Posts Tagged Video games

[WEB SITE] Video Games Suggested as Mobility Aids for Stroke Patients

Published on 

http://www.dreamstime.com/royalty-free-stock-photography-video-games-hand-written-image28837617

 

Researchers propose that video games be used as a complement to physiotherapy treatments to help improve the mobility of patients who have experienced ischemic strokes.

In their study, published in the PNAS Journal, researchers from Basque Center on Cognition, Brain and Language (BCBL) in San Sebastian and the London Imperial College analyzed the architecture of brain injuries in stroke patients.

They propose a new therapeutic pathway that complements the physical treatments received by these patients with therapies to overcome attention deficit disorders, such as working with video games.

“Patients with brain injuries in attention control areas also suffer motility control problems, even when the movement required by the task is very simple,” says BCBL researcher David Soto, in a media release from FECYT – Spanish Foundation for Science and Technology.

The team explored the extent and location of brain injuries in 167 stroke patients for more than 3 years. Through a “mapping” performed with magnetic resonance, they identified the affected part and the type and size of the lesion, and analyzed the connectivity between the different areas of the brain.

Next, they subjected the patients to various motor tasks, some very simple, such as grabbing an object with force. After the tests, the researchers found that these tasks were “impaired” in those patients who had injuries in the area of the brain “involved” in attention, the release explains.

Soto notes that before this study was conducted it was thought that the control of movement and the attention control aspect were “different systems” with little relation to each other, and that the treatments enabled for the patients with cognitive injuries could not serve for those who had mobility problems. However, their research appears to suggest otherwise.

“We have to know first how our brain controls and moves to design effective therapeutic tools for stroke patients and specific therapies for each individual depending on where the injury has occurred,” he concludes.

To confirm these results, the next step will be to establish a clinical trial with patients suffering motor skills disorders due to a stroke and divide them into two groups: one of them undergoing physiotherapy treatment and the other with complementary cognitive training, per the release.

[Source(s): FECYT – Spanish Foundation for Science and Technology, Science Daily]

 

via Video Games Suggested as Mobility Aids for Stroke Patients – Rehab Managment

Advertisements

, ,

Leave a comment

[Abstract] Active exergames to improve cognitive functioning in neurological disabilities: a systematic review and meta-analysis

INTRODUCTION: Exergames represent a way to perform physical activity through active video games, serving as potentially useful tool in the field of neurorehabilitation. However, little is known regarding the possible role of exergames in improving cognitive functions in persons suffering from neurological disabilities.
EVIDENCE ACQUISITION: A search for relevant articles was carried out on PubMed/Medline, Scopus, PEDro, and Google Scholar. Only randomized controlled studies and non-randomized but controlled studies were retained. The following additional inclusion criteria were applied: studies focused on physical activity interventions carried out by means of exergames; populations targeted were affected by neurological disabilities; and reported results were related to cognitive outcomes. We calculated standardized mean differences (SMD) and pooled results using a random effects meta-analysis.
EVIDENCE SYNTHESIS: Of 520 abstracts screened, thirteen studies met the criteria to be included yielding a total of 465 participants, 233 randomized to exergames, and 232 allocated to the alternative or no intervention. The included studies varied in terms of studied populations (e.g., multiple sclerosis, post-stroke hemiparesis, Parkinson’s disease, dementia, dyslexia, Down syndrome), type and duration of interventions, and cognitive outcome measures. Exergames significantly improved executive functions (SMD=0.53, p=0.005; 8 studies, n=380) and visuo-spatial perception (SMD=0.65, p<0.0001; 5 studies, n=209) when compared to the alternative or no intervention. There were no significant differences for attention (SMD=0.57, p=0.07; 7 studies, n=250) and global cognition (SMD=0.05, p=0.80; 6 studies, n=161).
CONCLUSIONS: Exergames are a highly-flexible tool for rehabilitation of both cognitive and motor functions in adult populations suffering from various neurological disabilities and developmental neurological disorders. Additional high-quality clinical trials with larger samples and more specific cognitive outcomes are needed to corroborate these preliminary findings.
CLINICAL REHABILITATION IMPACT: Exergames could be considered either as a supplemental treatment to conventional rehabilitation, or as strategy to extend benefits of conventional programs at home.

Full Text  PDF  

via Active exergames to improve cognitive functioning in neurological disabilities: a systematic review and meta-analysis – European Journal of Physical and Rehabilitation Medicine 2017 Oct 25 – Minerva Medica – Journals

, , ,

Leave a comment

[Abstract] Virtual reality for stroke rehabilitation – Review

Abstract

BACKGROUND:
Virtual reality and interactive video gaming have emerged as recent treatment approaches in stroke rehabilitation with commercial gaming consoles in particular, being rapidly adopted in clinical settings. This is an update of a Cochrane Review published first in 2011 and then again in 2015.

OBJECTIVES:
Primary objective: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity.Secondary objectives: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on: gait and balance, global motor function, cognitive function, activity limitation, participation restriction, quality of life, and adverse events.

SEARCH METHODS:
We searched the Cochrane Stroke Group Trials Register (April 2017), CENTRAL, MEDLINE, Embase, and seven additional databases. We also searched trials registries and reference lists.

SELECTION CRITERIA:
Randomised and quasi-randomised trials of virtual reality (“an advanced form of human-computer interface that allows the user to ‘interact’ with and become ‘immersed’ in a computer-generated environment in a naturalistic fashion”) in adults after stroke. The primary outcome of interest was upper limb function and activity. Secondary outcomes included gait and balance and global motor function.

DATA COLLECTION AND ANALYSIS:
Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data, and assessed risk of bias. A third review author moderated disagreements when required. The review authors contacted investigators to obtain missing information.

MAIN RESULTS:
We included 72 trials that involved 2470 participants. This review includes 35 new studies in addition to the studies included in the previous version of this review. Study sample sizes were generally small and interventions varied in terms of both the goals of treatment and the virtual reality devices used. The risk of bias present in many studies was unclear due to poor reporting. Thus, while there are a large number of randomised controlled trials, the evidence remains mostly low quality when rated using the GRADE system. Control groups usually received no intervention or therapy based on a standard-care approach.

PRIMARY OUTCOME:
results were not statistically significant for upper limb function (standardised mean difference (SMD) 0.07, 95% confidence intervals (CI) -0.05 to 0.20, 22 studies, 1038 participants, low-quality evidence) when comparing virtual reality to conventional therapy. However, when virtual reality was used in addition to usual care (providing a higher dose of therapy for those in the intervention group) there was a statistically significant difference between groups (SMD 0.49, 0.21 to 0.77, 10 studies, 210 participants, low-quality evidence).

SECONDARY OUTCOMES:
when compared to conventional therapy approaches there were no statistically significant effects for gait speed or balance. Results were statistically significant for the activities of daily living (ADL) outcome (SMD 0.25, 95% CI 0.06 to 0.43, 10 studies, 466 participants, moderate-quality evidence); however, we were unable to pool results for cognitive function, participation restriction, or quality of life. Twenty-three studies reported that they monitored for adverse events; across these studies there were few adverse events and those reported were relatively mild.

AUTHORS’ CONCLUSIONS:
We found evidence that the use of virtual reality and interactive video gaming was not more beneficial than conventional therapy approaches in improving upper limb function. Virtual reality may be beneficial in improving upper limb function and activities of daily living function when used as an adjunct to usual care (to increase overall therapy time). There was insufficient evidence to reach conclusions about the effect of virtual reality and interactive video gaming on gait speed, balance, participation, or quality of life. This review found that time since onset of stroke, severity of impairment, and the type of device (commercial or customised) were not strong influencers of outcome. There was a trend suggesting that higher dose (more than 15 hours of total intervention) was preferable as were customised virtual reality programs; however, these findings were not statistically significant.

Update of
Virtual reality for stroke rehabilitation. [Cochrane Database Syst Rev. 2015]

via Virtual reality for stroke rehabilitation. – PubMed – NCBI

, , , , , ,

Leave a comment

[Abstract] Active exergames to improve cognitive functioning in neurological disabilities: a systematic review and meta-analysis.

Exergames represent a way to perform physical activity through active video games, serving as potentially useful tool in the field of neurorehabilitation. However, little is known regarding the possible role of exergames in improving cognitive functions in persons suffering from neurological disabilities.A search for relevant articles was carried out on PubMed/Medline, Scopus, PEDro, and Google Scholar. Only randomized controlled studies and non-randomized but controlled studies were retained. The following additional inclusion criteria were applied: studies focused on physical activity interventions carried out by means of exergames; populations targeted were affected by neurological disabilities; and reported results were related to cognitive outcomes. We calculated standardized mean differences (SMD) and pooled results using a random effects meta-analysis.Of 520 abstracts screened, thirteen studies met the criteria to be included yielding a total of 465 participants, 233 randomized to exergames, and 232 allocated to the alternative or no intervention. The included studies varied in terms of studied populations (e.g., multiple sclerosis, post-stroke hemiparesis, Parkinson’s disease, dementia, dyslexia, Down syndrome), type and duration of interventions, and cognitive outcome measures. Exergames significantly improved executive functions (SMD=0.53, p=0.005; 8 studies, n=380) and visuo-spatial perception (SMD=0.65, p<0.0001; 5 studies, n=209) when compared to the alternative or no intervention. There were no significant differences for attention (SMD=0.57, p=0.07; 7 studies, n=250) and global cognition (SMD=0.05, p=0.80; 6 studies, n=161).Exergames are a highly-flexible tool for rehabilitation of both cognitive and motor functions in adult populations suffering from various neurological disabilities and developmental neurological disorders. Additional high-quality clinical trials with larger samples and more specific cognitive outcomes are needed to corroborate these preliminary findings.Exergames could be considered either as a supplemental treatment to conventional rehabilitation, or as strategy to extend benefits of conventional programs at home.

via Active exergames to improve cognitive functioning in neurological disabilities: a systematic… – Abstract – Europe PMC

, ,

Leave a comment

[ARTICLE] Effect of Robot-Assisted Game Training on Upper Extremity Function in Stroke Patients – Full Text

ObjectiveTo determine the effects of combining robot-assisted game training with conventional upper extremity rehabilitation training (RCT) on motor and daily functions in comparison with conventional upper extremity rehabilitation training (OCT) in stroke patients.

MethodsSubjects were eligible if they were able to perform the robot-assisted game training and were divided randomly into a RCT and an OCT group. The RCT group performed one daily session of 30 minutes of robot-assisted game training with a rehabilitation robot, plus one daily session of 30 minutes of conventional rehabilitation training, 5 days a week for 2 weeks. The OCT group performed two daily sessions of 30 minutes of conventional rehabilitation training. The effects of training were measured by a Manual Function Test (MFT), Manual Muscle Test (MMT), Korean version of the Modified Barthel Index (K-MBI) and a questionnaire about satisfaction with training. These measurements were taken before and after the 2-week training.

ResultsBoth groups contained 25 subjects. After training, both groups showed significant improvements in motor and daily functions measured by MFT, MMT, and K-MBI compared to the baseline. Both groups demonstrated similar training effects, except motor power of wrist flexion. Patients in the RCT group were more satisfied than those in the OCT group.

ConclusionThere were no significant differences in changes in most of the motor and daily functions between the two types of training. However, patients in the RCT group were more satisfied than those in the OCT group. Therefore, RCT could be a useful upper extremity rehabilitation training method.

INTRODUCTION

stroke is a central nervous system disease caused by cerebrovascular problems such as infarction or hemorrhage. Stroke may lead to impairment of various physical functions, including hemiplegia, language disorder, swallowing disorder or cognitive disorder, according to the location and degree of morbidity [1]. Among these, hemiplegia is a common symptom occurring in 85% of stroke patients. In particular, upper extremity paralysis is more frequent and requires longer recovery time than lower extremity paralysis [23]. To maintain the basic functions of ordinary life, the use of the upper extremities is essential; therefore, upper extremity paralysis commonly causes problems in performing the activities of daily living [2].

Robot-assisted rehabilitation treatment has recently been widely investigated as an effective neurorehabilitation approach that may augment the effects of physical therapy and facilitate motor recovery [4]. Robot-assisted rehabilitation treatments have been developed in recent decades to reduce the expenditure of therapists’ effort and time, to reproduce accurate repetitive motions and to interact with force feedback [56]. The most important advantage of using robot-assisted rehabilitation treatment is the ability to deliver high-dosage and high-intensity training [7].

In rehabilitation patients may find such exercises monotonous and boring, and may lose motivation over time [8]. Upper extremity rehabilitation training using video games, such as Nintendo Wii games and the PlayStation EyeToy games, enhanced upper extremity functions and resulted in greater patient satisfaction than conventional rehabilitation treatment [910111213].

The objective of this study was to determine the effects of combining robot-assisted game training with conventional upper extremity rehabilitation training (RCT) on motor and daily functions in comparison to conventional upper extremity rehabilitation training (OCT) in stroke patients. This study was a randomized controlled trial and we evaluated motor power, upper extremity motor function, daily function and satisfaction. […]

Continue —> KoreaMed Synapse

Fig. 1. (A) Neuro-X, an upper extremity rehabilitation robot, consisting of a video monitor, a robot arm and a computer. (B) The patient performing robot-assisted game training with the upper extremity rehabilitation robot.

, , , , , , ,

1 Comment

[Abstract] Enhancing clinical implementation of virtual reality

Abstract:

Despite an emerging evidence base and rapid increases in the development of clinically accessible virtual reality (VR) technologies for rehabilitation, clinical adoption remains low. This paper uses the Theoretical Domains Framework to structure an overview of the known barriers and facilitators to clinical uptake of VR and discusses knowledge translation strategies that have been identified or used to target these factors to facilitate adoption. Based on this discussion, we issue a ‘call to action’ to address identified gaps by providing actionable recommendations for development, research and clinical implementation.

Source: Enhancing clinical implementation of virtual reality – IEEE Xplore Document

, , , , , , , , ,

Leave a comment

[WEB SITE] How video games affect the brain 

There is increasing research focused on the impact of video gaming on the brain.

 

Video gaming is clearly a popular form of entertainment, with video gamers collectively spending 3 billion hours per week in front of their screens. Due to their widespread use, scientists have researched how video games affect the brain and behavior. Are these effects positive or negative? We examine the evidence.

Source: How video games affect the brain – Medical News Today

,

Leave a comment

[ARTICLE] The effect of active video games on cognitive functioning in clinical and non-clinical populations: A meta-analysis of randomized controlled trials – Full Text

Abstract

Physically-active video games (‘exergames’) have recently gained popularity for leisure and entertainment purposes. Using exergames to combine physical activity and cognitively-demanding tasks may offer a novel strategy to improve cognitive functioning. Therefore, this systematic review and meta-analysis was performed to establish effects of exergames on overall cognition and specific cognitive domains in clinical and non-clinical populations. We identified 17 eligible RCTs with cognitive outcome data for 926 participants. Random-effects meta-analyses found exergames significantly improved global cognition (g = 0.436, 95% CI = 0.18–0.69, p = 0.001). Significant effects still existed when excluding waitlist-only controlled studies, and when comparing to physical activity interventions. Furthermore, benefits of exergames where observed for both healthy older adults and clinical populations with conditions associated with neurocognitive impairments (all p < 0.05). Domain-specific analyses found exergames improved executive functions, attentional processing and visuospatial skills. The findings present the first meta-analytic evidence for effects of exergames on cognition. Future research must establish which patient/treatment factors influence efficacy of exergames, and explore neurobiological mechanisms of action.

1. Introduction

Cognition can be broadly defined as the actions of the brain involved in understanding and functioning in our external environment (Hirschfeld and Gelman, 1994). As it is generally accepted that cognition requires multiple mental processes, this broader concept has been theoretically separated into multiple ‘cognitive domains’ (Hirschfeld and Gelman, 1994). Although definitions vary, and the boundaries between domains often overlap, examples of distinct areas of cognitive functioning include the processes for learning and remembering verbal and spatial information, attentional capacities, response speed, problem-solving and planning (Strauss et al., 2006).

Various neuropsychological tests have been developed as tools for assessing and quantifying an individual’s overall cognitive functioning (or ‘global cognition’) along with their performance within the separable domains of cognition (Strauss et al., 2006). Performance in these various cognitive tests has been found to be relatively stable over time in healthy adults, and moderately accurate predictors of real-world functioning and occupational performance (Chaytor and Schmitter-Edgecombe, 2003 ;  Hunter, 1986). Furthermore, neuropsychological tests can detect the deficits in cognitive functioning which arise as a consequence of various psychiatric and neurological diseases (Mathuranath et al., 2000 ;  Nuechterlein et al., 2004). For example, people with Parkinson’s disease show marked impairments in planning and memory tasks (Dubois and Pillon, 1996), whereas those with schizophrenia have cognitive pervasive deficits, 1–2 standard deviations below population norms, which also predict the severity of disability in this population (Green et al., 2000). Additionally, cognitive abilities decline naturally in almost all people during healthy ageing (Van Hooren et al., 2007). In an ageing population, the functional consequences of cognitive decline may ultimately have a severe social and economic impact. Thus, interventions which improve cognition hold promise for the treatment of psychiatric and neurological diseases, an have positive implications for population health.

Fortunately, interventions which stimulate the brain and/or body can improve cognition, or attenuate decline. For instance, physical exercise has been shown to significantly improve global cognition, along with working memory and attentional processes, in both clinical and healthy populations (Firth et al., 2016Smith et al., 2010 ;  Zheng et al., 2016). Interventions can also be designed to target cognition directly, as computerized training programs for memory and other functions have been found to provide significant cognitive benefits, at least in the short term (Hill et al., 2017 ;  Melby-Lervåg and Hulme, 2013). Furthermore, ‘gamification’ of cognitive training programs can maximize their clinical effectiveness, as more complex and interesting programs are capable of better engaging patients in cognitively-demanding tasks while also training multiple cognitive processes simultaneously (Anguera et al., 2013).

Previous studies have found that providing both aerobic exercise and cognitive training together may have additive effects, preventing ageing-related cognitive decline more effectively (Shatil, 2013). This may be due to aerobic and cognitive activity stimulating neurogenesis through independent but complementary pathways; as animal studies show that while exercise stimulates cell proliferation, learning tasks support the survival of these new cells (Kempermann et al., 2010), such that combining these two types of training results in 30% more new neurons than either task alone (Fabel et al., 2009).

Rather than delivering aerobic and cognitive training in separate training sessions, recent advances in technology has presented an opportunity for combining physical activity with cognitively-challenging tasks in a single session through ‘exergames’. Exergames are considered as interactive video-games which require the player to produce physical body movements in order to complete set tasks or actions, in response to visual cues (Oh and Yang, 2010). Common examples include the ‘Nintendo Wii’ (along with ‘Wii Fit’ or ‘Wii Sports software’) or the ‘Microsoft Xbox Kinect’. Additionally, virtual reality systems which use exercise bikes and/or treadmills as a medium for players to interact with three-dimensional worlds have also been developed to provide immersive training experiences (Sinclair et al., 2007).

Along with their popular usage for leisure and entertainment, there is growing interest in the application of exergame systems to improve clinical outcomes. Recent systematic reviews and meta-analyses of this growing literature have provided preliminary evidence that exergames can improve various health-related outcomes, including reducing childhood obesity, improving balance and falls risk factors in elderly adults, facilitating functional rehabilitation in people with parkinson’s disease, and even reduce depression (Barry et al., 2014Li et al., 2016 ;  van’t Riet et al., 2014). However, the effects of exergames on cognitive functioning have not been systematically reviewed, despite many individual studies in this area.

Therefore, the aim of this study was to systematically review all existing trials of exergames for cognition, and apply meta-analytic techniques to establish the effects of exergames on global cognition along with individual cognitive domains. We also sought to (i) examine the effects of exergames on cognition in healthy and clinically-impaired populations, and (ii) investigate if the effects of exergames differed from those of aerobic exercise alone, by comparing exergames to traditional physical activity control conditions.

Fig. 1

Fig. 1. PRISMA flow diagram of systematic search and study selection.

Continue —> The effect of active video games on cognitive functioning in clinical and non-clinical populations: A meta-analysis of randomized controlled trials

, , , , , , , ,

Leave a comment

[ARTICLE] Improving executive function deficits by playing interactive video-games: secondary analysis of a randomized controlled trial for individuals with chronic stroke

BACKGROUND: Executive function deficits negatively impact independence and participation in everyday life of individuals with chronic stroke. Therefore, it is important to explore therapeutic interventions to improve executive functions.
AIM: The aim of this study was to determine the effectiveness of a 3-month interactive video-game group intervention compared to a traditional motor group intervention for improving executive functions in individuals with chronic stroke.
DESIGN: This study is a secondary analysis of a single-blind randomized controlled trial for improving factors related to physical activity of individuals with chronic stroke. Assessments were administered pre and post the intervention and at 3-month follow-up by assessors blind to treatment allocation.
METHODS: Thirty-nine individuals with chronic stroke with executive function deficits participated in an interactive video-game group intervention (N.=20) or a traditional group intervention (N.=19). The intervention included two 1-hour group sessions per week for three months, either playing video-games or performing traditional exercises/activities. Executive function deficits were assessed using The Trail Making Test (Parts A and B) and by two performance-based assessments; the Bill Paying Task from the Executive Function Performance Test (EFPT) and the Executive Function Route-Finding Task (EFRT).
RESULTS: Following intervention, scores for the Bill Paying Task (EFPT) decreased by 27.5% and 36.6% for the participants in the video-game and traditional intervention, respectively (F=17.3, P<0.000) and continued to decrease in the video-game group with small effect sizes. Effect size was small to medium for the TMT-B (F=0.003, P=0.954) and EFRT (F=1.2, P=0.28), without any statistical significance difference.
CONCLUSIONS: Interactive video-games provide combined cognitive-motor stimulation and therefore have potential to improve executive functioning of individuals with chronic stroke. Further research is needed.
CLINICAL REHABILITATION IMPACT: These findings highlight the potential of utilizing interactive video-games in a small group for keeping these individuals active, while maintaining and improving executive functioning especially for individuals with chronic stroke, who have completed their formal rehabilitation.

Source: Improving executive function deficits by playing interactive video-games: secondary analysis of a randomized controlled trial for individuals with chronic stroke – European Journal of Physical and Rehabilitation Medicine 2016 August;52(4):508-15 – Minerva Medica – Journals

 

, , , , , ,

Leave a comment

[Review] The use of commercial video games in rehabilitation: a systematic review – Full Text

Abstract

The aim of this paper was to investigate the effect of commercial video games (VGs) in physical rehabilitation of motor functions. Several databases were screened (Medline, SAGE Journals Online, and ScienceDirect) using combinations of the following free-text terms: commercial games, video games, exergames, serious gaming, rehabilitation games, PlayStation, Nintendo, Wii, Wii Fit, Xbox, and Kinect. The search was limited to peer-reviewed English journals. The beginning of the search time frame was not restricted and the end of the search time frame was 31 December 2015. Only randomized controlled trial, cohort, and observational studies evaluating the effect of VGs on physical rehabilitation were included in the review. A total of 4728 abstracts were screened, 275 were fully reviewed, and 126 papers were eventually included. The following information was extracted from the selected studies: device type, number and type of patients, intervention, and main outcomes. The integration of VGs into physical rehabilitation has been tested for various pathological conditions, including stroke, cerebral palsy, Parkinson’s disease, balance training, weight loss, and aging. There was large variability in the protocols used (e.g. number of sessions, intervention duration, outcome measures, and sample size). The results of this review show that in most cases, the introduction of VG training in physical rehabilitation offered similar results as conventional therapy. Therefore, VGs could be added as an adjunct treatment in rehabilitation for various pathologies to stimulate patient motivation. VGs could also be used at home to maintain rehabilitation benefits.

Introduction

Physical rehabilitation (PR) is a long and difficult process that may be hindered by many difficulties. Clinicians might encounter patients with counterproductive conditions during the PR program, such as poor motivation, limited time to perform rehabilitation exercises, financial issues, and difficulties reaching the PR location. Over the last few years, the user experience in video games (VGs) has changed from passive (i.e. a relatively passive player is seated with the controller in one hand) to active (i.e. the VG software tracks real physical displacement of the player’s body parts to control the game) participation. Such active game control requires a higher level of physical activity (Taylor et al., 2011). The integration of commercial VGs into conventional PR started about a decade ago, and several articles have reported integrating VGs with PR schemes. However, little is known about the real clinical efficacy of such integration. The evidence thus far is limited to a positive effect of VGs on PR motivation and engagement (Lohse et al., 2013). It is also important to define the limits of such interventions. The overall aim of this paper was to provide an overview of the scientific evidence from previously published studies related to the use of VGs in PR schemes and, more specifically, to determine in which clinical fields (e.g. neurology, orthopedic) and for what kind of patients (e.g. stroke, multiple sclerosis) VG research is being performed. The clinical efficacy of VGs on PR for various pathologies will also be discussed.

Continue —> The use of commercial video games in rehabilitation: a syst… : International Journal of Rehabilitation Research

Fig. 1. Flow diagram of study selection. CP, cerebral palsy; PD, Parkinson’s disease

, , , ,

Leave a comment

%d bloggers like this: