Posts Tagged Stroke

[WEB SITE] SMARTmove – FES

Summary

SMARTmove is a £1.1 million Medical Research Council research project running for 30 months from September 2016 to February 2019, funded under the Development Pathway Funding Scheme (DPFS). The project brings together a multidisciplinary team with expertise in functional materials, direct printing fabrication, control algorithms, wireless electronics, sensors, and end user engagement to address stroke rehabilitation. Working together with the advisory board members from six institutions, we will deliver a personalised wearable device for home-based stroke upper limb rehabilitation.

     

The Need

Stroke is one of the largest causes of disability: 17 million strokes occur every year worldwide, meaning one stroke every two seconds. Half of stroke survivors lose the ability to perform everyday tasks with their upper limb, which affects their independence. The cost to society in the UK is nine billion pounds per year due to health and social care, informal care, productivity loss and benefit payments. As stroke is an age-related disease, these numbers are set to increase as the population ages.

Novelty

Current commercial devices using functional electrical stimulation (FES) have large electrodes that only stimulate a limited number of muscles, resulting in simple, imprecise movements and the rapid onset of fatigue. In addition, current commercial devices do not employ feedback control to account for the movement of patients, only reducing the level of precision in the resulting movements. In addition, devices are either bulky and expensive, or difficult to set-up due to trailing wires.

Our project uses bespoke screen printable pastes to print electrode arrays directly onto everyday fabrics, such as those used in clothing. The resulting garments will have cutting-edge sensor technologies integrated into them. Advanced control algorithms will then adjust the stimulation based on the patients’ limb motion to enable precise functional movements, such as eating, washing or dressing.

Impact

This project will deliver a fabric-based wearable FES for home based stroke rehabilitation. The beneficiaries include:

  1. Persons with stroke (PwS) and other neurological conditions. Stroke survivors are the direct beneficiaries of our research. The FES clothing can be adapted to also treat hand/arm disabilities resulting from other neurological conditions such as cerebral palsy, head injury, spinal cord injury, and multiple sclerosis. The use of the wearable training system increases the intensity of rehabilitation without an increase in clinical contact time. This leads to better outcomes such as reduced impairment, greater restoration of function, improved quality of life and increased social activity.
  2. The NHS. FES-integrated clothing is comfortable to wear and convenient to use for rehabilitation, enabling impaired people to benefit from FES at home. It will transfer hospital based professional care to home based self-care, and therefore will reduce NHS costs by saving healthcare professionals’ time and other hospital resources.
  3. Industry. Benefits include: bringing business to the whole supply chain; increasing the FES market demand by improving performance; benefiting other industry sectors such as rehabilitation for other neurological conditions.
  4. Research communities in related fields. Specifically, the fields of novel fabrication, control systems, design of medical devices, rehabilitation, smart fabrics, and remote healthcare will benefit from the highly transformative platform technology (e.g. direct write printing, fabric electrodes, iterative learning control systems) developed in this work.

What is FES?

Functional electrical stimulation (FES) is a technique used to facilitate the practice of therapeutic exercises and tasks. Intensive movement practice can restore the upper limb function lost following stroke. However, stroke patients often have little or no movement, so are unable to practice. FES activates muscles artificially to facilitate task practise and improve patients’ movement.

More…..

Source: SMARTmove

Advertisements

, , , , , , ,

Leave a comment

[WEB SITE] New method uses advanced noninvasive neuroimaging to localize and identify epileptic lesions

Epilepsy affects more than 65 million people worldwide. One-third of these patients have seizures that are not controlled by medications. In addition, one-third have brain lesions, the hallmark of the disease, which cannot be located by conventional imaging methods. Researchers at the Perelman School of Medicine at the University of Pennsylvania have piloted a new method using advanced noninvasive neuroimaging to recognize the neurotransmitter glutamate, thought to be the culprit in the most common form of medication-resistant epilepsy. Their work is published today in Science Translational Medicine.

Glutamate is an amino acid which transmits signals from neuron to neuron, telling them when to fire. Glutamate normally docks with the neuron, gives it the signal to fire and is swiftly cleared. In patients with epilepsy, stroke and possibly ALS, the glutamate is not cleared, leaving the neuron overwhelmed with messages and in a toxic state of prolonged excitation.

In localization-related epilepsy, the most common form of medication-resistant epilepsy, seizures are generated in a focused section of the brain; in 65 percent of patients, this occurs in the temporal lobe. Removal of the seizure-generating region of the temporal lobe, guided by preoperative MRI, can offer a cure. However, a third of these patients have no identified abnormality on conventional imaging studies and, therefore, more limited surgical options.

“Identification of the brain region generating seizures in location-related epilepsy is associated with significantly increased chance of seizure freedom after surgery,” said the new study’s lead author, Kathryn Davis, MD, MSTR, an assistant professor of Neurology at Penn. “The aim of the study was to investigate whether a novel imaging method, developed at Penn, could use glutamate to localize and identify the epileptic lesions and map epileptic networks in these most challenging patients.”

“We theorized that if we could develop a technique which allows us to track the path of and make noninvasive measurements of glutamate in the brain, we would be able to better identify the brain lesions and epileptic foci that current methods miss,” said senior author Ravinder Reddy, PhD, a professor of Radiology and director of Penn’s Center for Magnetic Resonance and Optical Imaging.

Reddy’s lab developed the glutamate chemical exchange saturation transfer (GluCEST) imaging method, a very high resolution magnetic resonance imaging contrast method not available before now, to measure how much glutamate was in different regions of the brain including the hippocampi, two structures within the left and right temporal lobes responsible for short- and long-term memory and spatial navigation and the most frequent seizure onset region in adult epilepsy patients.

The study tested four patients with medication-resistant epilepsy and 11 controls. In all four patients, concentrations of glutamate were found to be higher in one of the hippocampi, and confirmatory methods (electroencephalography and magnetic resonance spectra) verified independently that the hippocampus with the elevated glutamate was located in the same hemisphere as the epileptic focus/lesion. Consistent lateralization to one side was not seen in the control group.

While preliminary, this work indicates the ability of GluCEST to detect asymmetrical hippocampal glutamate levels in patients thought to have nonlesional temporal lobe epilepsy. The authors say this approach could reduce the need for invasive intracranial monitoring, which is often associated with complications, morbidity risk, and added expense.

“This demonstration that GluCEST can localize small brain hot spots of high glutamate levels is a promising first step in our research,” Davis said. “By finding the epileptic foci in more patients, this approach could guide clinicians toward the best therapy for these patients, which could translate to a higher rate of successful surgeries and improved outcomes from surgery or other therapies in this difficult disease.”

Source: Penn Medicine

Source: New method uses advanced noninvasive neuroimaging to localize and identify epileptic lesions

, , , , , , , , , , , , ,

Leave a comment

[Abstract] Providing Sources of Self-Efficacy Through Technology Enhanced Post-Stroke Rehabilitation in the Home.

Abstract

This research explores the impact of receiving feedback through a Personalised Self-Managed Rehabilitation System (PSMrS) for home-based post-stroke rehabilitation on the users’ self-efficacy; more specifically, mastery experiences and the interpretation of biomechanical data. Embedded within a realistic evaluation methodological approach, exploring the promotion of self-efficacy from the utilisation of computer-based technology to facilitate post-stroke upper-limb rehabilitation in the home included; semi-structured interviews, quantitative user data (activity and usage), observations and field notes. Data revealed that self-efficacy was linked with obtaining positive knowledge of results feedback. Encouragingly, this also transferred to functional activities such as, confidence to carry out kitchen tasks and bathroom personal activities. Findings suggest the PSMrS was able to provide key sources of self-efficacy by providing feedback which translated key biomechanical data to the users. Users could interpret and understand their performance, gain a sense of mastery and build their confidence which in some instances led to increased confidence to carry out functional activities. However, outcome expectations and socio-structural factors impacted on the self-efficacy associated with the use of the system. Increasing the understanding of how these factors promote or inhibit self-management and self-efficacy is therefore crucial to the successful adoption of technology solutions and promotion of self-efficacy.

Source: Providing Sources of Self-Efficacy Through Technology Enhanced Post-Stroke Rehabilitation in the Home. – PubMed – NCBI

, , , ,

Leave a comment

[ARTICLE] The Relationship between Poststroke Depression and Upper Limb Recovery in Patients Admitted to a Rehabilitation Unit – Full Text PDF

Abstract

Objective: We sought to determine the relationship between poststroke depression and upper limb recovery in a cohort of patients admitted to a rehabilitation center in Singapore.

Method: We conducted a secondary analysis of an interventional study of 105 patients with a stroke. Depression was diagnosed using the Centre for Epidemiological Studies Depression Scale (CES-D) and this was correlated with the following measures: Fugl-Meyer Assessment of Upper Limb (FMA), Action Research Am Test (ARAT), Stroke Impact Scale – Upper Limb Items (SIS) and Functional Independence Measure-Selfcare (FIM-Selfcare) at 3, 7 and 15 weeks after admission to rehabilitation.

Results: Poststroke depression was present in 20% of patients on admission to rehabilitation. It was negatively correlated to SIS and FIM-Selfcare at 7 weeks and to FMA, ARAT, SIS and FIM-Selfcare at 15 weeks after rehabilitation admission. Depression on rehabilitation admission did not influence upper limb recovery at 3 weeks, 7 weeks, and 15 weeks after admission to rehabilitation.

Conclusion: Given the negative impact of depression on upper limb impairment, function and performance of selfcare, routine screening of depression should be considered in subacute stroke patients, especially in those with poorer upper limb function.

 Full Text PDF

, , , , , ,

Leave a comment

[ARTICLE] Adapting Tai Chi for Upper Limb Rehabilitation Post Stroke: A Feasibility Study

Abstract: 

Background: Tai chi (TC) has been reported as being beneficial for improving balance post stroke, yet its utility in upper limb rehabilitation remains unknown. Methods: Twelve chronic stroke survivors with persistent paresis of an upper limb underwent 60 minutes of adapted TC twice a week for eight weeks, with a 4-week follow up. A 10-min TC home program was recommended for the days without sessions. TC level of performance, attendance to the sessions, duration of self-practice at home, and adapted TC movements used were recorded. Results: Eleven participants completed the study. A clinical reasoning algorithm underlying the adaptation of TC was elaborated throughout the trial. Participants with varying profiles including a severely impaired upper limb, poor balance, shoulder pain, and severe spasticity were not only capable of practicing the adapted TC, but attended all 16 sessions and practiced TC at home for a total of 16.51 ± 9.21 h. The degree of self-practice for subgroups with low upper limb function, shoulder pain, or moderate-to-severe spasticity was similar to that of subgroups with greater upper limb function, no shoulder pain, and minimal-to-no spasticity. Conclusion: Adapted TC seems feasible for upper limb rehabilitation post stroke. Although the study was based on a small sample size and requires confirmation, low upper limb function, insufficient balance, spasticity, and shoulder pain do not appear to hinder the practice of TC.

1. Introduction

Stroke is a leading cause of serious, long-term disability among middle-aged and older adults worldwide [1]. Functional impairment of an upper limb is reported in approximately 85% of stroke survivors [2]. The effects of current treatments for arm weakness are shown to be suboptimal [3]. Though upper limb recovery has been found to continue even in the chronic stage [4], long-term rehabilitation services are limited for a large proportion of chronic stroke patients after returning home [5,6]. Therefore, novel and effective approaches are needed to provide timely and ongoing upper limb rehabilitation.
Tai chi is an ancient martial art originating from Chinese healing traditions. Typified by slow and gentle movements, tai chi is an “internal” martial art that cultivates the flow and balance of qi, which is translated as vital energy [7]. The relaxation of body and mind is a main feature which is said to facilitate the flow of qi [8]. Also, tai chi requires well-coordinated sequencing of segments to make the body move as a whole unit to help the flow of qi [9]. Thus, tai chi is a moving form of qigong, which is a practice focusing on cultivation, circulation, and harmonization of qi. To date, tai chi is accepted as a suitable, low impact, home-based exercise option for aged and patients with chronic diseases [10,11,12]. Since tai chi emphasizes slow and continuous weight transfer between the two feet, it has been widely shown as beneficial for improving balance and for fall prevention in the aged [13,14,15].
In recent years, some studies have also reported the benefits of tai chi in improving balance in chronic stroke patients [16,17,18]. However, the use of tai chi in upper limb rehabilitation post stroke remains unknown. Tai chi is not only an exercise of lower limb, but a whole-body exercise. Upper limb muscle strength and flexibility have been shown to improve in the aged following the practice of tai chi [19,20,21]. Tai chi practitioners have also demonstrated better arm movement control and eye–hand coordination in older adults [21,22,23,24]. Furthermore, the relaxation component of tai chi may have the potential to improve the motor function of the paretic upper limb. Therefore, tai chi may be a promising upper limb rehabilitation method.
However, the presence of hemiplegia may be an important barrier to using tai chi for upper limb rehabilitation post stroke, potentially limiting the ability to actually perform upper limb tai chi movements. Similarly, shoulder pain and severe spasticity of the affected arm may impact on the ability to perform tai chi movements. Furthermore, the standing position used in traditional tai chi styles poses difficulties for persons with poor balance. Adapting tai chi to take into account these limitations may need to be included in post-stroke rehabilitation. Although sitting tai chi has been reported to be used in persons with spinal cord injuries to improve muscle strength of the upper limbs [25], little is known about how to adapt tai chi with respect to paretic upper limbs. Moreover, the feasibility of using adapted tai chi movements for upper limb rehabilitation remains unknown.
Therefore, this study aimed to explore the use of adapted tai chi movements for upper limb rehabilitation. More specifically, the objective was to evaluate the feasibility of using adapted tai chi for upper limb rehabilitation post stroke, including: (1) whether the adapted tai chi was performable and acceptable by participants; and (2) whether the potential influencing factors such as impairment level of an upper limb, insufficient balance, shoulder pain, and spasticity constrained the practice of the adapted tai chi. A second objective was to document the clinical reasoning underlying the adaptations made to tai chi based on the participants’ characteristics when used for upper limb rehabilitation post stroke. The efficacy of adapted tai chi has been reported elsewhere [26]. […]

Continue —>  Medicines | Free Full-Text | Adapting Tai Chi for Upper Limb Rehabilitation Post Stroke: A Feasibility Study | HTML

Medicines 04 00072 g001

Figure 1. Individual self-practice hours per month of participants.

, , , , , ,

Leave a comment

[SLIDE SHOW] The Invisible Effects of Stroke – PDF File

The Invisible Effects of Stroke

By Nicole Walmsley

Overview

The objective is to:
1. identify four common invisible effects of a stroke
2. demonstrate how nursing staff can identify these on an
acute stroke unit

Download the PDF File

, , , , ,

Leave a comment

[WEB SITE] Robotic-Assisted Rehabilitation Therapy Designed to Aid Stroke Recovery

Pictured here is the experimental setup for the estimation of the 3 DOF human forearm and wrist impedance. (Photo courtesy of UNIST)

Pictured here is the experimental setup for the estimation of the 3 DOF human forearm and wrist impedance. (Photo courtesy of UNIST)

Scientists from Ulsan National Institute of Science and Technology (UNIST) have developed a new robotic tool to assess muscle overactivity and movement dysfunction in stroke survivors.

They suggest, in a study published recently in IEEE Transactions on Neural Systems and Rehabilitation Engineering, that their robotic-assisted rehabilitation therapy may help improve the stroke patients’ mobility.

The study was led by Professor Sang Hoon Kang of Mechanical, Aerospace and Nuclear Engineering at UNIST in collaboration with Professor Pyung-Hun Chang of DGIST and Dr Kyungbin Park of Samsung Electronics Co Ltd, according to a media release from UNIST.

In their study, Kang and the others on the team developed a rehabilitation robotic system that quantitatively measures the 3 degrees-of-freedom (DOF) impedance of human forearm and wrist in minutes.

Using their impedance estimation device, which they call the distal internal model based impedance control (dIMBIC)-based method, the team was able to accurately characterize the 3 DOF forearm and wrist impedance, including inertia, damping, and stiffness, for the first time, the release continues.

“The dIMBIC-based method can be used to assist in the quantitative and objective evaluation of neurological disorders, like stroke,” Kang says, in the release. “Findings from this study will open a new chapter in robot-assisted rehabilitation in the workplace accident rehabilitation hospitals, as well as in nursing homes and assisted living facilities.”

The research team expects that, in the long run, the proposed 3 DOF impedance estimation may promote wrist and forearm motor control studies and complement the diagnosis of the alteration in wrist and forearm resistance post-stroke by providing objective impedance values including cross-coupled terms, the release concludes.

[Source(s): Ulsan National Institute of Science and Technology (UNIST), Science Daily]

Source: Robotic-Assisted Rehabilitation Therapy Designed to Aid Stroke Recovery – Rehab Managment

, , , ,

Leave a comment

[ARTICLE] Effect of repetitive wrist extension with electromyography-triggered stimulation after stroke: a preliminary randomized controlled study – Full Text PDF

Objective: The purpose of this study was to explore the effect of repetitive wrist extension task training with electromyography (EMG)-triggered neuromuscular electrical stimulation (NMES) for wrist extensor muscle recovery in patients with stroke.

Design: Randomized controlled trial.

Methods: Fifteen subjects who had suffered a stroke were randomly assigned to an EMG-triggered NMES group (n=8) or control group (n=7); subjects in both groups received conventional therapy as usual. Subjects in the experimental group received application of EMG-triggered NMES to the wrist extensor muscles for 20 minutes, twice per day, five days per week, for a period of four weeks, and were given a task to make a touch alarm go off by activity involving extension of their wrist. In the control group, subjects
performed wrist self-exercises for the same duration and frequency as those in the experimental group. Outcome measures included muscle reaction time and spectrum analysis. Assessments were performed during the pre- and post-treatment periods.

Results: In the EMG-triggered NMES group, faster muscle reaction time was observed, and median frequency also showed improvement, from 68.2 to 75.3 Hz, after training (p<0.05). Muscle reaction time was significantly faster, and median frequency was significantly higher in the experimental group than in the experimental group after training.

Conclusions: EMG-triggered NMES is beneficial for patients with hemiparetic stroke in recovery of upper extremity function.

Download Full Text PDF

, , , , , , ,

Leave a comment

[ARTICLE] Neurologic Music Therapy to Facilitate Recovery from Complications of Neurologic Diseases – Full Text 

Abstract

Neurologic music therapy (NMT) has fostered recovery from complications in patients suffering from a wide variety of neurologic diseases. Combining music and virtual reality with standard rehabilitation therapies can improve patient compliance and make therapy more enjoyable. Listening to music can reduce epileptiform discharges and enhances brain plasticity. Music produces variations in brain anatomy between musicians and non-musicians. Music therapy is an inexpensive intervention to help post-stroke patients to recover faster and more efficiently if applied soon after the event. There is evidence that incorporating music into a rehabilitation program fosters recovery of hand function, dexterity, spatial movement, cognitive function, mood, coordination, stride length and memory. Learning words as lyrics, melodic intonation therapy and singing can help the aphasic patient to recover faster. NMT therapists are valuable members of the rehabilitation team. NMT has been approved by the World Rehabilitation Federation as an effective evidence based method of treatment.

Introduction

Incorporating music into routine rehabilitation programs not only fosters initial recovery but also contributes to improvement and enduring benefit after stopping the treatment. Disabilities stem from different neurologic disorders, work-related injuries and trauma such as motor vehicle accidents and sport injuries. Disabilities can have devastating physical, emotional and financial effects on the lives of patients and their families. It is important to identify and incorporate strategies that supplement traditional rehabilitation therapy in order to optimize the recovery of function and quality of life. NMT, by facilitating the patients’ recovery, contributes to positive patient outcomes. The following reviews the evidence base highlighting the importance of adding music to more standard forms of rehabilitation therapy. It references the neurobiological foundation of NMT, its history and applications. Evidence in support of its use to facilitate recovery from a wide range of complications related to specific neurological diagnoses will be discussed.[…]

Continue —>  Neurologic Music Therapy to Facilitate Recovery from Complications of Neurologic Diseases | Insight Medical Publishing

, , , , , , , ,

Leave a comment

[BLOG POST] Virtual reality for people with stroke or Parkinson’s disease: bringing therapy home – Evidently Cochrane

Virtual reality for people with stroke or Parkinson’s disease: bringing therapy home

BY 

In this blog, neuropsychologist Marta Bieńkiewicz explores the potential of virtual reality to help people with Parkinson’s disease, and after stroke, and looks at the evidence from Cochrane reviews.

By 2020 it is estimated that there will be 120 million active users of Virtual Reality (VR) via mobile headsets; nearly a fifth of whom will be using it for healthcare solutions (ABI report, 2015). The hype about VR is currently reaching fever pitch, thanks mostly to the increased accessibility of it for the average Joe (via solutions such as smartphones add-ons spectacles). All over the globe VR setups are being tested and investigated as a novel means of enabling more fun and efficient physical exercise as part of rehabilitation. But is all the money that goes into research and development for this technology justifiable? Could it be better spent – for example on training more therapists or providing activity groups for patients?

In an attempt to answer this question, let’s walk through some facts to get a better picture as to what VR is and what it might hold for people with stroke and Parkinson’s disease (PD).

The virtual reality (VR) environment

My first exposure to VR was during my PhD days. My future husband (as it turned out 5 years later) was doing his doctorate on the non-clinical applications of what was, at the time, a technology in its infancy. In the simplest of definitions, VR is a computer designed environment that can be displayed in a headset glasses or a cave (special room) to create a feeling of full immersion that you are somewhere else; completely detached from the real world yet fully engaged with the virtual world. The high immersion display might trick you into thinking you are on a tennis court playing a game at Wimbledon for example. The low immersion VR environments comprise computer displays – usually tablets or regular screens. In this case you can still enjoy a game or follow on-screen instructions, but your brain keeps check of its whereabouts.

So, the main concept behind VR-based rehabilitation games is twofold. Firstly, they provide a clear, visual means of prompting users’ movements (i.e. in the example of picking up an apple, the user might be guided toward it). Secondly, they increase the personal motivation of the user. The higher the engagement with the environment and varied scenarios, the higher the enjoyment and willingness to repeat the same exercise all over again (Lewis & Rosie, 2012). A Cochrane review (French et al. 2016) reported that repetitive training may improve walking distance and is probably effective for improving upper limb rehabilitation. For a fantastic example of how this field is moving forward see the KATA project based at John Hopkins University which uses a combination of VR (Pixar like!) display with robotic-assisted therapy for stroke.

The reality of stroke and Parkinson’s disease

Stroke and Parkinson’s disease are two different neurological conditions. The first one happens suddenly and changes mobility overnight, which may mean changing from being a fully active person to being limited in one’s independence. The second is characterised by gradual and sneaky progression of compromised mobility. Either condition may make everyday life increasingly a real struggle. When it is not easy to get dressed, the idea of doing physical exercise seems totally unattainable. People find themselves not being able to do the tasks they previously took for granted – preparing a sandwich, driving a car, or simply going out of the house, and now add to it catching up with the modern technology.

Exercise may help

If you are a sufferer, these two aspects might discourage you from reading on – exercise and VR sounds too hard to even bother! But here is the thing. While guidelines on how to improve mobility in neurological conditions are scarce, the ones that are there (Keus et al., 2014)suggest that the power of exercise might help. Studies suggests that intense exercise in Parkinson’s may slow down the progression of the disease due to neuroprotective benefits (Alberts et al., 2016Corcos et al., 2013) and help maintain independence (van Nimwegen, 2011). After stroke, physiotherapy is usually started straight away or during the hospitalisation period. In fact, many research teams are convinced that the time window for the real functional recovery of lost limb power (i.e. regaining the previous dexterity) is quite short and is limited to 6 months post accident or shorter (Cortes et al., 2017). This is the window of opportunity for brain reorganisation, after which improvement is maybe not impossible, but certainly more challenging.

Depending on patients’ needs, exercise should target general mobility, dexterity, walking, or specific daily activities. There are exercise-based interventions in particular that were reported to show improvement in people with Parkinson’s Disease: such as tandem or automated stationary cycling (Ridgiel et al., 2015) and pole-striding (Bombieri et al., 2017Krishnamurthi et al., 2017), and for stroke: physical rehabilitation (Pollock et al., 2014) or robot-assisted interventions (Mehrholz et al., 20152017). In both conditions, it is thought to be important to start as soon as possible and introduce exercise regime as a regular part of daily life.

For people with PD or after stroke who are keen to become more fit and actively steer their rehabilitation, VR could be their new best friend.

Does virtual reality offer real life benefits?

The Cochrane review of VR (Dockx et al., 2016) and gaming for Parkinson’s, with a focus on walking and balance, provides us with evidence that VR based training may lead to better improvements for stride length, but overall may have similar effects on walking parameters and balance as conventional therapy, while the effect on quality of life is uncertain. The upper limb interventions were not included.

On the contrary, the Cochrane review of VR in stroke focused interventions (Laver et al., 2015) was primarily focused on upper limb function and found that VR based interventions may lead to greater improvements in both function and daily task performance compared to conventional therapy. Global mobility and grip strength remained on level par. It is not clear how long-lasting those effects are, nor which characteristics are the most meaningful for patients’ recovery. The number of studies examined was small and information insufficient to look into other dimensions such as quality of life or cognitive functions.

So what does this all mean? The interventions using VR were overall found to be probably similar to the conventional therapies, with the potential added value in the form of accurate feedback and the ability to stimulate users by creating personalised, motivational and fun interventions (Dockx et al., 2016Laver et al., 2015). If more evidence is found to confirm those findings, it would mean VR can be potentially be as good as a supervised therapy, which is great news. Why? Because it means you can bring it home.

Why Occupational Therapists can sleep well at night (for now…)

Let’s make it clear, this is not an overnight take-over of conventional therapy. VR and gaming solutions have the potential to provide a similar level of care to traditional exercise-based therapy, without having to replace it. At least for the next decades, think of it as a potential complementary therapy subsidised by the NHS or private insurance: part of a medical treatment that would encourage patients to do meaningful exercise in between the supervised physiotherapy sessions. Conversely, VR-based exercise units in hospitals could train patients in daily tasks, emulating their home environment. Beyond that, the technology is simply not mature enough to match that of a human eye and brain in terms of assessment and choice of best treatment. However, with Artificial Intelligence looming on the distant horizon, this is not beyond the realms of possibility…some day.

Tread carefully though when it comes to any products or apps that are advertised as a rehabilitation tool on the consumer market. In order for it to be a relevant training tool it needs to be paired with sensors (attached to your body or embedded in a special clothing) in order to provide feedback.

Looking to the future: Extended Reality

The future however, might lie in a newly born sister of VR, namely Extended Reality (ER). This technology is also based on wearable headsets (such as Hololens) but allows the user to be immersed in the virtual reality while seeing the physical environment.

The idea is that the juxtaposed feedback information is relevant and not interruptive for your current activity (e.g. walking a dog). It is also a safer mode of exercise as it does not require being detached from one’s surroundings despite a high level of immersion in the virtual environment/of immersion. At least four labs so far have been investigating this idea for stroke and Parkinson’s (Technical University of MunichUniversity of RochesterUniversity of Connecticut and Northeastern University). Along with ER developments, the level of immersion and therefore enjoyment can be increased with the sound spatialisation and touch sensation (i.e. Ultrahaptics). One could easily imagine that ER opens new horizons for combining a very accurate feedback tool with, for example, robotic therapy.

Hopefully the next years will bring answers to questions such as the level of transferability of VR/ER training into real life skills. Further research is necessary to inform tailored technology-based exercise regimes and to clarify whether or not rehabilitation with limited supervision is a feasible model.

The take home message

While certainly the technological development in the current era is both exciting and a little daunting, it brings solutions that were not previously available at such affordable cost. VR essentially offers a therapy that is likely to become almost as good as conventional therapy from within the comforts of your own home. VR and gaming can be fun, can provide excitement of immersion and prevent boredom while also achieving exercise goals for task-specific rehabilitation. While current solutions are not yet up to the ‘buy now’ level, this area should definitely make your watchlist.

References may be found here.

Marta Bieńkiewicz has nothing to disclose.

Source: Virtual reality for people with stroke or Parkinson’s disease: bringing therapy home – Evidently Cochrane

, , , , , , ,

Leave a comment

%d bloggers like this: