Posts Tagged Stroke

[ARTICLE] Virtual reality experiences, embodiment, videogames and their dimensions in neurorehabilitation – Full Text

Abstract

Background

In the context of stroke rehabilitation, new training approaches mediated by virtual reality and videogames are usually discussed and evaluated together in reviews and meta-analyses. This represents a serious confounding factor that is leading to misleading, inconclusive outcomes in the interest of validating these new solutions.

Main body

Extending existing definitions of virtual reality, in this paper I put forward the concept of virtual reality experience (VRE), generated by virtual reality systems (VRS; i.e. a group of variable technologies employed to create a VRE). Then, I review the main components composing a VRE, and how they may purposely affect the mind and body of participants in the context of neurorehabilitation. In turn, VRS are not anymore exclusive from VREs but are currently used in videogames and other human-computer interaction applications in different domains. Often, these other applications receive the name of virtual reality applications as they use VRS. However, they do not necessarily create a VRE. I put emphasis on exposing fundamental similarities and differences between VREs and videogames for neurorehabilitation. I also recommend describing and evaluating the specific features encompassing the intervention rather than evaluating virtual reality or videogames as a whole.

Conclusion

This disambiguation between VREs, VRS and videogames should help reduce confusion in the field. This is important for databases searches when looking for specific studies or building metareviews that aim at evaluating the efficacy of technology-mediated interventions.

Background

In the context of stroke rehabilitation, new training approaches mediated by virtual reality and videogames are usually discussed and evaluated together in reviews and meta-analyses for upper limb [], and balance and gait []. Certainly, the expected superiority of virtual reality over conventional therapy post stroke has been questioned when using off-the-shelf (e.g., Nintendo Wii) or ad-hoc videogames. This conclusion, however, is based on the wrong assumption that videogames deliver same experiences than virtual reality applications. In my opinion, this represents a serious confounding factor that may lead to misleading, inconclusive outcomes in the interest of validating these new solutions. Indeed, in Laver’s Cochrane article, a positive effect for virtual reality versus conventional therapy for improving upper limb function post stroke is found only when dedicated virtual reality based interventions, i.e. specifically designed for rehabilitation settings, are used. The effect vanishes when standard off-the-shelf videogames are considered. Indeed, the use of Nintendo Wii (but referring to it as virtual reality) often leads to a non-inferiority clinical outcome, being as effective as conventional therapy [] or alternative playful interventions such as playing cards []. In another study with mobile-based and dedicated games (again referred to as virtual reality), partial functional and motor improvements were observed as compared to standard occupational therapy [].

This heterogeneity in the reported virtual reality and videogames studies for neurorehabilitation calls for use of appropriate labelling for the approaches and variables assessed. A correct identification of the specific factors (and their weight) contributing to any eventual change post treatment are required for interpreting those changes and building further evidence on the specific solution. Therefore, in this paper I propose to reframe the traditional interpretation of the term virtual reality. I advocate disentangling two conceptual components that may help the field standardize its use: virtual reality experience (VRE) and virtual reality systems (VRS). I put emphasis on exposing fundamental similarities and differences between VREs and videogames, often mistakenly used as synonyms or exchangeable terms despite the different underlying interventional techniques and brain mechanisms they can enable. I then use neurorehabilitation as exemplary application field to discuss the implications of differentiating between them.[…]

 

Continue —->  Virtual reality experiences, embodiment, videogames and their dimensions in neurorehabilitation

, , , , , ,

Leave a comment

[Editorial] Proportional Recovery in the Spotlight – Neurorehabilitation and Neural Repair

By Randolph J. Nudo

Prediction of who will recover after stroke has been a perennial focus for both researchers and clinicians in the field of neurorehabilitation. The prospects of applying a population-based model to predict outcome in individual patients might ultimately allow more focused approaches to stroke rehabilitation and foster a better distribution of precious health care resources. Aside from anatomical biomarkers, such as the integrity of the corticospinal tract, recent attention has focused on the proportional recovery rule, formally proposed in this journal more than 10 years ago by Prabhakaran et al,1 who described a surprisingly linear relationship between Fugl-Meyer Assessment upper extremity scores obtained within 3 days after stroke and those obtained at 3 months poststroke, illustrating the general principle of spontaneous recovery with a level of predictability not previously appreciated. This relationship appears to hold for most individuals (so-called “fitters” or “recoverers”), but a subset of individuals (so-called “non-fitters” or “non-recoverers”) fall off the linear regression line. First applied to upper limb motor impairment, the proportional recovery rule has been examined in a variety of motor and nonmotor impairments, and results have generally been in agreement with the initial linear relationship. Recent controversy surrounding the proportional recovery rule has been based on statistical factors such as mathematical coupling and nonlinearity of outcome scales, questioning not only the accuracy but also the underlying validity of this predictive population-based model. Two articles in the current issue of Neurorehabilitation and Neural Repair highlight some of the emerging views and suggestions for future research regarding this model. The first article by Senesh and Reinkensmeyer examines the reasons why “non-fitters” do not recover according to the proportional recovery algorithm. They argue that the local slope of the linear regression reflects the difficulty of test item scores related to arm and hand movement at follow-up, consistent with the view that non-fitters lack sufficient corticospinal tract. They suggest that at least some non-fitters may have a heightened response to intensive movement training and should be targeted early after stroke for such rehabilitative training. In the second article by Kundert et al, the statistical validity of the proportional recovery rule is examined in the context of recent criticisms regarding its underlying assumptions. Despite 2 recent articles critical of statistical relationships of baseline impairment scores to follow-up scores, especially when used for patient-level predictions, Kundert et al contend that the systematic non-artifactual relationship between initial impairment and motor recovery provides a valid statistical and biologically meaningful model, and that future studies of proportional recovery should use more sophisticated analysis techniques and rigorous methods to assess validity, including comparisons to alternative models.

Randolph J. Nudo, PhD
Editor-in-Chief

1. Prabhakaran, S, Zarahn, E, Riley, C, et alInter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair. 2008;22:6471. doi:10.1177/1545968307305302
Google Scholar | SAGE Journals | ISI

via Proportional Recovery in the Spotlight – Randolph J. Nudo, 2019

, , , , , ,

Leave a comment

[Abstract] Impaired force control contributes to car steering dysfunction in chronic stroke

Purpose: Precise control of a car steering wheel requires adequate motor capability. Deficits in grip strength and force control after stroke could influence the ability steer a car. Our study aimed to determine the impact of stroke on car steering and identify the relative contribution of grip strength and grip force control to steering performance.

Methods: Twelve chronic stroke survivors and 12 controls performed three gripping tasks with each hand: maximum voluntary contraction, dynamic force tracking, and steering a car on a winding road in a simulated driving environment. We quantified grip strength, grip force variability, and deviation of the car from the center of the lane.

Results: The paretic hand exhibited reduced grip strength, increased grip force variability, and increased lane deviation compared with the non-dominant hand in controls. Grip force variability, but not grip strength, significantly predicted (R2 = 0.49, p < 0.05) lane deviation with the paretic hand.

Conclusion: Stroke impairs the steering ability of the paretic hand. Although grip strength and force control of the paretic hand are diminished after stroke, only grip force control predicts steering accuracy. Deficits in grip force control after stroke contribute to functional limitations in performing skilled tasks with the paretic hand.

  1. Implications for rehabilitation
  2. Driving is an important goal for independent mobility after stroke that requires motor capability to manipulate hand and foot controls.

  3. Two prominent stroke-related motor impairments that may impact precise car steering are reduced grip strength and grip force control.

  4. In individuals with mild-moderate impairments, deficits in grip force modulation rather than grip strength contribute to compromised steering performance with the paretic hand.

  5. We recommend that driving rehabilitation should consider re-educating grip force modulation for successful driving outcomes post stroke.

via Impaired force control contributes to car steering dysfunction in chronic stroke: Disability and Rehabilitation: Vol 0, No 0

, , , , , , ,

Leave a comment

[Abstract] Systematic Review and Meta-analysis of Home-Based Rehabilitation on Improving Physical Function Among Home-dwelling Patients with a Stroke

Abstract

Objective

To evaluate the effects of home-based rehabilitation on improving physical function in home-dwelling patients after a stroke.

Data sources

Various electronic databases, including PubMed, CINAL, Embase, the Cochrane Central Register of Controlled Trials, and two Chinese datasets (i.e., Chinese Electronic Periodical Services and China Knowledge Resource Integrated) were searched for studies published before March 20, 2019.

Study selection

Randomized controlled trials conducted to examine the effect of home-based rehabilitation on improving physical function in home-dwelling patients with a stroke and published in English or Chinese were included. In total, 49 articles in English (n=23) and Chinese (n=26) met the inclusion criteria.

Data extraction

Data related to patient characteristics, study characteristics, intervention details, and outcomes were extracted by two independent reviewers.

Data synthesis

A random-effects model with a sensitivity analysis showed that home-based rehabilitation exerted moderate improvements on physical function in home-dwelling patients with a stroke (g = 0.58, 95% confidence interval [CI] 0.45∼0.70). Moderator analyses revealed that those stroke patients of a younger age, of a male gender, with a first-ever stroke episode, in the acute stage, and receiving rehabilitation training from their caregiver showed greater improvements in physical function.

Conclusions

Home rehabilitation can improve functional outcome in stroke survivors and should be considered appropriate during discharge planning if continuation care is required.

via Systematic Review and Meta-analysis of Home-Based Rehabilitation on Improving Physical Function Among Home-dwelling Patients with a Stroke – Archives of Physical Medicine and Rehabilitation

, , , , ,

Leave a comment

[Abstract] Home-based upper extremity stroke therapy using a multi-user virtual reality environment: a randomized trial

Abstract

Objective

To compare participation and subjective experience of participants in both home-based multi-user VR therapy and home-based single-user VR therapy.

Design

Crossover, randomized trial

Setting

Initial training and evaluations occurred in a rehabilitation hospital; the interventions took place in participants’ homes

Participants

Stroke survivors with chronic upper extremity impairment (n=20)

Interventions

4 weeks of in-home treatment using a custom, multi-user virtual reality system (VERGE): two weeks of both multi-user (MU) and single-user (SU) versions of VERGE. The order of presentation of SU and MU versions was randomized such that participants were divided into two groups, first multi-user (FMU) and first single-user (FSU).

Main Outcome Measures

We measured arm displacement during each session (meters) as the primary outcome measure. Secondary outcome measures include: time participants spent using each MU and SU VERGE, and Intrinsic Motivation Inventory (IMI) scores. Fugl-Meyer Upper-Extremity (FMUE) score and compliance with prescribed training were also evaluated. Measures were recorded before, midway, and after the treatment. Activity and movement were measured during each training session.

Results

Arm displacement during a session was significantly affected the mode of therapy (MU: 414.6m, SU: 327.0m, p=0.019). Compliance was very high (99% compliance for MU mode and 89% for SU mode). Within a given session, participants spent significantly more time training in the MU mode than in the SU mode (p=0.04). FMUE score improved significantly across all participants (Δ3.2, p=0.001).

Conclusions

Multi-user VR exercises may provide an effective means of extending clinical therapy into the home.

via Home-based upper extremity stroke therapy using a multi-user virtual reality environment: a randomized trial – Archives of Physical Medicine and Rehabilitation

, , , , , , ,

Leave a comment

[Abstract] BIGHand – A bilateral, integrated, and gamified handgrip stroke rehabilitation system for independent at-home exercise – Demo Video

Effective home rehabilitation is important for recovery of hand grip ability in post-stroke individuals. This paper presents BIGHand, a bilateral, integrated, and gamified handgrip stroke rehabilitation system for independent at-home exercise. BIGHand consists of affordable sensor-integrated hardware (Vernier hand dynamometers, Arduino Uno, interface shield) used to obtain real-time grip force data, and a set of exergames designed as parts of an interactive structural rehabilitation program. This program pairs targeted difficulty progression with user-ability scaled controls to create an adaptive, challenging, and enticing rehabilitation environment. This training prepares users for the many activities of daily living (ADLs) by targeting strength, bilateral coordination, hand-eye coordination, speed, endurance, precision, and dynamic grip force adjustment. Multiple measures are taken to engage, motivate, and guide users through the at-home rehabilitation process, including “smart” post-game feedback and in-game goals.

Demo video 

via BIGHand – A bilateral, integrated, and gamified handgrip stroke rehabilitation system for independent at-home exercise

, , , , , , ,

Leave a comment

[Abstract] Stepping training with external feedback relating to lower limb support ability effectively improved complex motor activity in ambulatory patients with stroke: a randomized controlled trial

 

BACKGROUND: Lower limb support ability is important for steady and efficient mobility, but previous data commonly involved training during double stance positions, with or without external feedback, using a complex and costly machine.
AIM: To compare the effects of stepping training with or without external feedback in relation to the lower limb support ability of the affected limb on the functional ability necessary for independence in individuals with stroke.
DESIGN: A single-blinded, randomised controlled trial.
SETTING: Tertiary rehabilitation centres.
POPULATION: Ambulatory participants with stroke who walked independently over at least 10 meters with or without walking devices.
METHODS: Thirty-six participants were randomly arranged to be involved in a program of stepping training with or without external feedback related to the lower limb support ability of the affected limb (18 participants/group) for 30 minutes, followed by overground walking training for 10 minutes, 5 days/week over 4 weeks. The outcomes, including the lower limb support ability of the affected legs during stepping, functional ability and spatial walking data, were assessed prior to training, immediately after the first training session, and after 2- and 4- week training.
RESULTS: Participants demonstrated significant improvement in the amount of lower limb support ability, immediately after the first training with external feedback. Then, these participants showed further improvement in both the amount and duration of lower limb support ability, as well as the timed up and go data after 2 and 4 weeks of training (p < 0.05). This improvement was not found following control training.
CONCLUSIONS: The external feedback relating to lower limb support ability during stepping training effectively improved the movement stability and complex motor activity of ambulatory individuals with stroke who had long post-stroke time (approximately 3 years).
CLINICAL REHABILITATION IMPACT: Stepping training protocols and feedback can be easily applied in various settings using the amount of body-weight from an upright digital bathroom scale. Thus, the findings offer an alternative rehabilitation strategy for clinical, community and home-based settings for stroke individuals.

Full Text PDF

via Stepping training with external feedback relating to lower limb support ability effectively improved complex motor activity in ambulatory patients with stroke: a randomized controlled trial – European Journal of Physical and Rehabilitation Medicine 2019 Oct 15 – Minerva Medica – Journals

, , , , , , , ,

Leave a comment

[Abstract] Effects of Bihemispheric Transcranial Direct Current Stimulation on Upper Extremity Function in Stroke Patients: A randomized Double-Blind Sham-Controlled Study

Abstract

Background and Purpose

Transcranial direct current stimulation (tDCS) is a treatment used in the rehabilitation of stroke patients aiming to improve functionality of the plegic upper extremity. Currently, tDCS is not routinely used in post stroke rehabilitation. The aim of this study was to establish the effects of bihemspheric tDCS combined with physical therapy (PT) and occupational therapy (OT) on upper extremity motor function.

Methods

Thirty-two stroke inpatients were randomised into 2 groups. All patients received 15 sessions of conventional upper extremity PT and OT over 3 weeks. The tDCS group (n = 16) also received 30 minutes of bihemispheric tDCS and the sham group (n = 16) 30 minutes of sham bihemispheric tDCS simultaneously to OT. Patients were evaluated before and after treatment using the Fugl Meyer upper extremity (FMUE), functional independence measure (FIM), and Brunnstrom stages of stroke recovery (BSSR) by a physiatrist blind to the treatment group

Results

The improvement in FIM was higher in the tDCS group compared to the sham group (P = .001). There was a significant within group improvement in FMUE, FIM and BSSR in those receiving tDCS (P = .001). There was a significant improvement in FIM in the chronic (> 6months) stroke sufferers who received tDCS when compared to those who received sham tDCS and when compared to subacute stroke (3-6 months) sufferers who received tDCS/sham.

Conclusions

Upper extremity motor function in hemiplegic stroke patients improves when bihemispheric tDCS is used alongside conventional PT and OT. The improvement in functionality is greater in chronic stroke patients.

via Effects of Bihemispheric Transcranial Direct Current Stimulation on Upper Extremity Function in Stroke Patients: A randomized Double-Blind Sham-Controlled Study – ScienceDirect

, , , , , , , , , , , ,

Leave a comment

[Abstract] Ergometer training in stroke rehabilitation: systematic review and meta-analysis

Abstract

Objective

Ergometer training is routinely used in stroke rehabilitation. How robust is the evidence of its effects?

Data source

The PubMed database and PEDro database were reviewed prior to 22/01/2019.

Study selection

Randomized controlled trials investigating the effects of ergometer training on stroke recovery were selected.

Data extraction

Two reviewers independently selected the studies, performed independent data extraction, and assessed the risk of bias.

Data synthesis

A total of 28 studies (including 1115 stroke subjects) were included. The data indicates that

(1) ergometer training leads to a significant improvement of walking ability, cardiorespiratory fitness, motor function and muscular force of lower limbs, balance and postural control, spasticity, cognitive abilities, as well as the brain’s resistance to damage and degeneration,

(2) neuromuscular functional electrical stimulation assisted ergometer training is more efficient than ergometer training alone,

(3) high-intensity ergometer training is more efficient that low-intensity ergometer training, and

(4) ergometer training is more efficient than other therapies in supporting cardiorespiratory fitness, independence in activities of daily living, and balance and postural control, but less efficient in improving walking ability.

Conclusion

Ergometer training can support motor recovery after stroke. However, current data is insufficient for evidence-based rehabilitation. More data is required about the effects of ergometer training on cognitive abilities, emotional status, and quality of life in stroke subjects.

via Ergometer training in stroke rehabilitation: systematic review and meta-analysis – Archives of Physical Medicine and Rehabilitation

, , , , , , , , , , , ,

Leave a comment

%d bloggers like this: