jintronix system. We determined the highest level of difficulty attained by patients in each activity with a performance score of at least 50%. Arm impairment was assessed using the upper extremity section of the Chedoke-McMaster Scale (CM) [2]. Patients and clinicians completed a questionnaire on the usability of the Jintronix system, based on the technology acceptance model (FD Davis [3]).


Fifteen clinicians supervised a total of 40 stroke patients. Over 80% of the clinicians and patients provided positive feedback in terms of ease of use and VR experience. For each activity of the Jintronix system, results indicated a positive correlation between the CM score and the maximal difficulty level reached by stroke patients.


Our data demonstrate the feasibility of using an affordable VR arm rehabilitation system in a clinical setting and provide clinical guidelines for the selection of impairment-specific difficulty levels.

Source: Use of exergames for upper extremity rehabilitation in stroke patients

, , , , , , , , ,

Leave a comment

%d bloggers like this: