Posts Tagged Stroke

[Abstract] Exploration of barriers and enablers for evidence-based interventions for upper limb rehabilitation following a stroke: Use of Constraint Induced Movement Therapy and Robot Assisted Therapy in NHS Scotland

The routine use of evidence-based upper limb rehabilitation interventions after stroke has the potential to improve function and increase independence. Two such interventions are Constraint Induced Movement Therapy and Robot Assisted Therapy. Despite evidence to support both interventions, their use within the National Health Service appears, anecdotally, to be low. We sought to understand user perceptions in order to explain low uptake in clinical practice.

A combination of a cross-sectional online survey with therapists and semi-structured interviews with stroke patients was used to explore uptake and user opinions on the benefits, enablers and barriers to each intervention.

The therapists surveyed reported low use of Constraint Induced Movement Therapy and Robot Assisted Therapy in clinical practice within the Scottish National Health Service. Barriers identified by therapists were inadequate staffing, and a lack of training and resources. Interviews with stroke patients identified themes that may help us to understand the acceptability of each intervention, such as the impact of motivation.

Barriers to the uptake of Constraint Induced Movement Therapy and Robot Assisted Therapy within the clinical setting were found to be similar. Further qualitative research should be completed in order to help us understand the role patient motivation plays in uptake.

via Exploration of barriers and enablers for evidence-based interventions for upper limb rehabilitation following a stroke: Use of Constraint Induced Movement Therapy and Robot Assisted Therapy in NHS Scotland – Gillian Sweeney, Mark Barber, Andrew Kerr,

, , , , , , , , , , ,

Leave a comment

[An Exploratory Study] Enriched, Task-Specific Therapy in the Chronic Phase After Stroke – Full Text

Abstract

Background and Purpose:

There is a need to translate promising basic research about environmental enrichment to clinical stroke settings. The aim of this study was to assess the effectiveness of enriched, task-specific therapy in individuals with chronic stroke.

Methods:

This is an exploratory study with a within-subject, repeated-measures design. The intervention was preceded by a baseline period to determine the stability of the outcome measures. Forty-one participants were enrolled at a mean of 36 months poststroke. The 3-week intervention combined physical therapy with social and cognitive stimulation inherent to environmental enrichment. The primary outcome was motor recovery measured by Modified Motor Assessment Scale (M-MAS). Secondary outcomes included balance, walking, distance walked in 6 minutes, grip strength, dexterity, and multiple dimensions of health. Assessments were made at baseline, immediately before and after the intervention, and at 3 and 6 months.

Results:

The baseline measures were stable. The 39 participants (95%) who completed the intervention had increases of 2.3 points in the M-MAS UAS and 5 points on the Berg Balance Scale (both P < 0.001; SRM >0.90), an improvement of comfortable and fast gait speed of 0.13 and 0.23 m/s, respectively. (P < 0.001; SRM = 0.88), an increased distance walked over 6 minutes (24.2 m; P < 0.001; SRM = 0.64), and significant improvements in multiple dimensions of health. The improvements were sustained at 6 months.

Discussion and Conclusions:

Enriched, task-specific therapy may provide durable benefits across a wide spectrum of motor deficits and impairments after stroke. Although the results must be interpreted cautiously, the findings have implications for enriching strategies in stroke rehabilitation.

 

Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A304).

INTRODUCTION

The overall burden of stroke has increased across the globe and is the second commonest cause of death and a leading cause of adult disability worldwide.1 Many individuals with stroke face long-term consequences, which are usually complex and heterogeneous and can result in problems across multiple domains of functioning.2 The most common deficit after stroke is hemiparesis, which predisposes individuals to sedentary behaviors, seriously hampers postural control, and increases the risk of falls.3 Restoring impaired movement and associated functions is therefore a key goal in stroke rehabilitation.

Over the years, various approaches to physical rehabilitation for recovery of function and mobility after stroke have been developed.4 Many rehabilitation strategies used task-oriented and goal-directed training and include feedback, repetition, intensity, and specificity to regain lost functions.2,4 Such task- and context-specific training should target goals that are relevant for the needs of individuals with stroke.2 Many treatment methods are available to minimize functional disability, such as constraint-induced movement therapy, weight-supported treadmill training, cardiovascular training, and goal-directed physical exercise.2 High-intensity, high-dose, task-specific treatment strategies for stroke rehabilitation have also been developed.5 Nevertheless, individuals with stroke are increasingly left with persistent impairment,2 and many lack adequate stimulation, exercise, and socialization.6 The stroke rehabilitation field consequently faces a dual challenge: implementing new strategies to improve long-term outcome and tailoring treatment regimens to meet the needs of individuals with stroke.7

A growing amount of research suggests that the key to maximizing functional recovery after stroke is to combine a selection of components from different approaches.4,8,9 Combinational therapies have considerable potential to provide optimal gains in functional recovery after stroke by tapping into the multiple, complementary mechanisms that underlie neuroplasticity and repair.10 To further aid recovery from stroketask-specific therapy could be combined with environmental enrichment (EE).10 Environmental enrichment that enhances motor, cognitive, sensory, and social stimulation is shown to increase neuroplasticity in rodents, as compared with standard housing (Figure 1A and B).8,10

Figure 1

Figure 1: (A). A typical enriched environment condition composed of increased space and equipped with various objects that stimulate motor function by providing exercise, balancing or climbing activities (running wheel, igloos, tunnels, tube mazes, and ladders), and cognition (a variety of toys and objects to interact with and navigate in). The location and types of objects are changed regularly to maintain the concept of novelty and complexity in the environment, thereby offering multisensory stimulation (visual, acoustic, smell, touch, push, and sensory-motor challenges). Multiple animals are introduced to the stimulating environment simultaneously to facilitate social interaction (allogrooming, sniffing, and play-soliciting activities). (B). A standard housing condition that generally entails a cage with bedding and access to water and food.

A combination of different therapies is expected to have additive or even synergistic effects on neuroplasticity processes harnessed to aid rehabilitation after stroke.6,8,10,11 These findings support the idea that combinational therapies can aid recovery from stroke-related deficits.12 Despite the evidence that supports the potential of EE to enhance brain plasticity, it has largely remained a laboratory phenomenon, with little translation to clinical settings.13

Based on the fundamental principle of EE—that interventions should engage participants in concurrent physical, sensory, cognitive, and social activities or experiences—we designed an exploratory study of the EE paradigm in a clinical setting. Specifically, we investigated whether an intervention that combines high-dose and task-specific therapy with the sensory-motor, social, and cognitive stimulation inherent to EE could aid the recovery from stroke. The aim of the study was to assess the effectiveness of an enriched, task-specific therapy (ETT) program in enhancing functional motor performance as well as balance, gait, hand strength, and dexterity in individuals with residual hemiplegia in the chronic phase after stroke. We also investigated whether ETT improves confidence in task performance and health-related quality of life and reduces fatigue and depression.[…]

 

Continue —-> Enriched, Task-Specific Therapy in the Chronic Phase After S… : Journal of Neurologic Physical Therapy

, , , , , ,

Leave a comment

[Abstract + References] Gait rehabilitation after stroke: review of the evidence of predictors, clinical outcomes and timing for interventions

Abstract

The recovery of walking capacity is one of the main aims in stroke rehabilitation. Being able to predict if and when a patient is going to walk after stroke is of major interest in terms of management of the patients and their family’s expectations and in terms of discharge destination and timing previsions. This article reviews the recent literature regarding the predictive factors for gait recovery and the best recommendations in terms of gait rehabilitation in stroke patients. Trunk control and lower limb motor control (e.g. hip extensor muscle force) seem to be the best predictors of gait recovery as shown by the TWIST algorithm, which is a simple tool that can be applied in clinical practice at 1 week post-stroke. In terms of walking performance, the 6-min walking test is the best predictor of community ambulation. Various techniques are available for gait rehabilitation, including treadmill training with or without body weight support, robotic-assisted therapy, virtual reality, circuit class training and self-rehabilitation programmes. These techniques should be applied at specific timing during post-stroke rehabilitation, according to patient’s functional status.

References

  1. 1.

    Stevens E, Emmett E, Wang Y, McKevitt C, Wolfe C (2018) The burden of stroke in Europe, report. Division of Health and Social Care Research, King’s College London, London

  2. 2.

    Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS (1995) Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil 76(1):27–32

  3. 3.

    Harvey RL (2015) Predictors of functional outcome following stroke. Phys Med Rehabil Clin N Am 26(4):583–598

  4. 4.

    WHO (2007) International Classification of Functioning, Disability, and Health: Children & Youth Version: ICF-CY. World Health Organization

  5. 5.

    Kinoshita S, Abo M, Okamoto T, Tanaka N (2017) Utility of the revised version of the ability for basic movement scale in predicting ambulation during rehabilitation in poststroke patients. J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc 26(8):1663–1669

  6. 6.

    KNGF (2014) KNGF guidelines: stroke. Royal Dutch Society for Physical Therapy (Koninklijk Nederlands Genootschap voor Fysiotherapie, KNGF)

  7. 7.

    Holsbeeke L, Ketelaar M, Schoemaker MM, Gorter JW (2009) Capacity, capability, and performance: different constructs or three of a kind? Arch Phys Med Rehabil 90(5):849–855

  8. 8.

    Perry J, Garrett M, Gronley JK, Mulroy SJ (1995) Classification of walking handicap in the stroke population. Stroke 26(6):982–989

  9. 9.

    Smith MC, Barber PA, Stinear CM (2017) The TWIST algorithm predicts time to walking independently after stroke. Neurorehabil Neural Repair 31(10–11):955–964

  10. 10.

    Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC et al (2016) Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 47(6):e98–e169

  11. 11.

    Platz T (2019) Evidence-based guidelines and clinical pathways in stroke rehabilitation—an international perspective. Front Neurol 10:200

  12. 12.

    Kollen B, Kwakkel G, Lindeman E (2006) Longitudinal robustness of variables predicting independent gait following severe middle cerebral artery stroke: a prospective cohort study. Clin Rehabil 20(3):262–326

  13. 13.

    Veerbeek JM, Van Wegen EE, Harmeling-Van der Wel BC, Kwakkel G (2011) Is accurate prediction of gait in nonambulatory stroke patients possible within 72 hours poststroke? The EPOS study. Neurorehabil Neural Repair 25(3):268–274

  14. 14.

    Stinear CM, Byblow WD, Ward SH (2014) An update on predicting motor recovery after stroke. Ann Phys Rehabil Med 57(8):489–498

  15. 15.

    Collin C, Wade D (1990) Assessing motor impairment after stroke: a pilot reliability study. J Neurol Neurosurg Psychiatry 53(7):576–579

  16. 16.

    Fulk GD, He Y, Boyne P, Dunning K (2017) Predicting home and community walking activity poststroke. Stroke 48(2):406–411

  17. 17.

    Duncan PW, Sullivan KJ, Behrman AL, Azen SP, Wu SS, Nadeau SE et al (2011) Body-weight-supported treadmill rehabilitation after stroke. N Engl J Med 364(21):2026–2036

  18. 18.

    Kluding PM, Dunning K, O’Dell MW, Wu SS, Ginosian J, Feld J et al (2013) Foot drop stimulation versus ankle foot orthosis after stroke: 30-week outcomes. Stroke 44(6):1660–1669

  19. 19.

    Tudor-Locke C, Bassett DR Jr (2004) How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med (Auckl NZ) 34(1):1–8

  20. 20.

    Friedman PJ (1990) Gait recovery after hemiplegic stroke. Int Disabil Stud 12(3):119–122

  21. 21.

    Bland MD, Sturmoski A, Whitson M, Connor LT, Fucetola R, Huskey T et al (2012) Prediction of discharge walking ability from initial assessment in a stroke inpatient rehabilitation facility population. Arch Phys Med Rehabil 93(8):1441–1447

  22. 22.

    Jones PS, Pomeroy VM, Wang J, Schlaug G, Tulasi Marrapu S, Geva S et al (2016) Does stroke location predict walk speed response to gait rehabilitation? Hum Brain Mapp 37(2):689–703

  23. 23.

    Yelnik AP, Quintaine V, Andriantsifanetra C, Wannepain M, Reiner P, Marnef H et al (2017) AMOBES (Active Mobility Very Early After Stroke): a randomized controlled trial. Stroke 48(2):400–405

  24. 24.

    Bernhardt J, Langhorne P, Lindley RI, Thrift AG, Ellery F, Collier J et al (2015) Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet (Lond Engl) 386(9988):46–55

  25. 25.

    Stroke Foundation (2019) Clinical Guidelines for Stroke Management. Melbourne Australia

  26. 26.

    Mehrholz J, Thomas S, Elsner B (2017) Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD002840.pub3

  27. 27.

    Flansbjer UB, Holmback AM, Downham D, Patten C, Lexell J (2005) Reliability of gait performance tests in men and women with hemiparesis after stroke. J Rehabil Med 37(2):75–82

  28. 28.

    Perera S, Mody SH, Woodman RC, Studenski SA (2006) Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc 54(5):743–749

  29. 29.

    Eng JJ, Dawson AS, Chu KS (2004) Submaximal exercise in persons with stroke: test–retest reliability and concurrent validity with maximal oxygen consumption. Arch Phys Med Rehabil 85(1):113–118

  30. 30.

    Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B (2017) Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006185.pub3

  31. 31.

    de Rooij IJ, van de Port IG, Meijer JG (2016) Effect of virtual reality training on balance and gait ability in patients with stroke: systematic review and meta-analysis. Phys Ther 96(12):1905–1918

  32. 32.

    Cohen J (2013) Statistical power analysis for the behavioral sciences. Routledge, London

  33. 33.

    Faraone SV (2008) Interpreting estimates of treatment effects: implications for managed care. P T Peer Rev J Formul Manag 33(12):700–711

  34. 34.

    English C, Hillier SL, Lynch EA (2017) Circuit class therapy for improving mobility after stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD007513.pub2

  35. 35.

    Aaslund MK, Moe-Nilssen R, Gjelsvik BB, Bogen B, Naess H, Hofstad H et al (2017) A longitudinal study investigating how stroke severity, disability, and physical function the first week post-stroke are associated with walking speed six months post-stroke. Physiother Theory Pract 33(12):932–942

  36. 36.

    Cumming TB, Thrift AG, Collier JM, Churilov L, Dewey HM, Donnan GA et al (2011) Very early mobilization after stroke fast-tracks return to walking: further results from the phase II AVERT randomized controlled trial. Stroke 42(1):153–158

  37. 37.

    de Rooij IJM, van de Port IGL, Visser-Meily JMA, Meijer JG (2019) Virtual reality gait training versus non-virtual reality gait training for improving participation in subacute stroke survivors: study protocol of the ViRTAS randomized controlled trial. Trials 20(1):89

  38. 38.

    Cook DJ, Mulrow CD, Haynes RB (1998) Systematic reviews: synthesis of best evidence for clinical decisions. Ann Intern Med 126(5):376–380

  39. 39.

    Rother ET (2007) Systematic literature review × narrative review. Acta Paul Enferm 20:v–vi

Download references

via Gait rehabilitation after stroke: review of the evidence of predictors, clinical outcomes and timing for interventions | SpringerLink

 

, , , ,

Leave a comment

[PhD Thesis] The Design Of Exergaming Systems For Autonomous Rehabilitation

A PhD thesis by Michele Pirovano (Politecnico di Milano, Italy), studying the feasibility of at-home rehabilitation using exergames for stroke patients. It includes the results of a 3-months pilot test using an original exergaming system developed by the author.

Download the thesis for free at http://www.michelepirovano.com/pdf/MichelePirovano_Thesis_Final_2015_01_09.pdf

via PhD Thesis: The Design Of Exergaming Systems For Autonomous Rehabilitation – Gabriele Ferri’s research blog

, , , , , ,

Leave a comment

[Abstract+ References] Upper Limb Rehabilitation Electromechanical System for Stroke Patients – Conference paper

Abstract

The mechanical and electrical system of upper limb rehabilitation is a kind of medical equipment which relies on the aid of machine to help stroke patients to carry out upper limb activity training. Many stroke patients can not move independently, which greatly limits their lives. In this paper, we have learned the etiology and symptoms of stroke patients, scientifically formulated their training methods and movements, and fully considered the safety and practicability of the equipment, and used relatively light materials as far as possible. For stroke patients to provide a safe, comfortable, effective upper limb wearable exoskeleton machine, can be anytime and anywhere rehabilitation training, simple appearance, low cost, suitable for stroke patients to use, to help them recover. Realize the independence of movement.

 References

  1. 1.
    Gentile, M., Iualè, M., Mengoni, M., Germani, M.: Design of a system for upper-limb rehabilitation based on an electromechanical orthosis and sEMG wireless sensors. In: ASME International Design Engineering Technical Conferences & Computers & Information in Engineering Conference (2013)Google Scholar
  2. 2.
    Cifuentes, C., Braidot, A., Rodriguez, L., et al.: Development of a wearable ZigBee sensor system for upper limb rehabilitation robotics. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE (2012)Google Scholar
  3. 3.
    Tang, B.: Application of piezoelectric patches for chatter suppression in machining processes. Measurement 138, 225–231 (2019)CrossRefGoogle Scholar
  4. 4.
    Zeiaee, A., Soltani-Zarrin, R., Langari, R., Tafreshi, R.: Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients. In: 2017 International Conference on Rehabilitation Robotics (ICORR) (2017)Google Scholar
  5. 5.
    Liu, H., Du, T., Wang, T., Fan, J., Qu, Y.: Design and trial operation of tele-rehabilitation gradient motor function self-evaluating system for stroke patients. Zhongguo yi liao qi xie za zhi = Chin. J. Med. Instrum. 42(2), 88–91 (2018)Google Scholar
  6. 6.
    Meng, F., Tong, K.Y., Chan, S.T., Wong, W.W., Lui, K.H., Tang, K.W., et al.: BCI-FES training system design and implementation for rehabilitation of stroke patients (2008)Google Scholar
  7. 7.
    Hesse, S., Kuhlmann, H., Wilk, J., Tomelleri, C., Kirker, S.G.B.: A new electromechanical trainer for sensorimotor rehabilitation of paralysed fingers: a case series in chronic and acute stroke patients. J. Neuroeng. Rehabil. 5(1), 21 (2008)CrossRefGoogle Scholar
  8. 8.
    Shahine, E.M., Shafshak, T.S.: Central neuroplasticity and lower limbs functional outcome following repetitive locomotor training in stroke patients. PM&R 4(10), S297–S298 (2014)Google Scholar

via Upper Limb Rehabilitation Electromechanical System for Stroke Patients | SpringerLink

, , , , , , , ,

Leave a comment

[WEB SITE] New technology is helping patients to get moving again – News

A ground-breaking ’bicycle’ which simulates muscle movements is helping a range of patients with long-term mobility problems caused by head or spinal injuries, stroke or MS. Julie Blackburn watched a demonstration.

One morning in April last year Jason Moffatt from Peel woke up with a headache.

And not just any normal headache, as he recalls: ’I don’t usually do headaches and this one was the worst: it felt like my head was about to explode out of the top.’

He put up with it for a while then decided it ’might be worth popping into the A&E’. It was lucky he did because an examination and subsequent scan revealed dried blood on his brain. He had suffered a bleed.

Jason was flown off the island to Walton Hospital in Liverpool for an operation but during surgery he suffered a stroke which left him paralysed down the left side of his body.

’I then spent three months in Liverpool, learning to walk again and do everyday tasks,’ he says.

While there, Jason realised that strokes do not just happen to older people, but to plenty of younger ones too.

Back on the island his rehabilitation programme has included sessions on a Functional Electrical Stimulation (FES) bicycle.

FES is a technique that uses low energy electrical pulses and has been found to be effective in restoring voluntary functions.

These pulses artificially generate body movements in specific muscle groups through electrodes placed on the patient’s body.

Jason’s physiotherapist is Christine Wright, from the Community Adult Therapy Services team. She specialises in helping patients with long-term neurological conditions and she demonstrated how the machine works.

Once the electrodes are positioned on the muscle groups which Jason needs to get working, he sits in a chair which is attached to the machine with his legs strapped onto the ’pedals’.

His session starts with a warm-up of around one and a half minutes before the resistance increases and he is working hard, concentrating on putting in more effort on his left leg.

Having started his treatments with around 10 to 15 minutes on the bike, Jason has now built up to 30 minutes in each session.

’I’ll be sweating at the end of this,’ he says.

As she keeps an eye on his progress, Christine explains: ’Although it’s a bike, the pattern of movement is simulating walking: each turn of the bike gives Jason a step.

’Numbers of repetitions lead to changes in the brain and the development of new neural pathways.

’The bike also strengthens the muscles so that, when those connections in the brain reform, those muscles are there, ready to be used.’

It has probably served Jason well that he was a keen cyclist before he became ill, having done the End2End mountain bike race, as well as the Parish Walk to Peel and the End to End walk.

He knows that he is also fortunate to have the use of the FES bicycle. When he was doing rehab in Liverpool, at a large, dedicated 30-bed rehab centre there, they didn’t have one: ’It was basically just a gym,’ he recalls. This is true of most rehab units where FES simulators are not part of the standard kit.

’We’re incredibly lucky to have this,’ Christine says.

This machine was purchased for the Community Physiotherapy Department two years ago with £11,695 provided by the Henry Bloom Noble Healthcare Trust.

The Trust’s main remit is to provide equipment over and above what the DHSC in the island would be able to buy.

It has been a great success for Christine and the other physiotherapists, Graihagh Betteridge and Rosie Callow, who are also trained to use the machine.

As well as working on patients’ lower limbs, the simulator can be detached from the bicycle element and used as a portable machine.

It can then be taken to people’s homes and used to help them regain shoulder and arm movement.

At the moment the department has to ration the machine’s use.

They take around 25 to 30 patients at a time, usually for a six-eight week course, with a session once a week on the bike.

They have a waiting list, both with new patients and patients who have had a course already and need further treatment. Because of this the Henry Bloom Noble Healthcare Trust has agreed to purchase a second bicycle so more patients will have the chance to use one.

Chairman of the Trust, Terry Groves, said: ’Jason’s story, and many others, have shown the value of this FES bicycle in managing differing conditions and rehabilitation.

’Recognising the continuing donations made to our Healthcare Trust we are delighted to fund the acquisition of this second FES bicycle from our funds so that continuing strides in this important area of aftercare can be made.’

Jason himself is delighted with the progress he has made using the bicycle: ’I can see an improvement. I can walk further and with a better balance,’ he says.

His aim now is to get back on his (real) bike.

Christine smiles when he says this. ’You will do it,’ she assures him.

via New technology is helping patients to get moving again | News |

, , , , , ,

Leave a comment

[VIDEO] Stroke Rehabilitation: Functional Electrical Stimulation (FES) for grasp and release – YouTube

Stroke Rehab ideas for incorporating your electrical stimulation (SaeboStim Pro) device in practicing grasp and release with your affected arm and hand. Home therapy series from Saebo UK

 

, , , , ,

Leave a comment

[REVIEW ARTICLE ] Robot-Assisted Therapy in Upper Extremity Hemiparesis: Overview of an Evidence-Based Approach – Full Text

Robot-mediated therapy is an innovative form of rehabilitation that enables highly repetitive, intensive, adaptive, and quantifiable physical training. It has been increasingly used to restore loss of motor function, mainly in stroke survivors suffering from an upper limb paresis. Multiple studies collated in a growing number of review articles showed the positive effects on motor impairment, less clearly on functional limitations. After describing the current status of robotic therapy after upper limb paresis due to stroke, this overview addresses basic principles related to robotic therapy applied to upper limb paresis. We demonstrate how this innovation is an evidence-based approach in that it meets both the improved clinical and more fundamental knowledge-base about regaining effective motor function after stroke and the need of more objective, flexible and controlled therapeutic paradigms.

Introduction

Robot-mediated rehabilitation is an innovative exercise-based therapy using robotic devices that enable the implementation of highly repetitive, intensive, adaptive, and quantifiable physical training. Since the first clinical studies with the MIT-Manus robot (1), robotic applications have been increasingly used to restore loss of motor function, mainly in stroke survivors suffering from an upper limb paresis but also in cerebral palsy (2), multiple sclerosis (3), spinal cord injury (4), and other disease types. Thus, multiple studies suggested that robot-assisted training, integrated into a multidisciplinary program, resulted in an additional reduction of motor impairments in comparison to usual care alone in different stages of stroke recovery: namely, acute (57), subacute (18), and chronic phases after the stroke onset (911). Typically, patients engaged in the robotic therapy showed an impairment reduction of 5 points or more in the Fugl-Meyer assessment as compared to usual care. Of notice, rehabilitation studies conducted during the chronic stroke phase suggest that a 5-point differential represents the minimum clinically important difference (MCID), i.e., the magnitude of change that is necessary to produce real-world benefits for patients (12). These results were collated in multiple review articles and meta-analyses (1317). In contrast, the advantage of robotic training over usual care in terms of functional benefit is less clear, but there are recent results that suggest how best to organize training to achieve superior results in terms of both impairment and function (18). Indeed, the use of the robotic tool has allowed us the parse and study the ingredients that should form an efficacious and efficient rehabilitation program. The aim of this paper is to provide a general overview of the current state of robotic training in upper limb rehabilitation after stroke, to analyze the rationale behind its use, and to discuss our working model on how to more effectively employ robotics to promote motor recovery after stroke.

Upper Extremity Robotic Therapy: Current Status

Robotic systems used in the field of neurorehabilitation can be organized under two basic categories: exoskeleton and end-effector type robots. Exoskeleton robotic systems allow us to accurately determine the kinematic configuration of human joints, while end-effector type robots exert forces only in the most distal part of the affected limb. A growing number of commercial robotic devices have been developed employing either configuration. Examples of exoskeleton type include the Armeo®Spring, Armeo®Power, and Myomo® and of end-effector type include the InMotion™, Burt®, Kinarm™ and REAplan®. Both categories enable the implementation of intensive training and there are many other devices in different stages of development or commercialization (1920).

The last decade has seen an exponential growth in both the number of devices as well as clinical trials. The results coalesced in a set of systematic reviews, meta-analyses (1317) and guidelines such as those published by the American Heart Association and the Veterans Administration (AHA and VA) (21). There is a clear consensus that upper limb therapy using robotic devices over 30–60-min sessions, is safe despite the larger number of movement repetitions (14).

This technic is feasible and showed a high rate of eligibility; in the VA ROBOTICS (911) study, nearly two thirds of interviewed stroke survivors were enrolled in the study. As a comparison the EXCITE cohort of constraint-induced movement therapy enrolled only 6% of the screened patients participated (22). On that issue, it is relevant to notice the admission criteria of both chronic stroke studies. ROBOTICS enrolled subjects with Fugl-Meyer assessment (FMA) of 38 or lower (out of 66) while EXCITE typically enrolled subjects with an FMA of 42 or higher. Duret and colleagues demonstrated that the target population, based on motor impairments, seems to be broader in the robotic intervention which includes patients with severe motor impairments, a group that typically has not seen much benefit from usual care (23). Indeed, Duret found that more severely impaired patients benefited more from robot-assisted training and that co-factors such as age, aphasia, and neglect had no impact on the amount of repetitive movements performed and were not contraindicated. Furthermore, all patients enrolled in robotic training were satisfied with the intervention. This result is consistent with the literature (24).

The main outcome result is that robotic therapy led to significantly more improvement in impairment as compared to conventional usual care, but only slightly more on motor function of the limb segments targeted by the robotic device (16). For example, Bertani et al. (15) and Zhang et al. (17) found that robotic training was more effective in reducing motor impairment than conventional usual care therapy in patients with chronic stroke, and further meta-analyses suggested that using robotic therapy as an adjunct to conventional usual care treatment is more effective than robotic training alone (1317). Other examples of disproven beliefs: many rehabilitation professionals mistakenly expected significant increase of muscle hyperactivity and shoulder pain due to the intensive training. Most studies showed just the opposite, i.e., that intensive robotic training was associated with tone reduction as compared to the usual care groups (92526). These results are shattering the resistance to the widespread adoption of robotic therapy as a therapeutic modality post-stroke.

That said, not all is rosy. Superior changes in functional outcomes were more controversial until the very last years as most studies and reviews concluded that robotic therapy did not improve activities of daily living beyond traditional care. One first step was reached in 2015 with Mehrholz et al. (14), who found that robotic therapy can provide more functional benefits when compared to other interventions however with a quality of evidence low to very low. 2018 may have seen a decisive step in favor of robotic as the latest meta-analysis conducted by Mehrholz et al. (27) concluded that robot-assisted arm training may improve activities of daily living in the acute phase after stroke with a high quality of evidence However, the results must be interpreted with caution because of the high variability in trial designs as evidenced by the multicenter study (28) in which robotic rehabilitation using the Armeo®Spring, a non-motorized device, was compared to self-management with negative results on motor impairments and potential functional benefits in the robotic group.

The Robot Assisted Training for the Upper Limb after Stroke (RATULS) study (29) might clarify things and put everyone in agreement on the topic. Of notice, RATULS goes beyond the Veterans Administration ROBOTICS with chronic stroke or the French REM_AVC study with subacute stroke. RATULS included 770 stroke patients and covered all stroke phases, from acute to chronic, and it included a positive meaningful control in addition to usual care.[…]

 

Continue —-> Frontiers | Robot-Assisted Therapy in Upper Extremity Hemiparesis: Overview of an Evidence-Based Approach | Neurology

, , , , , , , , , ,

Leave a comment

[WEB SITE] Dutch ‘Walking Bike’ Helps Disabled People Gain Mobility, Sit Tall

Dutch ‘Walking Bike’ Helps Disabled People Gain Mobility, Sit Tall

photo caption: Actress Selma Blair, who has battled multiple sclerosis (MS), poses with an Alinker “walking bike,” a mobility device for people with disabilities, in an unknown location in this undated handout photo. Courtesy of BARBARA ALINK/ALINKER/Handout via REUTERS

WEYMOUTH, Mass. (Reuters) – Lindsey Main from Massachusetts was an active woman who enjoyed yoga, running and walking her dog, until she suffered a stroke in January 2018 and lost mobility.

While starting the long, slow process of exercise and rehabilitation she spotted actress Selma Blair announcing on Instagram she had the nervous system-damaging disease multiple sclerosis.

The 47-year-old star of films including “Cruel Intentions” and “The Sweetest Thing” posted images of herself using an Alinker mobility bike. The two began private messaging and Blair bought Main one of the bikes. Main says it has changed her life.

Now she can walk her dog again, go to the shops and dance on it.

“I think movement actually is the best medicine. It’s like that saying: ‘If you don’t use it, you lose it’,” Main said.

The bike was created by Dutch designer and humanitarian Barbara Alink, who made it initially as a mobility device for her ageing mother to use without the stigma attached to mobility walkers and scooters.

A successful crowdfunding campaign in 2014 brought about a launch in the Dutch market and a North America launch followed in 2016. Now the bike, which costs $1,977.00 ships worldwide.

“The Alinker is for everybody who identifies as an active person and happens to have a diagnosis,” said Alink.

“The feedback that I’m getting from people is that their life has changed, they can go out again, they have agency back,” she added.

The Alinker has three wheels and riders support themselves on a saddle and move their legs to push it forward. It has brakes and the high saddle means users can sit almost at standing height and speak to others at their eye level.

It is used by people with Parkinson’s, arthritis, cerebral palsy, spinal cord injuries, muscular dystrophy and peripheral neuropathy along with those recovering from strokes and surgery.

“Isolation is a bigger disease or a bigger burden on people than the actual symptoms of the disease itself,” said Alink.

“So with the Alinker, being engaged in life again because you can go out… your radius expands again,” she added.

Alinker is not classed as a medical device, so many insurance companies do not fund its purchase, leaving people to rely on crowdfunding or using the company’s rent-to-own scheme.

At its factory in Taipei in Taiwan, the company is working on prototypes for smaller Alinkers for children.

[Source: Reuters]

 

via Dutch ‘Walking Bike’ Helps Disabled People Gain Mobility, Sit Tall – Physical Therapy Products

, , , , , , , , , ,

Leave a comment

[WEB SITE] Staying One Step Ahead – Rehab Managment

Staying One Step Ahead

photo caption: Patient walks with an AFO which supports his ankle. While the loss of muscles in his lower leg will be permanent, the orthosis will stabilize the foot and aid in walking.

by Polly Swingle, PT, GCS, CEEAA, and Brian Paulson, CPO

Foot drop is a potentially painful—and even disabling—condition where an individual has difficulty raising (or a complete inability to raise) the front of the foot. Foot drop—also referred to as dropped foot or drop foot—is caused by a damage or impairment to the muscles and nerves responsible for lifting the foot. The resulting weakness or paralysis leads to characteristic symptoms that most obviously manifest in an altered gait. Because individuals suffering from foot drop cannot properly lift their foot, they may drag their toes on the ground while walking. To avoid this potentially painful and dangerous impairment (which can damage the foot and increase the risk of falling), foot drop patients may utilize a “steppage gait,” a common compensation tactic where they lift their knee(s) higher in a marching-style walk or swing their leg(s) outward.

Causes of Foot Drop

It is important to understand foot drop is not a disease; it is a symptom. There are several types of damage or diseases that can weaken nerves and/or muscles and lead to foot drop, but the three most common are an injury to the peroneal nerve that controls the muscles responsible for lifting the foot; muscular compromise due to a disorder such as amyotrophic lateral sclerosis (ALS) or muscular dystrophy; and neurological conditions such as multiple sclerosis (MS) or stroke.

Patient has a diagnosis of Cauda Equina injury due to a lumbar discectomy that had complications, and resulted in loss of his distal muscles controlling the ankle. The intervention for this injury is physical therapy for strengthening the intact muscle above the ankle, as well as balance activities and a solid AFO.

Treatment Options

There are four basic categories of treatment options for foot drop. Because successfully treating foot drop almost always depends on addressing/correcting the underlying cause of the condition, the best course of treatment and therapeutic care can vary significantly from one patient to the next.

Treatment options include the following:

Surgical intervention

Surgical treatment options can be effective for foot drop patients whose condition has been caused by physical damage to nerves or muscles. A herniated disc, tumor, or other spinal condition that has damaged or pinched a nerve can often be addressed surgically. Damaged muscles or tendons in the leg or foot can also be repaired in surgery. Patients suffering from persistent or chronic foot drop that is resistant to treatment may benefit from surgical intervention that fuses the bones of the ankle or foot, or even surgery that transplants and/or reconfigures tendon and muscle.

Functional electrical stimulation (FES)

In cases where peroneal nerve damage or impairment is causing foot drop, functional electrical stimulation (FES) can be an effective form of treatment. Therapeutic FES treatment in conjunction with physical therapy can help stimulate damaged nerves and muscles and promote motor recovery.

FES treatment uses sophisticated equipment to deliver targeted pulses of electrical current that evoke muscle contraction and activity. This can improve muscle functionality, enhance blood flow and range of motion, reverse muscle atrophy, and—in some cases—help foot drop sufferers regain some or all of their ability to lift their foot/feet and walk normally. Portable FES devices designed specifically for foot drop patients are also available. These systems deliver low-level FES impulses targeting the peroneal nerve, allowing wearers to achieve improved foot dorsiflexion and walk more naturally—with improved speed, stability, and confidence. These two-part systems use a specialized sensor to monitor the motion and position of the leg, in conjunction with a stimulator that delivers the electrical impulse and stimulates the peroneal nerve.

Physical therapy

Physical therapy is an important and often effective treatment option for foot drop that can be used alone or in conjunction with another treatment. The overall goal of any therapeutic or rehabilitation program for foot drop is to strengthen the muscles in the foot, ankle, and lower leg, enhance joint function and range of motion, prevent stiffness, minimize the chances of re-injury, improve balance and stability, and ultimately achieve improved mobility and regain a normal gait.

While the specific details of a therapy program for foot drop symptoms may vary from patient to patient, strength and balance training, stretching, and range of motion exercises are standard. Exercises include stretching with towels or exercise bands, seated or standing lifts, ankle dorsiflexion and plantar flexion exercises (pulling the foot toward you and pushing it away from you) with resistance from exercise bands, and even picking up small objects with your toes.

Foot drop patients should participate in a personalized therapeutic program under the guidance of a physical therapist with demonstrated experience working with foot drop patients. While in-office visits and therapy sessions are critical, most programs also include a home component with a series of exercises that the patient can perform independently.

External support and bracing

After determining the root cause for the foot drop and beginning a therapy program that incorporates the many facets of therapeutic care, including strength training, range-of-motion stretches, balance training, etc, the next step involves orthotic treatment to improve function and safety while reducing the risk of joint damage until the patient has fully recovered. An ankle-foot orthosis (AFO) can help to stabilize the affected foot and help foot drop patients maintain a normal foot position.

It is highly advisable that doctors and therapists who frequently see patients with foot drop take the time to establish a good working relationship with an orthotist. That relationship is the key to ensuring a collaborative, multidisciplinary approach where the patient, the therapist, and the orthotist are all on the same page.

Patient Safety

The highest priority of orthotic care is patient safety. Safety can be greatly improved by use of an AFO by restricting or reducing plantar flexion during swing phase of gait, and thereby reducing the risk of a fall due to catching the toes on the ground. Without the use of an AFO, many gait deviations are utilized to clear the foot during swing phase, including circumduction, hip hiking, and contralateral vaulting. These deviations increase the energy expenditure of the gait and can create muscle imbalances that often lead to further issues and complications.

Early Intervention

Early orthotic intervention is also beneficial for reducing the risk of joint contractures in patients with increased tone, such as a post-CVA foot drop with resulting equinovarus foot position. The AFO can properly position the foot in the coronal and sagittal plane to help maintain functional joint range of motion.

Innovations and Options

Revolutionary changes have taken place in the orthotic industry in the past 20 years. New lightweight materials have been introduced that are not only supportive, but can also provide energy storage and return to assist with push-off at terminal stance for patients with weak calf muscles.

When determining what kind of orthosis would provide the optimal treatment for a foot drop patient, one concept should always be remembered: joint motion should be permitted in an orthosis when sufficient muscle control and strength are present to move the joint normally through the available range. What this means is that, while support is crucial, “overbracing” a patient can create many negative consequences; some of which include muscular atrophy, dependence on the orthosis, and replacing one gait deviation with another by taking away the essential three rockers of gait. It is essential that when a patient has sufficient strength to control the ankle joint in a certain motion, that the orthotic allows them to do so.

One example of overbracing would be putting a patient with a flaccid foot drop (weak dorsiflexors) but strong plantar flexors into a solid ankle AFO. This AFO solution would prevent them from using their calf musculature at terminal stance for push-off. It also would prevent anterior tibial translation during the second rocker of gait, creating an unsmooth rigid transition through mid-stance. That could subsequently lead to genu recurvatum by restricting dorsiflexion of the ankle. A more appropriate AFO selection may be something with flexibility that has enough plantar flexion resistance to improve clearance of the foot during swing phase, but also lets the patient use their own musculature for other motions that they can control appropriately.

Manufacturers provide plentiful options to the physical therapy market for off-the-shelf and custom AFOs. Rockaway, NJ-headquartered Allard USA offers AFOs designed especially for foot drop that provide mild, moderate, and maximum stability. The company’s ToeOFF is a carbon composite dynamic response floor reaction AFO designed to keep the foot up during swing phase and provide a soft heel strike in addition to stability in stand and good toe-off. The company also offers the ToeOFF and the BlueROCKER as custom AFOs when more specific needs must be met, such as fit issues related to unique leg shapes, alignment issues, or calf atrophy/hypertrophy. Another manufacturer, DJO Global, Dallas, offers a line of AFOs including the lightweight Posterior Leaf Splint AFO, designed to provide utility for mild to moderate foot drop needs. Cascade Dafo Inc, Ferndale, Wash, offers a versatile line of pediatric dynamic AFOs that are available as customized products and feature colors and design elements that will appeal to children.

Ongoing Consultation

As recovery progresses, the orthotist should be consulted on a regular basis so that the AFO can be changed or modified throughout each stage of rehabilitation. As the patient’s condition changes, the therapeutic remedies (from exercises to AFO solutions) should change with them. The ultimate goal is to eventually eliminate the need for the brace entirely, because full function has been regained. In the meantime, the proper orthosis can be very beneficial in improving function and safety until independence is possible without it. RM

Polly Swingle, PT, GCS, CEEAA, is co-founder and lead physical therapist of The Recovery Project, which provides progressive, effective, evidence-based neuro rehab therapies that improve the quality of life and functionality of patients with spinal cord, neurological, and traumatic brain injuries at its three Michigan-based locations.

Brian Paulson, CPO, is a clinical manager for Wright and Filippis, a Michigan-based provider of prosthetics, orthotics, custom mobility products, and accessibility solutions with over 70 years of experience. For more information, contact RehabEditor@medqor.com.

 

via Staying One Step Ahead – Rehab Managment

, , , , , , ,

Leave a comment

%d bloggers like this: