Posts Tagged Stroke

[WEB SITE] Repetitive task training can help recovery after stroke

Repetitive task training can help recovery after stroke

Why was this study needed?

There are over 1.2 million stroke survivors in the UK, with around 152,000 cases reported every year. Stroke is the leading cause of long-term neurological disability, affecting balance, coordination and mobility. According to figures quoted by the Stroke Association, around 77% of stroke patients experience arm weakness and 72% experience leg weakness. It is important to understand which rehabilitation interventions might offer the best outcomes for patients to improve independence and quality of life. Repetitive task training is currently a component of stroke care so it is important to validate its effectiveness.

This Cochrane review is an update of an earlier review, last updated in 2007. Since then, 19 new trials have published results and the reporting standards have improved so these were added to the evidence base.

What did this study do?

This updated Cochrane systematic review included 32 randomised controlled trials and one quasi-randomised trial, involving 1,853 participants in all.

The trials were from various countries, including the UK, Australia, Canada and Korea.  Repetitive task training consisted of repeating a series of movements, with the aim of being able to perform a functional task. The training might involve the whole task, such as lifting a cup, or part of a task, such as grasping a cup. Most therapy interventions under evaluation lasted two to four weeks for between 10 to 21 hours.

Due to poor reporting in many of the original trials, it is difficult to assess the risk of bias. In addition, a wide range of interventions were used in the comparison groups. These factors mean researchers had a low to moderate degree of confidence in the main results.

What did it find?

  • For arms, repetitive task training had a small impact on improving function (standardised mean difference [SMD] 0.25, 95% confidence interval [CI] 0.01 to 0.49) – 11 studies, 749 participants.
  • For legs, repetitive task training provided small improvements in metres walked over six minutes (mean difference 34.8m, 95% CI 18.19m to 51.41m); walking ability (SMD 0.35, 95% CI 0.04 to 0.66); leg function (SMD 0.29, 95% CI 0.10 to 0.48); standing up from sitting (SMD 0.35, 95% CI 0.13 to 0.56) and standing balance (SMD 0.24, 95% CI 0.07 to 0.42).
  • There were no differences in functional ability after treatment according to the number of hours of training, the time from stroke to training or in the type of training delivered.
  • Repetitive task training was effective in the first six months, but no difference between groups was seen after six months.
  • Few trials reported on falls and other adverse effects making it difficult to assess the risks.

What does current guidance say on this issue?

Guidance from Royal College of Physicians in 2016 and NICE in 2013 recommends people are offered repetitive task training to improve arm and leg weakness, using activities such as reaching, grasping, sit to stand transfers and walking. The guidance recommends physiotherapists support people with movement difficulties and that rehabilitation continues until the person is able to maintain or improve functionality on their own or with the help of family or support staff.

What are the implications?

Given the range of participants included in these trials, repetitive task training could be appropriate for most people with weakness following a stroke. Clinicians and healthcare providers currently deliver repetitive task training as part of routine rehabilitation and through one-to-one or group training sessions.

There is insufficient information to draw conclusions on the optimal duration of sessions and the impact of current practices on therapist resource. The review suggests training is well received though it may be worthwhile to work with local patient groups to better understand their needs and preferences. Mechanisms to ensure adverse effects are reported and monitored are important.

An overview of NIHR funded research on stroke was published in March 2017, including aspects of recovery and rehabilitation after stroke. This can be downloaded free here.

Citation and Funding

French B, Thomas LH, Coupe J, et al. Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev. 2016; (11):CD006073.

This project was funded by the National Institute for Health Research Cochrane Review Incentive Scheme and the Department of Health Research and Development Health Technology Assessment Programme.

Bibliography

French B, Leathley M, Sutton C, et al. systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness. Health Technol Assess. 2008;12(30).

NICE. Stroke rehabilitation in adults. CG162. London: National Institute for Health and Care Excellence; 2013.

RCP. National clinical guidelines for stroke. London; Royal College of Physicians, Intercollegiate Stroke Working Party; 2016.

Stroke Association. State of the Nation. Stroke statistics 2016. London: Stroke Association; 2015.

Source: NIHR DC | Signal – Repetitive task training can help recovery after stroke

, ,

Leave a comment

[Abstract] Hand strengthening exercises in chronic stroke patients: Dose-response evaluation using electromyography

Abstract

Study Design

Cross-sectional.

Purpose of the Study

This study evaluates finger flexion and extension strengthening exercises using elastic resistance in chronic stroke patients.

Methods

Eighteen stroke patients (mean age: 56.8 ± 7.6 years) with hemiparesis performed 3 consecutive repetitions of finger flexion and extension, using 3 different elastic resistance levels (easy, moderate, and hard). Surface electromyography was recorded from the flexor digitorum superficialis (FDS) and extensor digitorum (ED) muscles and normalized to the maximal electromyography of the non-paretic arm.

Results

Maximal grip strength was 39.2 (standard deviation: 12.5) and 7.8 kg (standard deviation: 9.4) in the nonparetic and paretic hand, respectively. For the paretic hand, muscle activity was higher during finger flexion exercise than during finger extension exercise for both ED (30% [95% confidence interval {CI}: 19-40] vs 15% [95% CI: 5-25] and FDS (37% [95% CI: 27-48] vs 24% [95% CI: 13-35]). For the musculature of both the FDS and ED, no dose-response association was observed for resistance and muscle activity during the flexion exercise (P > .05).

Conclusion

The finger flexion exercise showed higher muscle activity in both the flexor and extensor musculature of the forearm than the finger extension exercise. Furthermore, greater resistance did not result in higher muscle activity during the finger flexion exercise. The present results suggest that the finger flexion exercise should be the preferred strengthening exercise to achieve high levels of muscle activity in both flexor and extensor forearm muscles in chronic stroke patients. The finger extension exercise may be performed with emphasis on improving neuromuscular control.

Level of Evidence

4b.

Source: Hand strengthening exercises in chronic stroke patients: Dose-response evaluation using electromyography – Journal of Hand Therapy

, , , , , , , , , ,

Leave a comment

[WEB SITE] Spasticity, Motor Recovery, and Neural Plasticity after Stroke – Full Text

Spasticity and weakness (spastic paresis) are the primary motor impairments after stroke and impose significant challenges for treatment and patient care. Spasticity emerges and disappears in the course of complete motor recovery. Spasticity and motor recovery are both related to neural plasticity after stroke. However, the relation between the two remains poorly understood among clinicians and researchers. Recovery of strength and motor function is mainly attributed to cortical plastic reorganization in the early recovery phase, while reticulospinal (RS) hyperexcitability as a result of maladaptive plasticity, is the most plausible mechanism for post-stroke spasticity. It is important to differentiate and understand that motor recovery and spasticity have different underlying mechanisms. Facilitation and modulation of neural plasticity through rehabilitative strategies, such as early interventions with repetitive goal-oriented intensive therapy, appropriate non-invasive brain stimulation, and pharmacological agents, are the key to promote motor recovery. Individualized rehabilitation protocols could be developed to utilize or avoid the maladaptive plasticity, such as RS hyperexcitability, in the course of motor recovery. Aggressive and appropriate spasticity management with botulinum toxin therapy is an example of how to create a transient plastic state of the neuromotor system that allows motor re-learning and recovery in chronic stages.

Introduction

According to the CDC, approximately 800,000 people have a stroke every year in the United States. The continued care of seven million stroke survivors costs the nation approximately $38.6 billion annually. Spasticity and weakness (i.e., spastic paresis) are the primary motor impairments and impose significant challenges for patient care. Weakness is the primary contributor to impairment in chronic stroke (1). Spasticity is present in about 20–40% stroke survivors (2). Spasticity not only has downstream effects on the patient’s quality of life but also lays substantial burdens on the caregivers and society (2).

Clinically, poststroke spasticity is easily recognized as a phenomenon of velocity-dependent increase in tonic stretch reflexes (“muscle tone”) with exaggerated tendon jerks, resulting from hyperexcitability of the stretch reflex (3). Though underlying mechanisms of spasticity remain poorly understood, it is well accepted that there is hyperexcitability of the stretch reflex in spasticity (47). Accumulated evidence from animal (8) and human studies (918) supports supraspinal origins of stretch reflex hyperexcitability. In particular, reticulospinal (RS) hyperexcitability resulted from loss of balanced inhibitory, and excitatory descending RS projections after stroke is the most plausible mechanism for poststroke spasticity (19). On the other hand, animal studies have strongly supported the possible role of RS pathways in motor recovery (2036), while recent studies with stroke survivors have demonstrated that RS pathways may not always be beneficial (3738). The relation between spasticity and motor recovery and the role of plastic changes after stroke in this relation, particularly RS hyperexcitability, remain poorly understood among clinicians and researchers. Thus, management of spasticity and facilitation of motor recovery remain clinical challenges. This review is organized into the following sessions to understand this relation and its implication in clinical management.

• Poststroke spasticity and motor recovery are mediated by different mechanisms

• Motor recovery are mediated by cortical plastic reorganizations (spontaneous or via intervention)

• Reticulospinal hyperexcitability as a result of maladaptive plastic changes is the most plausible mechanism for spasticity

• Possible roles of RS hyperexcitability in motor recovery

• An example of spasticity reduction for facilitation of motor recovery […]

Continue —> Frontiers | Spasticity, Motor Recovery, and Neural Plasticity after Stroke | Neurology

, , , , , ,

Leave a comment

[ARTICLE] Using Brain Oscillations and Corticospinal Excitability to Understand and Predict Post-Stroke Motor Function – Full Text

What determines motor recovery in stroke is still unknown and finding markers that could predict and improve stroke recovery is a challenge. In this study, we aimed at understanding the neural mechanisms of motor function recovery after stroke using neurophysiological markers by means of cortical excitability (Transcranial Magnetic Stimulation – TMS) and brain oscillations (electroencephalography – EEG). In this cross-sectional study, fifty-five subjects with chronic stroke (62±14 yo, 17 women, 32±42 months post-stroke) were recruited in two sites. We analyzed TMS measures (i.e. motor threshold – MT – of the affected and unaffected sides) and EEG variables (i.e. power spectrum in different frequency bands and different brain regions of the affected and unaffected hemispheres) and their correlation with motor impairment as measured by Fugl-Meyer. Multiple univariate and multivariate linear regression analyses were performed to identify the predictors of good motor function. A significant interaction effect of MT in the affected hemisphere and power in beta bandwidth over the central region for both affected and unaffected hemispheres was found. We identified that motor function positively correlates with beta rhythm over the central region of the unaffected hemisphere, while it negatively correlates with beta rhythm in the affected hemisphere. Our results suggest that cortical activity in the affected and unaffected hemisphere measured by EEG provides new insights on the association between high frequency rhythms and motor impairment, highlighting the role of excess of beta in the affected central cortical region in poor motor function in stroke recovery.

Introduction

Stroke is a leading cause of morbidity, mortality, and disability worldwide (12). Among the sequels of stroke, motor impairment is one of the most relevant, since it conditions the quality of life of patients, it reduces their capability to perform their daily activities and it impairs their autonomy (3). Despite the advancements of the acute stroke therapy, patients require an intensive rehabilitation program that will partially determine the extent of their recovery (4). These rehabilitation programs aim at stimulating cortical plasticity to improve motor performance and functional recovery (5). However, what determines motor improvement is still unknown. Indeed, finding markers that could predict and enhance stroke recovery is still a challenge (6). Different types of biomarkers exist: diagnostic, prognostic, surrogate outcome, and predictive biomarkers (7). The identification of these biomarkers is critical in the management of stroke patients. In the field of stroke research, great attention has been put to biomarkers found in the serum, especially in acute care. However, research on biomarkers of stroke recovery is still limited, especially using neurophysiological tools.

A critical research area in stroke is to understand the neural mechanisms underlying motor recovery. In this context, neurophysiological techniques such as transcranial magnetic stimulation (TMS) and electroencephalography (EEG) are useful tools that could be used to identify potential biomarkers of stroke recovery. However, there is still limited data to draw further conclusions on neural reorganization in human trials using these techniques. A few studies have shown that, in acute and sub-acute stage, stroke patients present increased power in low frequency bands (i.e., delta and theta bandwidths) in both affected and unaffected sides, as well as increased delta/alpha ratio in the affected brain area; these patterns being also correlated to functional outcome (811). Recently, we have identified that, besides TMS-indexed motor threshold (MT), an increased excitability in the unaffected hemisphere, coupled with a decreased excitability in the affected hemisphere, was associated with poor motor function (12), as measured by Fugl-Meyer (FM) [assessing symptoms severity and motor recovery in post-stroke patients with hemiplegia—Fugl-Meyer et al. (13); Gladstone et al. (14)]. However, MT measurement is associated with a poor resolution as it indexes global corticospinal excitability. Therefore, combining this information with direct cortical measures such as cortical oscillations, as measured by EEG, can help us to understand further neural mechanisms of stroke recovery.

To date, there are very few studies looking into EEG and motor recovery. For that reason, we aimed, in the present study, to investigate the relationship between motor impairment, EEG, and TMS variables. To do so, we conducted a prospective multicenter study of patients who had suffered from a stroke, in which we measured functional outcome using FM and performed TMS and EEG recordings. Based on our preliminary work, we expected to identify changes in interhemispheric imbalances on EEG power, especially in frequency bands associated with learning, such as alpha and beta bandwidths. […]

Continue —> Frontiers | Using Brain Oscillations and Corticospinal Excitability to Understand and Predict Post-Stroke Motor Function | Neurology

Figure 1. Topoplots showing the topographic distribution of high-beta bandwidth (25 Hz) for every individual. Red areas represent higher high-beta activity, while blue areas represent lower high-beta activity. Central region (C3 or C4) in red stands for the affected side. For patients with poor motor function, a higher beta activity of the affected central region as compared to the affected side is observed in 16 out of 28 individuals. For patients with good motor function, a similar activity over central regions bilaterally, or higher activity over the unaffected central area can be identified in 21 out of 27 individuals. FM = Fugl-Meyer.

, , , , , , , ,

Leave a comment

[WEB SITE] Stroke rehabilitation device lets the patient do the shocking

 

When a person’s arm has become paralyzed due to a stroke, therapists often try to get it moving again using what’s known as functional electrical stimulation – this involves delivering electric shocks to the arm, causing its muscles to move. Studies have shown, however, that it works better when the patient is in charge of delivering those shocks themselves. A new device lets them do so, and it has met with promising results.

The system was developed by Intento, a company affiliated with Switzerland’s EPFL research institute. It consists of three parts: electrodes that the patient places on their arm, a controller that is operated by their “good” hand, and a tablet running custom software.

The therapist starts by selecting a desired arm movement on the tablet, and then loading it into the controller. A display on the tablet’s screen then shows the patient where the electrodes should be placed. Once those are attached, the patient sets about using the controller to deliver shocks to their arm muscles, resulting in the targeted movement – this could be something like pressing a button or picking up an object.

Ideally, once the action has been repeated enough times, the muscles will be “trained” and it will be possible for the patient to perform the movement without any external stimulation.

In a clinical trial performed at Lausanne University Hospital, 11 severely stroke-paralyzed patients – for whom other therapies hadn’t worked – used for the device for 1.5-hour daily sessions, over a course of 10 days. A claimed 70 percent of them subsequently “showed a significant improvement in their motor functions,” as opposed to just 30 percent who were undergoing conventional occupational therapy.

A larger clinical study is now being planned, after which the device will hopefully be commercialized. The research is described in a paper that was recently published in the journal Archives of Physical Medicine and Rehabilitation.

Source: EPFL

Source: Stroke rehabilitation device lets the patient do the shocking

 

, , , , , , ,

Leave a comment

[ARTICLE] Assessment and treatment of spastic equinovarus foot after stroke: Guidance from the Mont-Godinne interdisciplinary group – Full Text

Objective: To present interdisciplinary practical guidance for the assessment and treatment of spastic equinovarus foot after stroke.

Results: Clinical examination and diagnostic nerve block with anaesthetics determine the relative role of the factors leading to spastic equinovarus foot after stroke: calf spasticity, triceps surae – Achilles tendon complex shortening and dorsiflexor muscles weakness and/or imbalance. Diagnostic nerve block is a mandatory step in determining the cause(s) of, and the most appropriate treatment(s) for, spastic equinovarus foot. Based on interdisciplinary discussion, and according to a patient-oriented goal approach, a medical and/or surgical treatment plan is proposed in association with a rehabilitation programme. Spasticity is treated with botulinum toxin or phenol–alcohol chemodenervation and neurotomy, shortening is treated by stretching and muscle-tendon lengthening, and weakness is treated by ankle-foot orthosis, functional electrical stimulation and tendon transfer. These treatments are frequently combined.

Conclusion: Based on 20 years of interdisciplinary expertise of management of the spastic foot, guidance was established to clarify a complex problem in order to help clinicians treat spastic equinovarus foot. This work should be the first step in a more global international consensus.

Introduction

Stroke is the third most common cause of death and the primary cause of severe disability in industrialized countries. Following stroke, approximately 80% of patients regain walking function with decreased gait velocity and asymmetrical gait pattern (1). Spastic equinovarus foot (SEVF) is one of the most common disabling deformities observed among hemiplegic patients. SEVF is frequently associated with other kinematic gait abnormalities, such as stiff knee gait, genu recurvatum, and painful claw toes. SEVF deformity forces the patient to increase their hip and knee flexion in the swing phase. If they are unable to do this (e.g. if they have associated stiff knee gait), the patient will present a hip circumbduction in the swing phase. Correction of such equinus may therefore improve distal as well as proximal gait disturbances.

SEVF deformity has 4 main causes (2, 3). The first is spasticity of the calf muscles (soleus, gastrocnemius, tibialis posterior, flexor digitorum and flexor hallucis longus muscles), responsible for SEVF in the stance phase of gait and for painful toe curling with callosities on the pulp and dorsum of the toes. The peroneus longus and brevis muscles may also be spastic (often with clonus), but such spasticity is useful to limit the varus and stabilize the ankle. Secondly, the spastic muscles have a tendency to remain in a shortened position for prolonged periods, which, in turn, results in soft-tissue changes and contractures, leading to a fixed deformity (4). Thirdly, weakness of the ankle dorsiflexor muscles (tibialis anterior, extensor digitorum and hallucis muscles) as well as the peroneus longus and brevis muscles is responsible for drop-foot in the swing phase of gait. Such weakness is often emphasized by triceps spastic co-contraction and/or contracture. The weakness also affects the triceps surae muscles, leading to a lack of propulsion at the end of the stance phase of gait. Lastly, an imbalance between the tibialis anterior and the peroneus muscles leads to varus of the hind-foot in the swing phase, as peroneus activation must compensate for physiological varus positioning related to contraction of the tibialis anterior. In such a case, the foot will be placed in an unstable varus position during the swing phase and at the beginning of the stance phase.

The respective role of the main causes of SEVF (spasticity, shortening, weakness, and imbalance) varies from patient to patient, and therapeutic decisions are therefore challenging. Indeed, as emphasized by Fuller, the causes of SEVF are varied and complex, due to a variety of deforming forces, and thus a single procedure does not exist to correct all deformities (3). Hence there is a need for guidance and guidelines.

Treatments for SEVF described in the literature are multimodal and include rehabilitation, orthosis, botulinum toxin (BoNT-A) injections, alcohol and phenol nerve blocks, functional neurosurgery (selective neurotomy and intrathecal baclofen therapy) and orthopaedic surgery (tendon transfer, tendon lengthening and bone surgery) (5). SEVF rehabilitation programmes include strengthening of the tibialis anterior and peroneus muscles, electrical stimulation, stretching of the triceps surae to reduce spasticity and prevent contracture, and gait and balance training. Modern therapeutic approaches, such as task-oriented strategy and treadmill with bodyweight support, are promoted. Several publications support the effectiveness of these treatments in SEVF (6–8). However, only 3 studies have compared different treatment options (9–11). A systematic review of surgical correction in adult patients with stroke emphasized the need to compare treatments in order to generate evidence on which to base algorithms (8). In fact, no practical guidelines are available for use in daily practice. Evidence regarding choice of treatment is poor, thus therapeutic decision-making is based on professional personal preferences and beliefs rather than on scientific evidence. An interdisciplinary approach with a physical medicine and rehabilitation (PMR) specialist and rehabilitation team, neurosurgeon, and orthopaedic surgeon is therefore mandatory in order to optimize treatments.

The aim of this paper is to present and discuss the Mont-Godinne interdisciplinary guidance (Fig. 1), based on the existing literature and on 20 years of experience of an interdisciplinary medical and surgical approach to SEVF.

Continue —> Journal of Rehabilitation Medicine – Assessment and treatment of spastic equinovarus foot after stroke: Guidance from the Mont-Godinne interdisciplinary group – HTML

, , ,

Leave a comment

[Abstract] Electrically Assisted Movement Therapy in Chronic Stroke Patients With Severe Upper Limb Paresis: A Pilot, Single-Blind, Randomized Crossover Study  

Abstract

Objective

To evaluate the effects of electrically assisted movement therapy (EAMT) in which patients use functional electrical stimulation, modulated by a custom device controlled through the patient’s unaffected hand, to produce or assist task-specific upper limb movements, which enables them to engage in intensive goal-oriented training.

Design

Randomized, crossover, assessor-blinded, 5-week trial with follow-up at 18 weeks.

Setting

Rehabilitation university hospital.

Participants

Patients with chronic, severe stroke (N=11; mean age, 47.9y) more than 6 months poststroke (mean time since event, 46.3mo).

Interventions

Both EAMT and the control intervention (dose-matched, goal-oriented standard care) consisted of 10 sessions of 90 minutes per day, 5 sessions per week, for 2 weeks. After the first 10 sessions, group allocation was crossed over, and patients received a 1-week therapy break before receiving the new treatment.

Main Outcome Measures

Fugl-Meyer Motor Assessment for the Upper Extremity, Wolf Motor Function Test, spasticity, and 28-item Motor Activity Log.

Results

Forty-four individuals were recruited, of whom 11 were eligible and participated. Five patients received the experimental treatment before standard care, and 6 received standard care before the experimental treatment. EAMT produced higher improvements in the Fugl-Meyer scale than standard care (P<.05). Median improvements were 6.5 Fugl-Meyer points and 1 Fugl-Meyer point after the experimental treatment and standard care, respectively. The improvement was also significant in subjective reports of quality of movement and amount of use of the affected limb during activities of daily living (P<.05).

Conclusions

EAMT produces a clinically important impairment reduction in stroke patients with chronic, severe upper limb paresis.

Source: Electrically Assisted Movement Therapy in Chronic Stroke Patients With Severe Upper Limb Paresis: A Pilot, Single-Blind, Randomized Crossover Study – Archives of Physical Medicine and Rehabilitation

, , , , , , , , , , , ,

Leave a comment

[BLOG POST] Driving After Stroke: Is it Safe? -Saebo

After having a stroke, many survivors are eager to start driving again. Driving offers independence and the ability to go where you want to go on your own schedule, so it is no surprise that survivors want to get back behind the wheel rather than rely on someone else for their transportation needs.

Unfortunately, having a stroke can have lasting effects that make driving more difficult. A survivor might not be aware of all of the effects of their stroke and could misjudge their ability to drive safely. Driving against a doctor’s orders after a stroke is not only dangerous, it may even be illegal. Many stroke survivors successfully regain their ability to safely drive after a stroke, but it is important that they do not attempt to drive until they are cleared by their healthcare provider.

 

How Stroke Affects the Ability to Drive

Having a stroke can affect an individual’s ability to drive in numerous ways, whether it be because of physical challenges, cognitive changes, or other challenges.

 

Physical Challenges

Physical-Challenges

After a stroke, it’s common to experience weakness or paralysis on one side of the body, depending on which side of the brain the stroke occurred. More than half of all stroke survivors also experience post-stroke pain. Minor physical challenges may be overcome with adaptive driving equipment, but severe challenges like paralysis or contracture can seriously affect an individual’s ability to drive.

 

Cognitive Effects

cognitive

Driving requires a combination of cognitive skills, including memory, concentration, problem solving, judgement, multitasking, and the ability to make quick decisions. A stroke can cause cognitive changes that limit the ability to do many of those things.

 

Vision Problems

vision

As many as two-thirds of stroke victims experience vision impairments as a result of a stroke. This can include vision loss, blurred vision, and visual processing problems. Stroke survivors with vision problems should not drive until their problems are resolved and they have been cleared by a doctor.

 

Fatigue

fatigue

Fatigue is a common physical condition after a stroke that affects between 40 and 70 percent of stroke survivors. Fatigue can arrive without warning, so it is dangerous to drive when suffering from post-stroke fatigue.

 

Warning Signs of Unsafe Driving

 

Stroke survivors are not always aware of how their stroke has limited their ability to drive. If they are choosing to drive after their stroke against their doctor’s advice, it is important for them and their loved ones to look out for warning signs that they might not be ready to start driving. Here are some of the common warning signs to look out for:

  • Driving faster or slower than the posted speed or the wrong speed for the current driving conditions
  • Consistently asking for instruction and help from passengers
  • Ignoring posted signs or signals
  • Making slow or poor decisions
  • Becoming easily frustrated or confused
  • Getting lost in familiar areas
  • Being in an accident or having close calls
  • Drifting into other lanes

 

If you or your loved one is showing any of these warning signs, immediately stop yourself or them from driving until your or their driving is tested.

 

Driving Again After a Stroke

Before a stroke survivor begins driving again, they should speak with their doctor or therapist to discuss whether or not it would be safe for them to continue driving. Many states require mandatory reporting by a physician to the DMV if their patient has impairments that may affect their driving after a stroke. Even if their doctor clears them to drive, they still will likely need to be evaluated by the DMV before they regain their driving privileges.

 

Driver rehabilitation specialists are available to help stroke survivors evaluate their driving ability from behind the wheel. There are also driver’s training programs that provide a driving evaluation, classroom instruction, and suggestions for modifying a car to the individual driver’s needs. For instance, an occupational therapist can provide a comprehensive in-clinic evaluation of a client’s current skills and deficits relative to driving.

 

From there a client could be sent for an in-vehicle assessment for further evaluation by a certified driver rehabilitation specialist (CDRS). They can assess driving skills in a controlled and safe environment. An in-vehicle driving test is the most thorough way to gauge a driver’s abilities. Each assessment takes about 1 hour and involves driving with a trained evaluator or driving in a computer simulator.

 

The “behind-the-wheel” evaluation will include testing for changes in key performance areas such as attention, memory, vision, reaction time, and coordination. After this assessment the CDRS can determine if the client is safe to drive, can not drive at all, or may drive with additional recommendations.

 

Often times clients may require certain modifications to their car in order to drive safely. In addition, some clients may benefit from on-going classroom training and simulation training in order to meet safety standards. These are all services that a driver rehabilitation specialist can provide. To help find these resources, The Association for Driver Rehabilitation Specialists has a directory of certified driver rehabilitation specialists, driver rehabilitation specialists, and mobility equipment dealers and manufacturers.

 

Get Back Behind the Wheel

Many stroke survivors successfully drive after a stroke; however, not all are able to. While reclaiming independence is important, staying safe is the greatest concern. It is important for stroke survivors to listen to their doctors and wait until they are fully ready before attempting to drive again. With some hard work and patience, getting back behind the wheel is possible.

 


All content provided on this blog is for informational purposes only and is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. If you think you may have a medical emergency, call your doctor or 911 immediately. Reliance on any information provided by the Saebo website is solely at your own risk.

Source: Driving After Stroke: Is it Safe? | Saebo

, , , , ,

Leave a comment

[Abstract] Low-frequency rTMS of the unaffected hemisphere in stroke patients: A systematic review

Abstract

The aim of this review was to summarize the evidence for the effectiveness of low-frequency (LF) repetitive transcranial magnetic stimulation (rTMS) over the unaffected hemisphere in promoting functional recovery after stroke. We performed a systematic search of the studies using LF-rTMS over the contralesional hemisphere in stroke patients and reviewed the 67 identified articles. The studies have been gathered together according to the time interval that had elapsed between the stroke onset and the beginning of the rTMS treatment. Inhibitory rTMS of the contralesional hemisphere can induce beneficial effects on stroke patients with motor impairment, spasticity, aphasia, hemispatial neglect and dysphagia, but the therapeutic clinical significance is unclear. We observed considerable heterogeneity across studies in the stimulation protocols. The use of different patient populations, regardless of lesion site and stroke aetiology, different stimulation parameters and outcome measures means that the studies are not readily comparable, and estimating real effectiveness or reproducibility is very difficult. It seems that careful experimental design is needed and it should consider patient selection aspects, rTMS parameters and clinical assessment tools. Consecutive sessions of rTMS, as well as the combination with conventional rehabilitation therapy, may increase the magnitude and duration of the beneficial effects. In an increasing number of studies, the patients have been enrolled early after stroke. The prolonged follow-up in these patients suggests that the effects of contralesional LF-rTMS can be long-lasting. However, physiological evidence indicating increased synaptic plasticity, and thus, a more favourable outcome, in the early enrolled patients, is still lacking. Carefully designed clinical trials designed are required to address this question. LF rTMS over unaffected hemisphere may have therapeutic utility, but the evidence is still preliminary and the findings need to be confirmed in further randomized controlled trials.

Source: Low-frequency rTMS of the unaffected hemisphere in stroke patients: A systematic review – Sebastianelli – 2017 – Acta Neurologica Scandinavica – Wiley Online Library

, , , , , , ,

Leave a comment

[ARTICLE] A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke – Full Text

Abstract

Background

It is a challenge to reduce the muscular discoordination in the paretic upper limb after stroke in the traditional rehabilitation programs.

Method

In this study, a neuromuscular electrical stimulation (NMES) and robot hybrid system was developed for multi-joint coordinated upper limb physical training. The system could assist the elbow, wrist and fingers to conduct arm reaching out, hand opening/grasping and arm withdrawing by tracking an indicative moving cursor on the screen of a computer, with the support from the joint motors and electrical stimulations on target muscles, under the voluntary intention control by electromyography (EMG). Subjects with chronic stroke (n = 11) were recruited for the investigation on the assistive capability of the NMES-robot and the evaluation of the rehabilitation effectiveness through a 20-session device assisted upper limb training.

Results

In the evaluation, the movement accuracy measured by the root mean squared error (RMSE) during the tracking was significantly improved with the support from both the robot and NMES, in comparison with those without the assistance from the system (P < 0.05). The intra-joint and inter-joint muscular co-contractions measured by EMG were significantly released when the NMES was applied to the agonist muscles in the different phases of the limb motion (P < 0.05). After the physical training, significant improvements (P < 0.05) were captured by the clinical scores, i.e., Modified Ashworth Score (MAS, the elbow and the wrist), Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), and Wolf Motor Function Test (WMFT).

Conclusions

The EMG-driven NMES-robotic system could improve the muscular coordination at the elbow, wrist and fingers.

Background

Stroke is a main cause of long-term disability in adults [1]. Approximately 70 to 80% stroke survivors experienced impairments in their upper extremity, which greatly affects the independency of their daily living [23]. In the upper limb rehabilitation, it also has been found that the recovery of the proximal joints, e.g., the shoulder and the elbow, is much better than the distal, e.g., the wrist and fingers [45]. The main possible reasons are: 1) The spontaneous motor recovery in early stage after stroke is from the proximal to the distal; and 2) the proximal joints experienced more effective physical practices than the distal joints throughout the whole rehabilitation process, since the proximal joints are easier to be handled by a human therapist and are more voluntarily controllable by most of stroke survivors [2]. However, improved proximal functions in the upper limb without the synchronized recovery at the distal makes it hard to apply the improvements into meaningful daily activities, such as reaching out and grasping objects, which requires the coordination among the joints of the upper limb, including the hand. More effective rehabilitation methods which may benefit the functional restoration at both the proximal and the distal are desired for post-stroke upper limb rehabilitation.

Besides the weakness and spasticity of muscles in the paretic upper limb, discoordination among muscles is also one of the major impairments after stroke, mainly reflected as abnormal muscular co-activating patterns and loss of independent joint control [26]. Stereotyped movements of the entire limb with compensation from the proximal joints are commonly observed in most of persons with chronic stroke who have passed six months after the onset of the stroke, during which abnormal motor synergies were gradually developed. Neuromuscular electrical stimulation (NMES) is a technique that can generate limb movements by applying electrical current on the paretic muscles [7]. Post-stroke rehabilitation assisted with NMES has been found to effectively prevent muscle atrophy and improve muscle strength [7], and the stimulation also evokes sensory feedback to the brain during muscle contraction to facilitate motor relearning [8]. It has been found that NMES can improve muscular coordination in a paralysed limb by limiting ‘learned disuse’ that stroke survivors are gradually accustomed to managing their daily activities without using certain muscles, which has been considered as a significant barrier to maximizing the recovery of post-stroke motor function [9]. However, difficulties have been found in NMES alone to precisely activate groups of muscles for dynamic and coordinated limb movements with desired accuracy in kinematics, for example, speeds and trajectories. It is because most of the NMES systems adopted transcutaneous stimulation with surface electrodes only recruiting muscles located closely to the skin surface with limited stimulation channels [8]. Therefore, the muscular force evoked may not be enough to achieve the precise limb motions. However, limb motions with repeated and close-to-normal kinematic experiences are necessary to enhance the sensorimotor pathways in rehabilitation, which has been found to contribute to the motor recovery after stroke [10]. Furthermore, faster muscular fatigue would be experienced when using NMES with intensive stimuli, in comparison with the muscle contraction by biological neural stimulation [11].

The use of rehabilitation robots is one of the solutions to the shortage of affordable professional manpower in the industry of physical therapy, to cope with the long-term and labour-demanding physical practices [10]. In comparison with the NMES, robots can well control the limb movements with electrical motors. Various robots have been proposed for upper limb training after stroke [1213]. Among them, the robots with the involvement of voluntary efforts from persons after stroke demonstrated better rehabilitation effects than those with passive limb motions, i.e., the limb movements are totally dominated by the robots [10]. Physical training with passive motions only contributed to the temporary release of muscle spasticity; whereas, voluntary practices could improve the motor functions of the limb with longer sustainability [1014]. In our previous studies, we designed a series of voluntary intention-driven rehabilitation robotics for physical training at the elbow, the wrist and fingers [1415161718]. Residual electromyography (EMG) from the paretic muscles was used to control the robots to provide assistive torques to the limb for desired motions. The results of applying these robots in post-stroke physical training showed that the target joint could obtain motor improvements after the training; however, more significant improvements usually appeared at its neighbouring proximal joint mainly due to the compensatory exercises from the proximal muscles [1517]. In order to improve the muscle coordination during robot-assisted training, we integrated NMES into the EMG-driven robot as an intact system for wrist rehabilitation [1619]. It has been found that the combined assistance with both robot and NMES could reduce the excessive muscular activities at the elbow and improve the muscle activation levels related to the wrist, which was absent in the pure robot assisted training [16]. More recently, combined treatment with robot and NMES for the wrist by other research group also demonstrated more promising rehabilitation effectiveness in the upper limb functions than pure robot training [20]. However, most of the proposed devices are for single joint treatment, and cannot be used for multi-joint coordinated upper limb training. Furthermore, the training tasks provided by these devices are not easy to be directly translated into daily activities. We hypothesized that multi-joint coordinated upper limb training assisted by both NMES and robot could improve the muscular coordination in the whole upper limb and promote the synchronized recovery at both the proximal and distal joints. In this work, we designed a multi-joint robot and NMES hybrid system for the coordinated upper limb physical practice at the elbow, wrist and fingers. Then, the rehabilitation effectiveness with the assistance of the device was evaluated by a pilot single-group trial. EMG signals from target muscles were used for voluntary intention control for both the robot and NMES parts.

Methods

The NMES-robot system

The system developed is a wearable device as shown in Fig. 1. It can support a stroke subject to perform sequencing limb movements, i.e., 1) elbow extension, 2) wrist extension associated with hand open, 3) wrist flexion and 4) elbow flexion, with the purpose of simulating the coordination of the joints in arm reaching out, hand open for grasping, and withdrawing in daily activities. The starting position of the motion cycle was set at the elbow joint extended at 180° and the wrist extended at 45°, which is also the end point for a motion cycle. In each phase of the motion, visual guidance on a computer screen was provided to a subject by following a moving cursor on the computer screen with a constant angular velocity at 10°/s for the movement of the wrist and the elbow. The subject was asked to minimize the target and actual joint positions during the tracking. In the limb tasks, assistances would be provided from the mechanical motors and NMES at the same time related to the wrist and elbow flexion/extension. NMES alone was applied for finger extension, and there was no assistance from the system for finger flexion (hand grasp). It is because that the main impairment in the hand for persons with chronic stroke is hand open, and the hand grasp can be achieved passively due to spasticity in finger flexors, and one channel NMES has demonstrated the capacity to achieve the gross open of the hand with finger extensions in clinical practices [2]. With the attempt to reduce the overall weight of the system, especially at the distal joints, for the coordinated multi-joint training of the whole upper limb, finger motions were only supported by the NMES in this work. The robot and NMES combined effects on individual finger motions in chronic stroke have been investigated in our previous work [21]. A hanging system was used to lift up the testing limb to a horizontal level (Fig. 1), to compensate the limb gravity and the weight of the wearable part of the system (totally 895 g).

Fig. 1 a The schematic diagram of the experimental setup, b a photo of a subject who is conducting the tracking task with the NMES-robot, c a photo of a subject wearing the mechanical parts of the system, d the configuration of the NMES electrodes and EMG electrodes on a driving muscle. The driving muscles in the study are BIC, TRI, FCR and the muscle union of ECU-ED

Continue —> A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke | Journal of NeuroEngineering and Rehabilitation | Full Text

 

, , , , , , , , , ,

Leave a comment

%d bloggers like this: