Posts Tagged Stroke

[BOOK Chapter] Assessment and Rehabilitation Using Virtual Reality after Stroke: A Literature Review – Abstract + References

Abstract

This chapter presents the studies that have used virtual reality as an assessment or rehabilitation tool of cognitive functions following a stroke. To be part of this review, publications must have made a collection of data from individuals who have suffered a stroke and must have been published between 1980 and 2017. A total of 50 publications were selected out of a possible 143 that were identified in the following databases: Academic Search Complete, CINAHL, MEDLINE, PsychINFO, Psychological and Behavioural Sciences Collection. Overall, we find that most of the studies that have used virtual reality with stroke patients focused on attention, spatial neglect, and executive functions/multitasking. Some studies have focused on route representation, episodic memory, and prospective memory. Virtual reality has been used for training of cognitive functions with stroke patients, but also for their assessment. Overall, the studies support the value and relevance of virtual reality as an assessment and rehabilitation tool with people who have suffered a stroke. Virtual reality seems indeed an interesting way to better describe the functioning of the person in everyday life. Virtual reality also sometimes seems to be more sensitive than traditional approaches for detecting deficits in stroke people. However, it is important to pursue work in this emergent field in clinical neuropsychology.

References

  1. Ansuini, C., Pierno, A. C., Lusher, D., & Castiello, U. (2006). Virtual reality applications for the remapping of space in neglect patients. Restorative Neurology and Neuroscience, 24(4–6), 431–441.PubMedGoogle Scholar
  2. Baheux, K., Yoshikawa, M., Tanaka, A., Seki, K., & Handa, Y. (2004). Diagnosis and rehabilitation of patients with hemispatial neglect using virtual reality technology. Conference proceedings: Annual international conference of the IEEE engineering in medicine and biology society, 7, 4908–4911.Google Scholar
  3. Baheux, K., Yoshizawa, M., Tanaka, A., Seki, K., & Handa, Y. (2005). Diagnosis and rehabilitation of hemispatial neglect patients with virtual reality technology. Technology and health careOfficial Journal of the European Society for Engineering and Medicine, 13(4), 245–260.Google Scholar
  4. Baheux, K., Yoshizawa, M., Seki, K., & Handa, Y. (2006). Virtual reality pencil and paper test for neglect: A protocol. CyberPsychology & Behaviour, 9(2), 192–195.CrossRefGoogle Scholar
  5. Broeren, J., Samuelsson, H., Stibrant-Sunnerhagen, K., Blomstrand, C., & Rydmark, M. (2007). Neglect assessment as an application of virtual reality. Acta Neurlogica Scandinavica, 116, 157–163.CrossRefGoogle Scholar
  6. Brooks, B. M., Rose, F. D., Potter, J., Jayawardena, S., & Morling, A. (2004). Assessing stroke patients’ prospective memory using virtual reality. Brain Injury, 18(4), 391–401.CrossRefGoogle Scholar
  7. Buxbaum, L. J., Palermo, M., Mastrogiovanni, D., Read, M., Rosenberg-Pitonyak, E., Rizzo, A. A., & Coslett, H. (2008). Assessment of spatial attention and neglect with a virtual wheelchair navigation task. Journal of Clinical & Experimental Neuropsychology, 30(6), 650–660.CrossRefGoogle Scholar
  8. Buxbaum, L. J., Dawson, A. M., & Linsley, D. (2012). Reliability and validity of the virtual reality lateralized attention test in assessing hemispatial neglect in right-hemisphere stroke. Neuropsychology, 26(4), 430–441.CrossRefGoogle Scholar
  9. Cameirão, M. S., Faria, A. L., Paulino, T., Alves, J., & i Badia, S. B. (2016). The impact of positive, negative and neutral stimuli in a virtual reality cognitive-motor rehabilitation task: a pilot study with stroke patients. Journal of Neuroengineering and Rehabilitation, 13(1), 70.Google Scholar
  10. Carelli, L., Rusconi, M. L., Mattioli, F., Stampatori, C., Morganti, F., & Riva, G. (2009). Neuropsychological and virtual reality assessment in topographical disorientation. Annual Review of Cybertherapy and Telemedicine, 7, 230–233.Google Scholar
  11. Carelli, L., Rusconi, M. L., Scarabelli, C., Stampatori, C., Mattioli, F., & Riva, G. (2011). The transfer from survey (map-like) to route representations into virtual reality Mazes: effect of age and cerebral lesion. Journal Of Neuroengineering And Rehabilitation, 2011 Jan 31; Vol 8, pp 6 Electronic Publication.Google Scholar
  12. Castiello, U., Lusher, D., Burton, C., Glover, S., & Disler, P. (2004). Improving left hemispatial neglect using virtual reality. Neurology, 62, 1958–1962.CrossRefGoogle Scholar
  13. Cherniack, E. P. (2011). Not just fun and games: Applications of virtual reality in the identification and rehabilitation of cognitive disorders of the elderly. Disability and Rehabilitation: Assistive Technology, 6(4), 283–289.  https://doi.org/10.3109/17483107.2010.542570.CrossRefPubMedGoogle Scholar
  14. Crosbie, J. H., Lennon, S., Basford, J. R., & McDonough, S. M. (2007). Virtual reality in stroke rehabilitation: Still more virtual than real. Disability and Rehabilitation, 29(14), 1139–1146.CrossRefGoogle Scholar
  15. Dawson, A. M., Buxbaum, L. J., & Rizzo, A. A. (2008). The virtual reality lateralized attention test: Sensitivity and validity of a new clinical tool for assessing hemispatial neglect. Virtual Rehabilitation, 77–82.  https://doi.org/10.1109/ICVR.2008.4625140.
  16. Dvorkin, A. Y., Rymer, W. Z., Harvey, R. L., Bogey, R. A., & Patton, J. L. (2008). Assessment and monitoring of recovery of spatial neglect within a virtual environment. Proceedings of the IEEE Virtual Rehabilitation, 88–92.Google Scholar
  17. Dvorkin, A. Y., Bogey, R. A., Harvey, R. L., & Patton, J. L. (2012). Mapping the neglected space: Gradients of detection revealed by virtual reality. Neurorehabilitation and Neural Repair, 26(2), 120–131.  https://doi.org/10.1177/1545968311410068.CrossRefPubMedGoogle Scholar
  18. Edmans, J., Gladman, J., Walker, M., Sunderland, A., Porter, A., & Fraser, D. S. (2004). Mixed reality environments in stroke rehabilitation: Development as rehabilitation tools. International Journal on Disability and Human Development, 6(1), 39–45.Google Scholar
  19. Faria, A. L., Andrade, A., Soares, L., & i Badia, S. B. (2016). Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: A randomized controlled trial with stroke patients. Journal of Neuroengineering and Rehabilitation, 13(1), 96.CrossRefGoogle Scholar
  20. Fordell, H., Bodin, K., Bucht, G., & Malm, J. (2011). A virtual reality test battery for assessment and screening of spatial neglect. Acta Neurologica Scandinavica, 123, 167–174.  https://doi.org/10.1111/j.1600-0404.2010.01390.x.CrossRefPubMedGoogle Scholar
  21. Gamito, P., Oliveira, J., Coelho, C., Morais, D., Lopes, P., Pacheco, J., & Barata, A. F. (2017). Cognitive training on stroke patients via virtual reality-based serious games. Disability and Rehabilitation, 39(4), 385–388.CrossRefGoogle Scholar
  22. Glover, S., & Castiello, U. (2006). Recovering space in unilateral neglect: A neurological dissociation revealed by virtual reality. Journal of Cognitive Neuroscience, 18(5), 833–843.CrossRefGoogle Scholar
  23. Guilbert, A., Clément, S., Martin, Y., Feuillet, A., & Moroni, C. (2016). Exogenous orienting of attention in hearing: A virtual reality paradigm to assess auditory attention in neglect patients. Experimental Brain Research, 234(10), 2893–2903.CrossRefGoogle Scholar
  24. Gupta, V., Knott, B. A., Kodgi, S., & Lathan, C. E. (2000). Using the “vreye” system for the assessment of unilateral visual neglect: Two case reports. Presence: Teleoperators & Virtual Environments, 9(3), 268–286.CrossRefGoogle Scholar
  25. Jannink, M. J. A., Aznar, M., de Kort, A. C., van de Vis, W., Veltink, P., & van der Kooij, H. (2009). Assessment of visuospatial neglect in stroke patients using virtual reality: A pilot study. International Journal of Rehabilitation Research, 32(4), 280–286.CrossRefGoogle Scholar
  26. Jovanovski, D., Zakzanis, K., Ruttan, L., Campbell, Z., Erb, S., & Nussbaum, D. (2012). Ecologically valid assessment of executive dysfunction using a novel virtual reality task in patients with acquired brain injury. Applied Neuropsychology, 19, 207–220.  https://doi.org/10.1080/09084282.2011.643956.CrossRefPubMedGoogle Scholar
  27. Kang, Y. J., Ku, J., Han, K., Kim, S. I., Yu, T. W., Lee, J. H., & Park, C. I. (2008). Development and clinical trial of virtual reality-based cognitive assessment in people with stroke: Preleminary study. CyberPsychology & Behaviour, 11(3), 329–339.CrossRefGoogle Scholar
  28. Katz, N., Ring, H., Naveh, Y., Kizony, R., Feintuch, U., & Weiss, P. L. (2005). Interactive virtual environment training for safe street crossing of right hemisphere stroke patients with unilateral spatial neglect. Disability and Rehabilitation, 27(20), 1235–1243.CrossRefGoogle Scholar
  29. Kim, K., Kim, J., Ku, J., Kim, D. Y., Chang, W. H., Shin, D. I., Lee, J. H., Kim, I. Y., & Kim, S. I. (2004). A virtual reality assessment and training system for unilateral neglect. CyberPsychology & Behaviour, 7, 742–749.CrossRefGoogle Scholar
  30. Kim, J., Kim, K., Kim, D. Y., Chang, W. H., Park, C.-I., Ohn, S. H., Han, K., Ku, J., Nam, S. W., Kim, I. Y., & Kim, S. I. (2007). Virtual environment training system for rehabilitation of stroke patients with unilateral neglect: Crossing the virtual street. CyberPsychology & Behaviour, 10(1), 7–15.CrossRefGoogle Scholar
  31. Kim, D. Y., Ku, J., Chang, W. H., Park, T. H., Lim, J. Y., Han, K., Kim, I. Y., & Kim, S. I. (2010). Assessment of post-stroke extrapersonal neglect using a three-dimensional immersive virtual street crossing program. Acta Neurologica Scandinavica, 121, 171–177.  https://doi.org/10.1111/j.1600-0404.2009.01194.x.CrossRefPubMedGoogle Scholar
  32. Kim, B. R., Chun, M. H., Kim, L. S., & Park, J. Y. (2011b). Effect of virtual reality on cognition in stroke patients. Annals of Rehabilitation Medicine, 35(3), 450–459.CrossRefGoogle Scholar
  33. Kim, Y. M., Chun, M. H., Yun, G. J., Song, Y. J., & Young, H. E. (2011a). The effect of virtual reality training on unilateral spatial neglect in stroke patients. Annals of Rehabilitation Medicine, 35(3), 309–315.CrossRefGoogle Scholar
  34. Knight, C., Alderman, N., & Burgess, P. W. (2002). Development of a simplified version of the multiple errands test for use in hospital settings. Neuropsychological Rehabilitation, 12(3), 231–255.CrossRefGoogle Scholar
  35. Lee, J. H., Ku, J., Cho, W., Hahn, W. Y., Kim, I. Y., Lee, S.-M., Kang, Y., Kim, D. Y., Yu, T., Wiederhold, B. K., Wiederhold, M., & Kim, S. I. (2003). A virtual reality system for the assessment and rehabilitation of the activities of daily living. CyberPsychology & Behaviour, 6(4), 383–388.CrossRefGoogle Scholar
  36. Lisa, L. P., Jughters, A., & Kerckhofs, E. (2013). The effectiveness of different treatment modalities for the rehabilitation of unilateral neglect in stroke patients: A systematic review. NeuroRehabilitation, 33, 611–620.  https://doi.org/10.3233/NRE-130986.CrossRefPubMedGoogle Scholar
  37. Maier, M., Bañuelos, N. L., Ballester, B. R., Duarte, E., & Verschure, P. F. (2017, July). Conjunctive rehabilitation of multiple cognitive domains for chronic stroke patients in virtual reality. In Rehabilitation Robotics (ICORR), 2017 international conference on (pp. 947–952). IEEE.Google Scholar
  38. Morganti, F. (2004). Virtual interaction in cognitive neuropsychology. Studies in Health, Technologies and Informatics, 99, 55–70.Google Scholar
  39. Myers, R. L., & Bierig, T. (2003). Virtual reality and left hemineglect: A technology for assessment and therapy. CyberPsychology & Behaviour, 3, 465–468.CrossRefGoogle Scholar
  40. Navarro, M_. D., Llorens, R., Noé, E., Ferri, J., & Alcaniz, M. (2013). Validation of a low-cost virtual reality system for training street-crossing. A comparative study in healthy, neglected and non-neglected stroke individuals. Neuropsychological Rehabilitation, 23(4), 597–618.  https://doi.org/10.1080/09602011.2013.806269.CrossRefPubMedGoogle Scholar
  41. Nir-Hadad, S. Y., Weiss, P. L., Waizman, A., Schwartz, N., & Kizony, R. (2017). A virtual shopping task for the assessment of executive functions: Validity for people with stroke. Neuropsychological Rehabilitation, 27(5), 808–833.CrossRefGoogle Scholar
  42. Pridmore, T., Cobb, S., Hilton, D., Green, J., & Eastgate, R. (2007). Mixed reality environments in stroke rehabilitation: Interfaces across the real-virtual divide. International Journal of Disability and Human Development, 6(1), 87–95.CrossRefGoogle Scholar
  43. Rand, D., Katz, N., Kizony, R., & Weiss, P. L. (2005). The virtual mall: a functional virtual environment for stroke rehabilitation. Annual Review of CyberTherapy and Telemedicine, 3, 193–198.Google Scholar
  44. Rand, D., Katz, N., & Weiss, P. L. (2007). Evaluation of virtual shopping in the VMall: Comparison of post-stroke participants to healthy control groups. Disability and Rehabilitation, 29, 1710–1719.CrossRefGoogle Scholar
  45. Rand, D., Basha-Abu Rukan, S., Weiss, P. L., & Katz, N. (2009a). Validation of the virtual MET as an assessment tool for executive functions. Neuropsychological Rehabilitation, 19, 583–602.CrossRefGoogle Scholar
  46. Rand, D., Weiss, P. L., & Katz, N. (2009b). Training multitasking in virtual supermarket: A novel intervention after stroke. The American Journal of Occupational Therapy, 63(5), 535–542.CrossRefGoogle Scholar
  47. Raspelli, S., Carelli, L., Morganti, F., Poletti, B., Corra, B., Silani, V., & Riva, G. (2010). Implementation of the multiple errands test in NeuroVR supermarket: A possible approach. Studies in Health Technology and Informatics, 154, 115–119.PubMedGoogle Scholar
  48. Raspelli, S., Pallavicini, F., Carelli, L., Morganti, F., Poletti, B., Corra, B., Silani, V., & Riva, G. (2011). Validation of a neuro virtual reality-based version of the multiple errands test for the assessment of executive functions. Annual Review of CyberTheraphy and Telemedicine, 9, 72–80.Google Scholar
  49. Riva, G., Carelli, L., Gaggioli, A., Gorini, A., Vigna, C., Corsi, R., Faletti, G., & Vezzadini, L. (2009). NeuroVR 1.5 – a free virtual reality platform for the assessment and treatment in clinical psychology and neuroscience. Milan: Applied Technology for Neuro-Psychology Laboratory, Instituto Auxologico Italiano.Google Scholar
  50. Rose, F. D., Brooks, B. M., Attree, E. A., Parslow, D. M., Leadbetter, A. G., McNeil, J. E., Jayawardenas, S., Greenwood, R., & Potter, J. (1999). A preliminary investigation into the use of virtual environments in memory retraining after vascular brain injury: Indications for future strategy? Disability and Rehabilitation, 21(12), 548–554.CrossRefGoogle Scholar
  51. Rose, F. D., Brooks, B. M., & Rizzo, A. A. (2005). Virtual reality in brain damage rehabilitation: Review. CyberPsychology & Behaviour, 8(3), 241–262.CrossRefGoogle Scholar
  52. Rushton, S. K., Coles, K. L., & Wann, J. P. (1996). Virtual reality technology in the assessment and rehabilitation of unilateral visual neglect. 1st European Conference on Disability, Virtual Reality, and Associated Technologies. Maidenhead.Google Scholar
  53. Salva, A. M., Wiederhold, B. K., Alban, A. J., Hughes, C., Smith, E., Fidopiastis, C., & Wiederhold, M. D. (2009). Cognitive therapy using mixed reality for those impaired by cerebrovascular accident (CVA). Annual Review of Cybertherapy and Telemedicine, 7, 253–256.Google Scholar
  54. Shallice, T., & Burgess, P. W. (1991). Deficits in strategy application following frontal lobe damage in man. Brain, 114, 727–741.CrossRefGoogle Scholar
  55. Smith, J., Hebert, D., & Reid, D. (2007). Exploring the effects of virtual reality on unilateral neglect caused by stroke: Four case studies. Technology & Disability, 19, 29–40.CrossRefGoogle Scholar
  56. Tanaka, T., Sugihara, S., Nara, H., Ino, S., & Ifukube, T. (2005). A preliminary study of clinical assessment of the left unilateral spatial neglect using a head-mounted display system (HMD) in rehabilitation engineering technology. Journal of Neuroengineering & Rehabilitation, 2, 31–40.CrossRefGoogle Scholar
  57. Tanaka, T., Ifukube, T., Sugihara, S., & Izumi, T. (2010). A case study of new assessment and training of unilateral spatial neglect in stroke patients: Effect of visual image transformation and visual stimulation by using a head-mounted display system (HMD). Journal of Neuroengineering and Rehabilitation, 7(20), 1–8.Google Scholar
  58. Tsirlin, I., Dupierrix, E., Chokron, S., Coquillart, S., & Ohlmann, T. (2009). Uses of virtual reality for diagnosis, rehabilitation and study of unilateral spatial neglect: Review and analysis. CyberPsychology & Behaviour, 12(2), 175–181.CrossRefGoogle Scholar
  59. Weiss, P. L., Naveh, Y., & Katz, N. (2003). Design and testing of virtual environment to train stroke patients with unilateral spatial neglect to cross a street safely. Occupational Therapy International, 10(1), 39–55.CrossRefGoogle Scholar
  60. Williams, G. R., Jiang, J. G., Matchar, D. B., & Samsa, G. O. (1999). Incidence and occurrence of total (first-ever and recurrent) stroke. Stroke, 30, 2523–2528.CrossRefGoogle Scholar
  61. Yasuda, K., Muroi, D., Ohira, M., & Iwata, H. (2017). Validation of an immersive virtual reality system for training near and far space neglect in individuals with stroke: A pilot study. Topics in Stroke Rehabilitation, 24(7), 533–538.CrossRefGoogle Scholar

via Assessment and Rehabilitation Using Virtual Reality after Stroke: A Literature Review | SpringerLink

, , , , , , , ,

Leave a comment

[ARTICLE] Mirror Therapy Using Gesture Recognition for Upper Limb Function, Neck Discomfort, and Quality of Life After Chronic Stroke: A Single-Blind Randomized Controlled Trial – Full Text

Abstract

Background

Mirror therapy for stroke patients was reported to be effective in improving upper-extremity motor function and daily life activity performance. In addition, game-based virtual reality can be realized using a gesture recognition (GR) device, and various tasks can be presented. Therefore, this study investigated changes in upper-extremity motor function, quality of life, and neck discomfort when using a GR device for mirror therapy to observe the upper extremities reflected in the mirror.

Material/Methods

A total of 36 subjects with chronic stroke were randomly divided into 3 groups: GR mirror therapy (n=12), conventional mirror therapy (n=12), and control (n=12) groups. The GR therapy group performed 3D motion input device-based mirror therapy, the conventional mirror therapy group underwent general mirror therapy, and the control group underwent sham therapy. Each group underwent 15 (30 min/d) intervention sessions (3 d/wk for 5 weeks). All subjects were assessed by manual function test, neck discomfort score, and Short-Form 8 in pre- and post-test.

Results

Upper-extremity function, depression, and quality of life in the GR mirror therapy group were significantly better than in the control group. The changes of neck discomfort in the conventional mirror therapy and control groups were significantly greater than in the GR mirror therapy group.

Conclusions

We found that GR device-based mirror therapy is an intervention that improves upper-extremity function, neck discomfort, and quality of life in patients with chronic stroke.

Background

In patients with acute stroke that occurred >6 months previously, 85% have upper-limb disorders, and 55% to 75% have upper-limb disorders []. The upper-limb movement function is decreased due to weakening of upper-limb muscles, which is primarily caused by changes in the central nervous system and secondarily by weakness due to inactivity and reduced activity [,].

Activities of daily living are limited due to body dysfunction, and most stroke patients have limited social interaction; these disorders reduce the quality of life []. In addition, stroke patients may experience depression due to reduced motivation []. Depression results in loss of interest and joy, anxiety, fear, hostility, sadness, and anger, which negatively affect functional recovery and rehabilitation in stroke patients [].

Constraint-induced movement therapy, action observation training, and mirror therapy have been recently studied as therapies for upper-extremity motor function []. These interventions are used to increase the use of paralyzed limbs to overcome disuse syndromes, observe and imitate movement, and change the neural network involved in movement. Providing various tasks in upper-extremity rehabilitation is necessary and virtual reality is used as a method for providing various tasks [,].

Interventions using virtual reality require cognitive factors, such as judgment and memory, as the task progresses. It can use visual and auditory stimuli, and can induce interest and motivation, helping stroke patients to be mentally stable and motivated []. Gesture recognition (GR) is a topic that studies the reading of these movements using algorithms. These GR algorithms mainly focus on the movement of arm, hands, eyes, legs, and other body parts. The main idea is to capture body movements using capture devices and send the acquired data to a computer []. A remarkable example is shown in physical rehabilitation, where the low-cost hardware and algorithms accomplish outstanding results in therapy of patients with mobility issues. A 3D motion input device is required for upper-body rehabilitation in virtual reality. The Leap motion controller, a GR input device, has been recently released, which monitors hand and finger movements and reflects them on the monitor []. In addition, game-based virtual reality can be realized using a GR device, and various tasks can be presented.

Mirror therapy has been used as a therapeutic intervention for phantom pain in amputees. The painful and paralyzed body parts are covered with a mirror. The mirror is placed in the center of the body, and the movement of the paralyzed body is viewed through the mirror. The patient has a visual illusion that the paralyzed side is normally moving []. Mirror therapy for stroke patients was reported to be effective in upper-extremity motor function and daily life activity performance []. However, conventional mirror therapy methods require high concentration and can become tedious, making active participation difficult []. In addition, conventional mirror therapy differs from the actual situation wherein a mirror positioned at the center of the body should be viewed with the head sideways. Because patients are in a suboptimal posture, they may have neck discomfort after mirror therapy. The body has muscle strength disproportion when maintaining poor posture for a long time. This results in inadequate tension on adjacent muscles and joints, resulting in movement restriction, reduced flexibility, pain, and changes in bone and soft tissue [].

This study investigated the effect on upper-extremity motor function, quality of life, and neck discomfort by using GR device mirror therapy in patients with chronic stroke, and evaluated the efficacy of this technique.

[…]

 

Continue —>  Mirror Therapy Using Gesture Recognition for Upper Limb Function, Neck Discomfort, and Quality of Life After Chronic Stroke: A Single-Blind Randomized Controlled Trial

An external file that holds a picture, illustration, etc.Object name is medscimonit-25-3271-g002.jpg

Figure 2
(A) Gesture recognition mirror therapy group, (B) Conventional mirror therapy, (C) Control group.

, , , , , , , , ,

Leave a comment

[WEB PAGE] Stem cell stimulation shows promise as potential stroke treatment

Stem cell stimulation shows promise as a potential noninvasive stroke treatment, according to research in mice published in JNeurosci. If extended to humans, this technique could greatly improve patients’ quality of life.

Stem cell stimulation shows promise as potential stroke treatment

Ling Wei, Shang Ping Yu, and colleagues at Emory University injected neural stem cells into the brains of mice after a stroke and activated the cells through nasal administration of a protein. The stem cells activated by this new, noninvasive technique called optochemogenetics grew healthier and formed more connections compared to the stem cells that did not receive stimulation. Additionally, the mice that received both stem cells and stimulation displayed the most recovery, with some behaviors returning to pre-stroke levels.

The combination of stem cell injection and stimulation increased the likelihood of a successful stroke recovery in mice. Instead of just injecting stem cells in the damaged area of the brain, following up with stimulation creates an ideal environment for the cells to develop and form connections with surrounding neurons.

Source:
Journal reference:

Wei, L. et al. (2019) Optochemogenetics Stimulation of Transplanted iPS-NPCs Enhances Neuronal Repair and Functional Recovery after Ischemic Stroke. Journal of Neurosciencedoi.org/10.1523/JNEUROSCI.2010-18.2019.

 

via Stem cell stimulation shows promise as potential stroke treatment

, , ,

Leave a comment

[WEB PAGE] Regulating blood supply to limbs improves stroke recovery: Noninvasive technique could treat wide variety of stroke patients

Noninvasive technique could treat wide variety of stroke patients

Date:
August 19, 2019
Source:
Society for Neuroscience
Summary:
Cutting off and then restoring blood supply to a limb following a stroke reduces tissue damage and swelling and improves functional recovery, according to a new study.
FULL STORY

Cutting off and then restoring blood supply to a limb following a stroke reduces tissue damage and swelling and improves functional recovery, according to a new study in mice published in JNeurosci. The simple, noninvasive technique could be developed into a treatment for stroke patients of varying severity.

Sunghee Cho and colleagues at Burke Neurological Institute treated mice that experienced a stroke with remote ischemic limb conditioning and tested the monocyte levels in their blood. The research team found that the ratio of inflammatory to non-inflammatory monocytes circulating in the blood increased, resulting in more available inflammatory cells.

Surprisingly, the increase in circulating inflammatory cells was associated with reduced brain tissue damage and swelling and improved motor function. The symptoms improved for both moderate and severe strokes, indicating the potential for wide application as a stroke treatment.

RELATED STORIES

 

via Regulating blood supply to limbs improves stroke recovery: Noninvasive technique could treat wide variety of stroke patients — ScienceDaily

, , , ,

Leave a comment

[Abstract] Virtual reality for stroke rehabilitation: characteristics of protocols, pilot and feasibility studies

Abstract

Introduction: Virtual reality (VR) for stroke rehabilitation is a therapeutic intervention expected to follow the randomized control trials (RCTs) requirements. This study aimed to identify the characteristics of protocols, pilot and feasibility studies reporting stroke rehabilitation with VR methods.

Materials and methods: A systematic study was conducted regarding publications reporting on the use of VR for stroke rehabilitation. PubMed, Web of Science, and Institute of Electrical and Electronics Engineers bibliographic databases were searched on March 2019. The keywords were (“stroke” or “stroke rehabilitation” or “neurological rehabilitation”) and (“virtual reality” or “virtual reality game” or “computer-aided therapy” or “assisted therapy”) and (“quality of life” or “activities of daily living”). All eligible studies published in English were included. The following were collected: experimental design, inclusion criteria for participants, age range, VR intervention, comparative intervention, the primary and secondary outcome.

Results: Title and abstract screening stage had 326 studies, 60 entered the full-text screening stage. Five study protocols of RCTs, 1 protocol for feasibility study, 3 pilot studies and 2 feasibility studies were fully evaluated. All articles provided a structured abstract, 7 were registered in a RCT registry. All RCTs were assessor-blinded, with one exception. The upper extremity in adults was the target of the VR rehabilitation in 9/10 cases, only 2 provided the diagnostic criteria. The settings of intervention were community-dwelling (3 papers), hospital (2) or patient’s home (1). Data were collected at least twice (pre- and post-treatment). The lack of details on randomization and the VR intervention did not allow for study reproducibility, despite 9/10 papers presenting randomization procedure. Four study protocols provided information regarding the sample size calculation, sample size varying between 26 and 59.

Conclusion: Not all VR for stroke interventions were registered in a trial registry, insufficient details were provided regarding randomization and/or VR intervention.

via Virtual reality for stroke rehabilitation: characteristics of protocols, pilot and feasibility studies | Applied Medical Informatics.

, , , ,

Leave a comment

[Abstract] Myoelectric Computer Interface Training for Reducing Co-Activation and Enhancing Arm Movement in Chronic Stroke Survivors: A Randomized Trial

Background. Abnormal muscle co-activation contributes to impairment after stroke. We developed a myoelectric computer interface (MyoCI) training paradigm to reduce abnormal co-activation. MyoCI provides intuitive feedback about muscle activation patterns, enabling decoupling of these muscles.

Objective. To investigate tolerability and effects of MyoCI training of 3 muscle pairs on arm motor recovery after stroke, including effects of training dose and isometric versus movement-based training.

Methods. We randomized chronic stroke survivors with moderate-to-severe arm impairment to 3 groups. Two groups tested different doses of isometric MyoCI (60 vs 90 minutes), and one group tested MyoCI without arm restraint (90 minutes), over 6 weeks. Primary outcome was arm impairment (Fugl-Meyer Assessment). Secondary outcomes included function, spasticity, and elbow range-of-motion at weeks 6 and 10.

Results. Over all 32 subjects, MyoCI training of 3 muscle pairs significantly reduced impairment (Fugl-Meyer Assessment) by 3.3 ± 0.6 and 3.1 ± 0.7 (P < 10−4) at weeks 6 and 10, respectively. Each group improved significantly from baseline; no significant differences were seen between groups. Participants’ lab-based and home-based function also improved at weeks 6 and 10 (P ≤ .01). Spasticity also decreased over all subjects, and elbow range-of-motion improved. Both moderately and severely impaired patients showed significant improvement. No participants had training-related adverse events. MyoCI reduced abnormal co-activation, which appeared to transfer to reaching in the movement group.

Conclusions. MyoCI is a well-tolerated, novel rehabilitation tool that enables stroke survivors to reduce abnormal co-activation. It may reduce impairment and spasticity and improve arm function, even in severely impaired patients.

 

via Myoelectric Computer Interface Training for Reducing Co-Activation and Enhancing Arm Movement in Chronic Stroke Survivors: A Randomized Trial – Emily M. Mugler, Goran Tomic, Aparna Singh, Saad Hameed, Eric W. Lindberg, Jon Gaide, Murad Alqadi, Elizabeth Robinson, Katherine Dalzotto, Camila Limoli, Tyler Jacobson, Jungwha Lee, Marc W. Slutzky, 2019

, , , , , , , , , , , , ,

Leave a comment

[WEB SITE] About Mollii – Mollii

What is Mollii?


Mollii is a suit consisting of a pair of trousers, a jacket and a detachable control unit. The Mollii garments includes 58 imbedded electrodes, positioned to stimulate 40 key muscles in the body. Through a low frequency electro-stimulation therapy, Mollii relaxes spastic, tense and aching muscles safely and simply. Programmed after each person’s needs, Mollii prevents and counteracts different forms of muscle shortening and rigidity, helps the user regain control over muscular tension, and reduces pain related to spasticity. In addition, through electro-stimulation settings, Mollii may facilitate the activation of muscles, and thereby may facilitate muscle contractions, which in turn enable movements.

Who uses Mollii?


MG_8180_Svart_OK-1024x683Mollii is used by people who suffer from spasticity and spasticity-related pain, which is typically found in people with cerebral palsy, stroke, multiple sclerosis, spinal cord injury, acquired brain damages and other neurological injuries that result from or create motor disabilities, and generally induce pain. Mollii is used both by adults and children; and is available in men and women sizes starting from 104 cm. up to XXXL.

Mollii can be used in both a home and clinic environment; and is simple to use for all ages. Users dress-up with a Mollii the same way they would with an ordinary garment. There is a button for on/off and a button for play/ pause. A single push of the button starts the muscle stimulation, which proceeds automatically for 60 minutes, and has a lasting positive effect for up to 48 hours.”

How does it work?


Mollii stimulates the antagonist to the spastic muscle. If the bicep is spastic, the tricep is stimulated, which in turn makes the bicep relaxed. Relaxing the muscle enables active movements and a gradual improvement in function, while the body keeps this positive effect for up to 48 hours. The physiological mechanism is called reciprocal inhibition.

Mollii also reduces pain related to spasticity, both through the reciprocal inhibition, and via the gate control theory of pain, which asserts that non-painful input such as the electric stimulation of skin-nerves closes the nerve-gates to painful input, which prevents pain sensation from traveling to the central nervous system.

Moreover, Mollii may facilitate the sub-threshold stimulation of a muscle by preparing the muscle for contraction before generating a shortening of the muscle, thereby reducing the nerve signal-strength required by the patient to actually generate a muscle contraction.

It is a safe and simple assistive device that can increase quality of life and help recover faster motor functions. The device is used for one hour every second day. For optimum effect, Mollii should be used together with physiotherapy, training, activity and movement. The positive effect is individual and remains for up to 48 hours.

Want more information?


Mollii Product Sheet

Frequently asked questions

Who is Mollii for? Mollii is an assistive device for people with spasticity and other forms of motor impairment due to cerebral palsy, stroke, brain damage, spinal cord injury or other neurological injuries. Molli can also be used to alleviate spasticity related pain.
How does the Mollii suit work? Molli is a functional garment that consists of a pair of trousers, a jacket and a detachable control unit which sends electrical signals to the user via electrodes on the inside of the garment. The suit has 58 electrodes which can be combined in various ways. Mollii has a control unit which is individually programmed for each user. The person prescribing Mollii uses a computer program to adapt the active electrodes and the intensity (which muscles are to be activated by means of current). The settings are then saved in the Mollii control unit, making it simple for the device to be used at home.
What happens in the body when Mollii is used? Mollii uses low level electric current to produce basic tension in the musculature. The current stimulates the antagonist to the spastic muscle. If, for example, the biceps is spastic, the triceps is stimulated which in turn makes the biceps relax. Relaxing the muscle enables active movement and a gradual improvement in function. The physiological mechanism is called reciprocal inhibition.
What sizes are available for the Mollii suit? Available in 24 sizes for children from size CL 104 to ladies and mens sizes. Children (CL): 104, 110, 116, 122, 128, 134, 140, 146, 152 Ladies: XS, S, M, L, XL, XXL, XXXL, SXL Mens: XS, S, M, L, XL, XXL, XXXL
Is the Mollii suit User-friendly? Mollii is a functional assistive device that is designed to be used in the home environment. It is simple to use. If a person can put on an ordinary garment him/herself, then he/she can put Mollii on him/herself. There is a button for on/off and a button for play/ pause. A single push of the button starts muscle stimulation, which proceeds automatically for 60 minutes. The device is used for one hour every second day.
How often should the Mollii suit be used? The device is used for approximately one hour on 3-4 occasions per week. For optimum effect, Mollii should be used together with physiotherapy, training, activity and movement. The effect is individual and remains for up to 48 hours.
Mollii suit Safety Mollii is not to be used with electrical implanted devices or medical devices that are affected by magnets, such as shunts. Consult a doctor at: cardiovascular disease, malignancy (cancer), infectious disease, fever, pregnancy, rashes or skin problems and if Mollii is intended for use with other medical devices or other medical treatment. The product is to be used according to the user manual.
What is included with the mollii suit Supplied with: Jacket, trousers, control unit (with bag), belt, laundry bag and user manual.
Mollii suit Washing instructions 40 degrees delicate wash once per month. In between the garment can be hand washed in lukewarm water.
10 Mollii Technical information Power supply: 4 batteries (AAA) Voltage: 20 V Pulse width: 25-175 us Frequency: 20 Hz Pulse apperance: Square wave Channels: 40 Electrodes: 58 Electrode material: Silicone rubber Fabric material: Nylon 82 %, Spandex 18 %

via About Mollii – Mollii

, , , , , , , ,

Leave a comment

[Abstract + References] Motor stroke recovery after tDCS: a systematic review

Abstract

The purpose of the present study was to investigate the effects of transcranial direct current stimulation (tDCS) on motor recovery in adult patients with stroke, taking into account the parameters that could influence the motor recovery responses. The second aim was to identify the best tDCS parameters and recommendations available based on the enhanced motor recovery demonstrated by the analyzed studies. Our systematic review was performed by searching full-text articles published before February 18, 2019 in the PubMed database. Different methods of applying tDCS in association with several complementary therapies were identified. Studies investigating the motor recovery effects of tDCS in adult patients with stroke were considered. Studies investigating different neurologic conditions and psychiatric disorders or those not meeting our methodologic criteria were excluded. The main parameters and outcomes of tDCS treatments are reported. There is not a robust concordance among the study outcomes with regard to the enhancement of motor recovery associated with the clinical application of tDCS. This is mainly due to the heterogeneity of clinical data, tDCS approaches, combined interventions, and outcome measurements. tDCS could be an effective approach to promote adaptive plasticity in the stroke population with significant positive premotor and postmotor rehabilitation effects. Future studies with larger sample sizes and high-quality studies with a better standardization of stimulation protocols are needed to improve the study quality, further corroborate our results, and identify the optimal tDCS protocols.

References

  • Allman, C., Amadi, U., Winkler, A.M., Wilkins, L., Filippini, N., Kischka, U., Stagg, C.J., and Johansen-Berg, H. (2016). Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci. Transl. Med. 8, 330re1.PubMedCrossrefGoogle Scholar
  • Ameli, M., Grefkes, C., Kemper, F., Riegg, F.P., Rehme, A.K., Karbe, H., Fink, G.R., and Nowak, D.A. (2009). Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Ann. Neurol. 66, 298–309.PubMedCrossrefGoogle Scholar
  • Andrade, S.M., Batista, L.M., Nogueira, L.L., de Oliveira, E.A., de Carvalho, A.G., Lima, S.S., Santana, J.R., de Lima, E.C., and Fernández-Calvo, B. (2017a). Constraint-induced movement therapy combined with transcranial direct current stimulation over premotor cortex improves motor function in severe stroke: a pilot randomized controlled trial. Rehab. Res. Pract. 2017, 6842549.Google Scholar
  • Andrade, S.M., Ferreira, J.J.A., Rufino, T.S., Medeiros, G., Brito, J.D., da Silva, M.A., and Moreira, R.N. (2017b). Effects of different montages of transcranial direct current stimulation on the risk of falls and lower limb function after stroke. Neurol. Res. 39, 1037–1043.CrossrefGoogle Scholar
  • Bikson, M., Grossman, P., Thomas, C., Zannou, A.L., Jiang, J., Adnan, T., Mourdoukoutas, A.P., Kronberg, G., Truong, D., Boggio, P., et al. (2016). Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 9, 641–661.CrossrefPubMedGoogle Scholar
  • Bolognini, N. and Vallar, G. (2015). Stimolare il cervello. Manuale di stimolazione cerebrale non invasiva (pp. 1–224). il Mulino.Google Scholar
  • Bolognini, N., Pascual-Leone, A., and Fregni, F. (2009). Using non-invasive brain stimulation to augment motor training-induced plasticity. J. Neuroeng. Rehab. 6, 8.CrossrefGoogle Scholar
  • Bolognini, N., Vallar, G., Casati, C., Latif, L.A., El-Nazer, R., Williams, J., Banco, E., Macea, D.D., Tesio, L., Chessa, C., et al. (2011). Neurophysiological and behavioral effects of tDC combined with constraint-induced movement therapy in post stroke patients. Neurorehab. Neural Rep. 25, 819–829.CrossrefGoogle Scholar
  • Bortoletto, M., Rodella, C., Salvador, R., Miranda, P.C., and Miniussi, C. (2016). Reduced current spread by concentric electrodes in transcranial electrical stimulation (tES). Brain Stimul. 9, 525–528.CrossrefPubMedGoogle Scholar
  • Bradnam, L.V., Stinear, C.M., Barber, P.A., and Byblow, W.D. (2012). Contralesional hemisphere control of the proximal paretic upper limb following stroke. Cereb. Cortex 22, 2662–2671.PubMedCrossrefGoogle Scholar
  • Brunelin, J., Mondino, M., Gassab, L., Haesebaert, F., Gaha, L., Suaud-Chagny, M.F., Saoud, M., Mechri, A., and Poulet, E. (2012a). Examining transcranial direct current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. Am. J. Psychiatry 169, 719–724.CrossrefGoogle Scholar
  • Brunoni, A.R., Zanao, T.A., Ferrucci, R., Priori, A., Valiengo, L., de Oliveira, J.F., Boggio, P.S., Lotufo, P.A., Benseñor, I.M., and Fregni, F. (2013c). Bifrontal tDCS prevents implicit learning acquisition in antidepressant-free patients with major depressive disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 43, 146–150.CrossrefGoogle Scholar
  • Burke Quinlan, E., Dodakian, L., See, J., McKenzie, A., Le, V., Wojnowicz, M., Shahbaba, B., and Cramer, S.C. (2015). Neural function, injury, and stroke subtype predict treatment gains after stroke. Ann. Neurol. 77, 132–145.CrossrefPubMedGoogle Scholar
  • Byblow, W.D., Stinear, C.M., Barber, P.A., Petoe, M.A., and Ackerley, S.J. (2015). Proportional recovery after stroke depends on corticomotor integrity. Ann. Neurol. 78, 848–859.CrossrefPubMedGoogle Scholar
  • Chang, M.C., Kim, D.Y., and Park, D.H. (2015). Enhancement of cortical excitability and lower limb motor function in patients with stroke by transcranial direct current stimulation. Brain Stimul. 8, 561–566.CrossrefPubMedGoogle Scholar
  • Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd ed. (Hillsdale, NJ: Erlbaum).Google Scholar
  • Coin, A., Najjar, M., Catanzaro, S., Orru, G., Sampietro, S., Sergi, G., Manzato, E., Perissinotto, E., Rinaldi, G., Sarti, S., et al. (2009). A retrospective pilot study on the development of cognitive, behavioral and functional disorders in a sample of patients with early dementia of Alzheimer type. Arch. Gerontol. Geriatr. 49, 35–38.CrossrefGoogle Scholar
  • Conti, C.L. and Nakamura-Palacios, E.M. (2013). Bilateral transcranial direct current stimulation over dorsolateral prefrontal cortex changes the drug-cued reactivity in the anterior cingulate cortex of crack-cocaine addicts. Brain Stimul. 7, 130–132.PubMedGoogle Scholar
  • Da Costa Santos, C.M., de Mattos Pimenta, C.A., and Nobre, M.R. (2007). The PICO strategy for the research question construction and evidence search. Rev. Lat. Am. Enfermagem. 15, 508–511.PubMedCrossrefGoogle Scholar
  • De Vries, M.H., Barth, A.C., Maiworm, S., Knecht, S., Zwitserlood, P., and Flöel, A. (2010). Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar. J. Cognit. Neurosci. 22, 2427–2436.CrossrefGoogle Scholar
  • Di Lazzaro, V., Dileone, M., Capone, F., Pellegrino, G., Ranieri, F., Musumeci, G., Florio, L., Di Pino, G., and Fregni, F. (2014). Immediate and late modulation of interhemispheric imbalance with bilateral transcranial direct current stimulation in acute stroke. Brain Stimul. 7, 841–848.CrossrefGoogle Scholar
  • Feng, W., Wang, J., Chhatbar, P.Y., Doughty, C., Landsittel, D., Lioutas, V.A., and Schlaug, G. (2015). Corticospinal tract lesion load: an imaging biomarker for stroke motor outcomes. Ann. Neurol. 78, 860–870.CrossrefPubMedGoogle Scholar
  • Ferrucci, R., Mameli, F., Guidi, I., Mrakic-Sposta, S., Vergari, M., Marceglia, S., Cogiamanian, F., Barbieri, S., Scarpini, E., and Priori, A. (2008). Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology 71, 493–498.CrossrefPubMedGoogle Scholar
  • Figlewski, K., Blicher, J.U., Mortensen, J., Severinsen, K.E., Nielsen, J.F., and Andersen, H. (2017). Transcranial direct current stimulation potentiates improvements in functional ability in patients with chronic stroke receiving constraint-induced movement therapy. Stroke 48, 229–232.PubMedCrossrefGoogle Scholar
  • Fregni, F., Boggio, P.S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., Marcolin, M.A., Rigonatt, S.P., Silva, M.T., and Pascual-Leone, A. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain Res. 166, 23–30.PubMedCrossrefGoogle Scholar
  • Fregni, F., Boggio, P.S., Lima, M.C., Ferreira, M.J., Wagner, T., Rigonatti, S.P., Castro, A.W., Souza, D.R., Riberto, M., Freedman, S.D., et al. (2006a). A sham controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 122, 197–209.CrossrefGoogle Scholar
  • Fregni, F., Boggio, P.S., Santos, M.C., Lima, M., Vieira, A.L., Rigonatti, S.P., Silva, M.T., Barbosa, E.R., Nitsche, M.A., and Pascual-Leone, A. (2006b). Non invasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov. Disord. 21, 1693–1702.CrossrefGoogle Scholar
  • Fregni, F., Gimenes, R., Valle, A.C., Ferreira, M.J., Rocha, R.R., Natalle, L., Bravo, R., Rigonatti, S.P., Freedman, S.D., Nitsche, M.A., et al. (2006c). A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum 54, 3988–3998.CrossrefGoogle Scholar
  • Fusco, A., Assenza, F., Iosa, M., Izzo, S., Altavilla, R., Paolucci, S., and Vernieri, F. (2014). The ineffective role of cathodal tDCS in enhancing the functional motor outcomes in early phase of stroke rehabilitation: an experimental trial. BioMed Res. Int. 2014, 547290.PubMedGoogle Scholar
  • Geroin, C., Picelli, A., Munari, D., Waldner, A., Tomelleri, C., and Smania, N. (2011). Combined transcranial direct current stimulation and robot-assisted gait training in patients with chronic stroke: a preliminary comparison. Clin. Rehabil. 25, 537–548.PubMedCrossrefGoogle Scholar
  • Gladwin, T.E., den Uyl, T.E., Fregni, F.F., and Wiers, R.W. (2012). Enhancement of selective attention by tDCS: interaction with interference in a Sternberg task. Neurosci. Lett. 512, 33–37.CrossrefGoogle Scholar
  • Grefkes, C. and Fink, G.R. (2014). Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 13, 206–216.CrossrefPubMedGoogle Scholar
  • Hamoudi, M., Schambra, H.M., Fritsch, B., Schoechlin-Marx, A., Weiller, C., Cohen, L.G., and Reis, J. (2018). Transcranial direct current stimulation enhances motor skill learning but not generalization in chronic stroke. Neurorehabil. Neural Repair 32, 295–308.PubMedCrossrefGoogle Scholar
  • Hattie, J. (2009). Visible Learning: A Synthesis of Over 800 Meta-analyses Relating to Achievement (Park Square, Oxford: Rutledge).Google Scholar
  • Herrmann, C.S., Rach, S., Neuling, T., and Strüber, D. (2013). Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front. Hum. Neurosci. 7, 279.PubMedGoogle Scholar
  • Hesse, S., Waldner, A., Mehrholz, J., Tomelleri, C., Pohl, M., and Werner, C. (2011). Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: an exploratory, randomized multicenter trial. Neurorehabil. Neural Repair 25, 838–846.PubMedCrossrefGoogle Scholar
  • Holman, L., Head, M.L., Lanfear, R., and Jennions, M.D. (2015). Evidence of experimental bias in the life sciences: why we need blind data recording. PLoS Biol. 13, e1002190.CrossrefPubMedGoogle Scholar
  • Horn, S.D., DeJong, G., Smout, R.J., Gassaway, J., James, R., and Conroy, B. (2005). Stroke rehabilitation patients, practice, and outcomes: is earlier and more aggressive therapy better? Arch. Phys. Med. Rehab. 86, 101–114.CrossrefGoogle Scholar
  • Horvath, J.C., Forte, J.D., and Carter, O. (2015a). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimul. 8, 535–550.CrossrefGoogle Scholar
  • Horvath, J.C., Forte, J.D., and Carter, O. (2015b). Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia 66, 213–236.CrossrefGoogle Scholar
  • Hoyer, E.H. and Celnik, P.A. (2011). Understanding and enhancing motor recovery after stroke using transcranial magnetic stimulation. Restor. Neurol. Neurosci. 29, 395–409.PubMedGoogle Scholar
  • Hummel, F.C. and Cohen, L.G. (2006). Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 5, 708–712.CrossrefPubMedGoogle Scholar
  • Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W.H., Gerloff, C., and Cohen, L.G. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128, 490–499.PubMedCrossrefGoogle Scholar
  • Hummel, F.C., Voller, B., Celnik, P., Floel, A., Giraux, P., Gerloff, C., and Cohen, L.G. (2006). Effects of brain polarization on reaction times and pinch force in chronic stroke. BMC Neurosci. 7, 73.CrossrefPubMedGoogle Scholar
  • Ilić, N.V., Dubljanin-Raspopović, E., Nedeljković, U., Tomanović-Vujadinović, S., Milanović, S.D., Petronić-Marković, I., and Ilić, T.V. (2016). Effects of anodal tDCS and occupational therapy on fine motor skill deficits in patients with chronic stroke. Restor. Neurol. Neurosci. 34, 935–945.PubMedGoogle Scholar
  • Ivanenko, Y.P., Poppele, R.E., and Lacquaniti, F. (2009). Distributed neural networks for controlling human locomotion: lessons from normal and SCI subjects. Brain Res. Bull. 78, 13–21.CrossrefPubMedGoogle Scholar
  • Khedr, E.M., Shawky, O.A., El-Hammady, D.H., Rothwell, J.C., Darwish, E.S., Mostafa, O.M., and Tohamy, A.M. (2013). Effect of anodal versus cathodal transcranial direct current stimulation on stroke rehabilitation: a pilot randomized controlled trial. Neurorehab. Neural Rep. 7, 592–601.Google Scholar
  • Kim, D.Y., Lim, J.Y., Kang, E.K., You, D.S., Oh, M.K., Oh, B.M., and Paik, N.J. (2010). Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke. Am. J. Phys. Med. Rehabil. 89, 879–886.PubMedCrossrefGoogle Scholar
  • Koo, W.R., Jang, B.H., and Kim, C.R. (2018). Effects of anodal transcranial direct current stimulation on somatosensory recovery after stroke: a randomized controlled trial. Am. J. Phys. Med. Rehabil. 97, 507–513.CrossrefPubMedGoogle Scholar
  • Kwakkel, G. and Kollen, B.J. (2013). Predicting activities after stroke: what is clinically relevant? Int. J. Stroke 8, 25–32.CrossrefPubMedGoogle Scholar
  • Langhorne, P., Coupar, F., and Pollock, A. (2009). Motor recovery after stroke: a systematic review. Lancet Neurol. 8, 741–754.CrossrefPubMedGoogle Scholar
  • Lee, S.J. and Chun, M.H. (2014). Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Arch. Phys. Med. Rehab. 95, 431–438.CrossrefGoogle Scholar
  • Lefaucheur, J.P., Antal, A., Ayache, S.S., Benninger, D.H., Brunelin, J., Cogiamanian, F., Cotelli, M., De Ridder, D., Ferrucci, R., Langguth, B., et al. (2017). Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 128, 56–92.CrossrefPubMedGoogle Scholar
  • Leon, D., Cortes, M., Elder, J., Kumru, H., Laxe, S., Edwards, D.J., Tormos, J.M., Bernabeu, M., and Pascual-Leone, A. (2017). tDCS does not enhance the effects of robot-assisted gait training in patients with subacute stroke. Restor. Neurol. Neurosci. 35, 377–384.PubMedGoogle Scholar
  • Liew, S.L., Santarnecchi, E., Buch, E.R., and Cohen, L.G. (2014). Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front. Hum. Neurosci. 8, 378.PubMedGoogle Scholar
  • Lindenberg, R., Renga, V., Zhu, L.L., Nair, D., and Schlaug, G. (2010). Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 75, 2176–2184.PubMedCrossrefGoogle Scholar
  • Lopez-Espuela, F., Zamorano, J.D.P., Ramírez-Moreno, J.M., Jiménez-Caballero, P.E., Portilla-Cuenca, J.C., Lavado-García, J.M., and Casado-Naranjo, I. (2015). Determinants of quality of life in stroke survivors after 6 months, from a comprehensive stroke unit: a longitudinal study. Biol. Res. Nurs. 17, 461–468.CrossrefGoogle Scholar
  • Lüdemann-Podubecká, J., Bösl, K., Rothhardt, S., Verheyden, G., and Nowak, D.A. (2014). Transcranial direct current stimulation for motor recovery of upper limb function after stroke. Neurosci. Biobehav. Rev. 47, 245–259.PubMedCrossrefGoogle Scholar
  • Marshall, L., Molle, M., Hallschmid, M., and Born, J. (2004). Transcranial direct current stimulation during sleep improves declarative memory. J. Neurosci. 24, 9985.CrossrefPubMedGoogle Scholar
  • Mazzoleni, S., Tran, V.D., Iardella, L., Dario, P., and Posteraro, F. (2017). Randomized, sham-controlled trial based on transcranial direct current stimulation and wrist robot-assisted integrated treatment on subacute stroke patients: intermediate results. In: 2017 International Conference on Rehabilitation Robotics (ICORR). IEEE, 555–560. doi:10.1109/icorr.2017.8009306.Google Scholar
  • Menezes, I.S., Cohen, L.G., Mello, E.A., Machado, A.G., Peckham, P.H., Anjos, S.M., Siqueira, I.L., Conti, J., Plow, E.B., and Conforto, A.B. (2018). Combined brain and peripheral nerve stimulation in chronic stroke patients with moderate to severe motor impairment. Neuromodulation 21, 176–183.CrossrefPubMedGoogle Scholar
  • Miranda, P.C., Lomarev, M., and Hallett, M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol. 117, 1623–1629.PubMedCrossrefGoogle Scholar
  • Moher, D., Liberati, A., Tetzlaff, J., and Altman, D.G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Int. Med. 151, 264–269.CrossrefGoogle Scholar
  • Nicolo, P., Magnin, C., Pedrazzini, E., Plomp, G., Mottaz, A., Schnider, A., and Guggisberg, A.G. (2018). Comparison of neuroplastic responses to cathodal transcranial direct current stimulation and continuous theta burst stimulation in subacute stroke. Arch. Phys. Med. Rehab. 99, 862–872.CrossrefGoogle Scholar
  • Nitsche, M.A. and Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527, 633–639.CrossrefPubMedGoogle Scholar
  • Nitsche, M.A. and Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57, 1899–1901.PubMedCrossrefGoogle Scholar
  • Nitsche, M.A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., and Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J. Cogn. Neurosci. 15, 619–626.PubMedCrossrefGoogle Scholar
  • Nitsche, M.A., Seeber, A., Frommann, K., Klein, C.C., Rochford, C., Nitsche, M.S., Fricke, K., Liebetanz, D., Lang, N., Antal, A., et al. (2005). Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J. Physiol. 568, 291–303.CrossrefPubMedGoogle Scholar
  • Nitsche, M.A., Kuo, M.F., Karrasch, R., Wächter, B., Liebetanz, D., and Paulus, W. (2009). Serotonin affects transcranial direct current-induced neuroplasticity in humans. Biol. Psychiatry 66, 503–508.CrossrefPubMedGoogle Scholar
  • Nowak, D.A., Bösl, K., Podubeckà, J., and Carey, J.R. (2010). Noninvasive brain stimulation and motor recovery after stroke. Restor. Neurol. Neurosci. 28, 531–544.PubMedGoogle Scholar
  • Nudo, R.J. and Milliken, G.W. (1996). Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J. Neurophysiol. 75, 2144–2149.PubMedCrossrefGoogle Scholar
  • Platz, T. (2004). Impairment-oriented training (IOT): scientific concept and evidence-based treatment strategies. Restor. Neurol. Neurosci. 22, 301–315.PubMedGoogle Scholar
  • Plow, E.B., Carey, J.R., Nudo, R.J., and Pascual-Leone, A. (2009). Invasive cortical stimulation to promote recovery of function after stroke: a critical appraisal. Stroke 40, 1926–1931.PubMedCrossrefGoogle Scholar
  • Polanía, R., Nitsche, M.A., and Paulus, W. (2011). Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum. Brain Mapping 32, 1236–1249.CrossrefGoogle Scholar
  • Priori, A., Berardelli, A., Rona, S., Accornero, N., and Manfredi, M. (1998). Polarization of the human motor cortex through the scalp. Neuroreport 9, 2257–2260.CrossrefPubMedGoogle Scholar
  • Rossi, C., Sallustio, F., Di Legge, S., Stanzione, P., and Koch, G. (2013). Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients. Eur. J. Neurol. 20, 202–204.CrossrefPubMedGoogle Scholar
  • Saeys, W., Vereeck, L., Lafosse, C., Truijen, S., Wuyts, F., and Van De Heyning, P. (2015). Transcranial direct current stimulation in the recovery of postural control after stroke: a pilot study. Disabil. Rehabil. 37, 1–7.Google Scholar
  • Sattler, V., Acket, B., Raposo, N., Thalamas, C., Loubinoux, I., Chollet, F., and Simonetta-Moreau, M. (2015). Anodal tDCS combined with radial nerve stimulation promotes hand motor recovery in the acute phase after ischemic stroke. Neurorehab. Neural Rep. 29, 743–754.CrossrefGoogle Scholar
  • Seo, H.G., Lee, W.H., Lee, S.H., Yi, Y., Kim, K.D., and Oh, B.M. (2017). Robotic-assisted gait training combined with transcranial direct current stimulation in chronic stroke patients: a pilot double-blind, randomized controlled trial. Restor. Neurol. Neurosci. 35, 527–536.PubMedGoogle Scholar
  • Shekhawat, G.S., Searchfield, G.D., and Stinear, C.M. (2013a). Randomized trial of transcranial direct current stimulation and hearing aids for tinnitus management. Neurorehab. Neural Rep. 28, 410–419.Google Scholar
  • Simonetti, D., Zollo, L., Milighetti, S., Miccinilli, S., Bravi, M., Ranieri, F., Magrone, G., Guglielmelli, E., Di Lazzaro, V., and Sterzi, S. (2017). Literature review on the effects of tDCS coupled with robotic therapy in post stroke upper limb rehabilitation. Front. Hum. Neurosci. 11, 268.CrossrefPubMedGoogle Scholar
  • Stinear, C.M. and Byblow, W.D. (2014). Predicting and accelerating motor recovery after stroke. Curr. Opin. Neurol. 27, 624–630.PubMedGoogle Scholar
  • Straudi, S., Fregni, F., Martinuzzi, C., Pavarelli, C., Salvioli, S., and Basaglia, N. (2016). tDCS and robotics on upper limb stroke rehabilitation: effect modification by stroke duration and type of stroke. BioMed Res. Int. 2016, 8.Google Scholar
  • Suzuki, Y., and Naito, E. (2012). Neuro-modulation in dorsal premotor cortex facilitates human multi-task ability. J. Behav. Brain Sci. 2, 372.CrossrefGoogle Scholar
  • Terney, D., Chaieb, L., Moliadze, V., Antal, A., and Paulus, W. (2008). Increasing human brain excitability by transcranial high-frequency random noise stimulation. J. Neurosci. 28, 14147–14155.CrossrefPubMedGoogle Scholar
  • Viana, R.T., Laurentino, G.E., Souza, R.J., Fonseca, J.B., Silva Filho, E.M., Dias, S.N., Teixeira-Salmela, L.F., and Monte-Silva, K.K. (2014). Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: a pilot randomized controlled trial. Neurorehabilitation 34, 437–446.PubMedGoogle Scholar
  • Wang, Y., Shen, Y., Cao, X., Shan, C., Pan, J., He, H., Ma, Y., and Yuan, T.F. (2016). Transcranial direct current stimulation of the frontal-parietal-temporal area attenuates cue-induced craving for heroin. J. Psychiatry Res. 79, 1–3.CrossrefGoogle Scholar
  • Wu, D., Qian, L., Zorowitz, R.D., Zhang, L., Qu, Y., and Yuan, Y. (2013). Effects on decreasing upper-limb post stroke muscle tone using transcranial direct current stimulation: a randomized sham-controlled study. Arch. Phys. Med. Rehab. 94, 1–8.CrossrefGoogle Scholar
  • Zehr, E.P. (2005). Neural control of rhythmic human movement: the common core hypothesis. Exercise Sport Sci. Rev. 33, 54–60.Google Scholar
  • Ziemann, U., Paulus, W., Nitsche, M.A., Pascual-Leone, A., Byblow, W.D., Berardelli, A., Siebner, H.R., Classen, J., Cohen, L.G., and Rothwell, J.C. (2008). Consensus: motor cortex plasticity protocols. Brain Stimul. 1, 164–182.CrossrefPubMedGoogle Scholar

via Motor stroke recovery after tDCS: a systematic review : Reviews in the Neurosciences

, , , , , ,

Leave a comment

[Clinimetrics] The Scandinavian Stroke Scale

Summary

The Scandinavian Stroke Scale (SSS) is a clinical measure of functional impairment and activity limitations in patients with acute stroke. It was first presented by the Copenhagen Stroke Study Group in 1985.1 The SSS consists of nine items measuring consciousness, eye movement, arm motor power, hand motor power, leg motor power, orientation, speech, facial palsy and gait.1 Each item is scored on an ordinal scale with two to five categories, with item scores ranging from 2 to 12. In the original scale, unconscious patients could not be scored, as the lowest category in this item read: reacts to verbal command, but is not fully conscious (score 2).1 However, a scale revision added the category unconscious (score 0).2 Thus, sum scores range from 0 to 58 in the edited version, with 0 indicating severe neurological deficits and 58 indicating no neurological deficits. The SSS includes items that are of functional significance to the patients and are easy to assess.1 Therefore, items such as dysarthria, visual field, sensation, and reflexes were omitted during scale development.1 The SSS can be administered in < 5 minutes by non-specialists (ie, physiotherapists and nurses).3 It is used worldwide and is available in multiple languages, including English,1 Danish4 and Portuguese.5

Reliability and validity: The internal consistency of items in the SSS is high (Cronbach’s α: 0.91).6 The interrater reliability of items is also good to excellent, with weighted Kappa coefficients ranging from 0.608 to 0.912.7 The items with the strongest agreement are gait (κ: 0.912) and speech (κ: 0.860), while the items with the poorest agreement are leg motor power (κ: 0.688) and facial palsy (κ: 0.608). It is also possible to obtain reliable SSS scores based on information from medical records when compared with face-to-face assessment, with excellent agreement (κ > 0.75) except for consciousness (κ: 0.71) and eye movements (κ: 0.58).8 The positive predictive value for the speech item is 0.55 (95% CI 0.23 to 0.83) when assessed by trained nurses compared to comprehensive assessments by speech and language therapists.9

Ninety-day SSS scores correlate with the National Institute of Health Stroke Scale (NIHSS) (r2 = 81.2%), Barthel Index (r2 = 72.3%) and modified Rankin Scale (r2 = 76.9%).10 However, interconversion models for SSS to NIHSS, accounting for age and gender, demonstrate that the relationship between SSS and NIHSS depends on the timing of measurement. In the acute phase, the adjusted r2 = 0.60 whereas 90 days after stroke the adjusted r2 = 0.80.11 The SSS predicts 1-week mortality3 and 3-month disability12 with the same accuracy as the NIHSS scale. The area under the ROC curve is 0.76 for 1-week mortality3 and 0.769 for 3-month disability.12 Using a cut-off score of 36, the SSS predicts 1-week mortality with a sensitivity of 0.83 and specificity of 0.633 and using a cut-off score > 42 predicts 3-month disability with a sensitivity of 69.5% and specificity of 82.2%.12

Commentary

The SSS is a common measure of stroke impairment in acute care settings (eg, in Denmark it is mandatory to administer the SSS to all hospitalised patients with acute stroke or transient ischaemic attack), and is used in clinical trials and observational studies as a measure of neurological deficit. To our knowledge, the SSS did not undergo testing of its clinimetric properties during its development. However, subsequent studies have provided some information on the reliability, validity and internal consistency. Although the SSS has some predictive validity, the values are likely to be optimistic, as the predictions were not externally validated.

In comparison with other commonly used scales such as NIHSS, the SSS assesses gait but does not include items measuring ataxia, neglect or sensation. This facilitates ease of use and administration by non-specialists but could miss useful information that may assist in determining appropriate management and potential prognosis. Low inter-rater reliability has been reported in the item facial palsy,7 likely due to the simplicity/ambiguity of the item, with categorisation as either present facial palsy or none/dubious facial palsy.1 Furthermore, the speech item in the SSS has low positive predictive value, resulting in patients without aphasia being scored as having aphasia.13

The SSS is an easy-to-use measure of functional limitations in patients with stroke, which may be useful for clinical and research purposes. Further research investigating the clinimetric and prognostic properties of the SSS is warranted.

References

via Clinimetrics: The Scandinavian Stroke Scale – ScienceDirect

, , , , ,

Leave a comment

[Abstract] Robotic Techniques Used for Increasing Improvement Rate In The Rehabilitation Process Of Upper Limb Stroke Patients – Full Text PDF

Abstract

The rate of stroke patients in Pakistan is increasing, resulting in the decrease mobility of the patients. The movement of upper limb stoke patient is decreased due to the weakness and loss of joint control in his upper body. To improve the coordination of movement of the upper limb stroke patients, many methods e.g. passive and active modes for improving the disrupted mobility are introduced. The objectives of this paper are to first review the studies on upper limb stroke patients and the techniques used for increasing the improvement rate through physical therapy by exoskeleton and evaluation of the performance of the patient using methods such as quantification and graphical representations so that it can be shown to the patient for his motivation to improve further. The paper introduces a mechanical design of exoskeleton with 1 degree of freedom for elbow and 2 degrees of freedom for shoulder movement for rehabilitation of joints of stoke patients. It also mentions the safety that will be taken in the process so that the exoskeleton is safe to use when it is in contact with human. The model of the exoskeleton has the characteristic of being modular and easily operable and use admittance control strategy. Control strategy of the exoskeleton is discussed to maintain the position and orientation of the device and also is able to cater the gravitational attraction which plays an important part in the movement of the actuators. The mathematical model of motion attained due to the degrees of freedom of the exoskeleton is then evaluated and the lastly areas where the future work of exoskeleton can be done are discussed.

Full Text PDF

via Robotic Techniques Used for Increasing Improvement Rate In The Rehabilitation Process Of Upper Limb Stroke Patients | Sukkur IBA Journal of Computing and Mathematical Sciences

, , , , , ,

Leave a comment

%d bloggers like this: