Posts Tagged Functional electrical stimulation (FES)

[VIDEO] 5 Easy Foot Drop Exercises for Beginners

Check out these 5 easy foot drop exercises for beginners. If you suffer from drop foot, these exercises are a great tool for getting back on your feet. Presented by Dr. Scott Thompson OTD.

Source

, , , , ,

Leave a comment

[Abstract + References] Iterative Adjustment of Stimulation Timing and Intensity During FES-Assisted Treadmill Walking for Patients After Stroke

Abstract

Functional electric stimulation (FES) is a common intervention to correct foot drop for patients after stroke. Due to the disturbances from internal time-varying muscle characteristics under electrical stimulation and external environmental uncertainties, most of the existing FES system used pre-set stimulation parameters and cannot achieve good gait performances during FES-assisted walking. Therefore, an adaptive FES control system, which used the iterative learning control to adjust the stimulation intensity based on kinematic data and a linear model to modulate the stimulation timing based on walking speed during FES-assisted treadmill walking, was designed and tested on ten patients with foot drop after stroke. In order to examine its orthotic effects, the kinematic data of the patients using the proposed control strategy were collected and compared with the data of the same patients walking using other three FES control strategies, including (1) constant pre-set stimulation intensity and timing, (2) constant pre-set stimulation intensity with speed-adaptive stimulation timing and (3) walking without FES intervention. The error between the maximum ankle dorsiflexion angle during swing phase and the target angle using the proposed control strategy was the smallest among the four conditions. Moreover, there was no significant difference in the ankle plantar flexion angle at the toe-off event and the maximum knee flexion angle during swing phase between the proposed control strategy and walking without FES. In summary, the proposed control strategy can improve FES-assisted walking performances through adaptive modulation of stimulation timing and intensity when coping with variation, and may have good potential in clinic.

References

Source

, , , , , , , , , ,

Leave a comment

[Abstract] The effects of a robot-assisted arm training plus hand functional electrical stimulation on recovery after stroke: a randomized clinical trial

Abstract

Objective

To compare the effects of unilateral, proximal arm robot-assisted therapy combined with hand functional electrical stimulation to intensive conventional therapy for restoring arm function in subacute stroke survivors.

Design

This was a single blinded, randomized controlled trial.

Setting

Inpatient Rehabilitation University Hospital.

Participants

Forty patients diagnosed with ischemic stroke (time since stroke <8 weeks) and upper limb impairment were enrolled.

Interventions

Participants randomized to the experimental group received 30 sessions (5 sessions/week) of robot-assisted arm therapy and hand functional electrical stimulation (RAT + FES). Participants randomized to the control group received a time-matched intensive conventional therapy (ICT).

Main outcome measures

The primary outcome was arm motor recovery measured with the Fugl-Meyer Motor Assessment. Secondary outcomes included motor function, arm spasticity and activities of daily living. Measurements were performed at baseline, after 3 weeks, at the end of treatment and at 6-month follow-up. Presence of motor evoked potentials (MEPs) was also measured at baseline.

Results

Both groups significantly improved all outcome measures except for spasticity without differences between groups. Patients with moderate impairment and presence of MEPs who underwent early rehabilitation (<30 days post stroke) demonstrated the greatest clinical improvements.

Conclusions

A robot-assisted arm training plus hand functional electrical stimulation was no more effective than intensive conventional arm training. However, at the same level of arm impairment and corticospinal tract integrity, it induced a higher level of arm recovery.

 

via The effects of a robot-assisted arm training plus hand functional electrical stimulation on recovery after stroke: a randomized clinical trial – ScienceDirect

, , , , , , , , , ,

Leave a comment

[VIDEO] Testing Functional Electrical Stimulation (FES) – YouTube

via (2) Testing Functional Electrical Stimulation (FES) – YouTube

, , , , , , ,

1 Comment

[Abstract] A three-site clinical investigation and feasibility study of a flexible functional electrical stimulation system to support functional task practice for upper limb recovery in people with stroke.

Introduction: Of those people who survive a stroke, only between 40% and 70% regain upper limb dexterity. A number of reviews have suggested that functional electrical stimulation (FES) may have a beneficial effect on upper limb motor recovery. In light of the promise offered by FES and the limitations with current systems a new system was developed (FES-UPP) to support people with stroke (PwS) to practice a range of voluntary controlled, FES-assisted functional activities.

Objective: This paper reports on a three centre clinical investigation with the primary aim of demonstrating compliance of the new FES system with relevant essential requirements of the EU Medical Device Directive, namely to evaluate whether use of the FES-UPP enables PwS to perform a wider range of functional activities, and/or perform the same activities in an improved way.

Design: Clinical investigation and feasibility study

Settings: An in-patient stroke unit, a combined Early Supported Discharge (ESD) and community service, and an outpatient clinic and in-patient stroke unit.
Participants: Nine therapists and 22 PwS with an impaired upper limb.
Intervention: Every PwS was offered up to 8 sessions of FES-UPP therapy, each lasting approximately one hour, over a period of up to six weeks.
Primary and secondary outcome measures: The operation, acceptability and feasibility of the interventions were assessed using video rating and the Wolf Motor Function Test Functional Ability Scale (WMF-FAS), direct observations of sessions and questionnaires for therapists and PwS.

Results: The system enabled 24% (Rater A) and 28% (Rater B) of PwS to carry out a wider range of functional tasks and improved the way in which the tasks were performed (mean scores of 2.6 and 2.2 (with FES) versus mean scores 1.5 and 1.3 (without FES) (p<.05).

Conclusion: The FES-UP proved feasible to use in three different clinical environments, with PwS who varied widely in their impairment levels and time since stroke. Therapists and therapy assistants from a wide range of backgrounds, with varying degrees of computer and/or FES knowledge, were able to use the system without on-site technical support.

via Frontiers | A three-site clinical investigation and feasibility study of a flexible functional electrical stimulation system to support functional task practice for upper limb recovery in people with stroke. | Neurology

, , , , , , ,

Leave a comment

[Abstract + References] Synergy-Based FES for Post-Stroke Rehabilitation of Upper-Limb Motor Functions

Abstract

Functional electrical stimulation (FES) is capable of activating muscles that are under-recruited in neurological diseases, such as stroke. Therefore, FES provides a promising technology for assisting upper-limb motor functions in rehabilitation following stroke. However, the full benefits of FES may be limited due to lack of a systematic approach to formulate the pattern of stimulation. Our preliminary work demonstrated that it is feasible to use muscle synergy to guide the generation of FES patterns.In this paper, we present a methodology of formulating FES patterns based on muscle synergies of a normal subject using a programmable multi-channel FES device. The effectiveness of the synergy-based FES was tested in two sets of experiments. In experiment one, the instantaneous effects of FES to improve movement kinematics were tested in three patients post ischemic stroke. Patients performed frontal reaching and lateral reaching tasks, which involved coordinated movements in the elbow and shoulder joints. The FES pattern was adjusted in amplitude and time profile for each subject in each task. In experiment two, a 5-day session of intervention using synergy-based FES was delivered to another three patients, in which patients performed task-oriented training in the same reaching movements in one-hour-per-day dose. The outcome of the short-term intervention was measured by changes in Fugl–Meyer scores and movement kinematics. Results on instantaneous effects showed that FES assistance was effective to increase the peak hand velocity in both or one of the tasks. In short-term intervention, evaluations prior to and post intervention showed improvements in both Fugl–Meyer scores and movement kinematics. The muscle synergy of patients also tended to evolve towards that of the normal subject. These results provide promising evidence of benefits using synergy-based FES for upper-limb rehabilitation following stroke. This is the first step towards a clinical protocol of applying FES as therapeutic intervention in stroke rehabilitation.

I. Introduction

Muscle activation during movement is commonly disrupted due to neural injuries from stroke. A major challenge for stroke rehabilitation is to re-establish the normal ways of muscle activation through a general restoration of motor control, otherwise impairments may be compensated by the motor system through a substitution strategy of task control [1]. In post-stroke intervention, new technologies such as neuromuscular electrical stimulation (NMES) or functional electrical stimulation (FES) offer advantages for non-invasively targeting specific groups of muscles [2]–[4] to restore the pattern of muscle activation. Nevertheless, their effectiveness is limited by lack of a systematic methodology to optimize the stimulation pattern, to implement the optimal strategy in clinical settings, and to design a protocol of training towards the goal of restoring motor functions. This pioneer study addresses these issues in clinical application with a non-invasive FES technology.

Sign in to Continue Reading

1. M. F. Levin, J. A. Kleim, and S. L. Wolf, “What do motor ‘recovery’ and ‘compensation’ mean in patients following stroke?” Neurorehabilitation Neural Repair, vol. 23, no. 4, pp. 313–319, 2008.

2. G. Alon, A. F. Levitt, and P. A. McCarthy, “Functional electrical stimulation (FES) may modify the poor prognosis of stroke survivors with severe motor loss of the upper extremity: A preliminary study,” Amer. J. Phys. Med. Rehabil., vol. 87, no. 8, pp. 627–636, 2008.

3. W. Rong, “A neuromuscular electrical stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke,” J. Neuroeng. Rehabil., vol. 14, no. 1, p. 34, Dec. 2017.

4. J. J. Daly, “Recovery of coordinated gait: Randomized controlled stroke trial of functional electrical stimulation (FES) versus no FES, with weight-supported treadmill and over-ground training,” Neurorehabilitation Neural Repair, vol. 25, no. 7, pp. 588–596, Sep. 2011.

5. R. Nataraj, M. L. Audu, R. F. Kirsch, and R. J. Triolo, “Comprehensive joint feedback control for standing by functional neuromuscular stimulation—A simulation study,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 18, no. 6, pp. 646–657, Dec. 2010.

6. R. Nataraj, M. L. Audu, and R. J. Triolo, “Restoring standing capabilities with feedback control of functional neuromuscular stimulation following spinal cord injury,” Med. Eng. Phys., vol. 42, pp. 13–25, Apr. 2017.

7. H. Rouhani, M. Same, K. Masani, Y. Q. Li, and M. R. Popovic, “PID controller design for FES applied to ankle muscles in neuroprosthesis for standing balance,” Frontiers Neurosci., vol. 11, p. 347, Jun. 2017.

8. V. K. Mushahwar, P. L. Jacobs, R. A. Normann, R. J. Triolo, and N. Kleitman, “New functional electrical stimulation approaches to standing and walking,” J. Neural Eng., vol. 4, no. 3, pp. S181–S197, Sep. 2007.

9. B. J. Holinski, “Intraspinal microstimulation produces over-ground walking in anesthetized cats,” J. Neural Eng., vol. 13, no. 5, p. 056016, Oct. 2016.

10. M. B. Popovic, D. B. Popovic, T. Sinkjær, A. Stefanovic, and L. Schwirtlich, “Restitution of reaching and grasping promoted by functional electrical therapy,” Artif. Organs, vol. 26, no. 3, pp. 271–275, Mar. 2002.

11. A. B. Ajiboye, “Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: A proof-of-concept demonstration,” Lancet Lond. Engl., vol. 389, no. 10081, pp. 1821–1830, May 2017.

12. J. H. Grill and P. H. Peckham, “Functional neuromuscular stimulation for combined control of elbow extension and hand grasp in C5 and C6 quadriplegics,” IEEE Trans. Rehabil. Eng., vol. 6, no. 2, pp. 190–199, Jun. 1998.

13. M. R. Popovic, T. A. Thrasher, M. E. Adams, V. Takes, V. Zivanovic, and M. I. Tonack, “Functional electrical therapy: Retraining grasping in spinal cord injury,” Spinal Cord, vol. 44, no. 3, pp. 143–151, Mar. 2006.

14. C. Ethier, E. R. Oby, M. J. Bauman, and L. E. Miller, “Restoration of grasp following paralysis through brain-controlled stimulation of muscles,” Nature, vol. 485, no. 7398, pp. 368–371, May 2012.

15. G. Alon, “Use of neuromuscular electrical stimulation in neureorehabilitation: A challenge to all,” J. Rehabil. Res. Develop., vol. 40, no. 6, pp. 9–12, Dec. 2003.

16. G. Alon, A. F. Levitt, and P. A. McCarthy, “Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: A pilot study,” Neurorehabilitation Neural Repair, vol. 21, no. 3, pp. 207–215, Jun. 2007.

17. C. Church, C. Price, A. D. Pandyan, S. Huntley, R. Curless, and H. Rodgers, “Randomized controlled trial to evaluate the effect of surface neuromuscular electrical stimulation to the shoulder after acute stroke,” Stroke, vol. 37, no. 12, pp. 2995–3001, Dec. 2006.

18. J. H. Cauraugh and S. B. Kim, “Chronic stroke motor recovery: Duration of active neuromuscular stimulation,” J. Neurolog. Sci., vol. 215, nos. 1–2, pp. 13–19, Nov. 2003.

19. S. Ferrante, T. Schauer, G. Ferrigno, J. Raisch, and F. Molteni, “The effect of using variable frequency trains during functional electrical stimulation cycling,” Neuromodulation, Technol. Neural Interface, vol. 11, no. 3, pp. 216–226, Jul. 2008.

20. R. W. Fields, “Electromyographically triggered electric muscle stimulation for chronic hemiplegia,” Arch. Phys. Med. Rehabil., vol. 68, no. 7, pp. 407–414, Jul. 1987.

21. G. H. Kraft, S. S. Fitts, and M. C. Hammond, “Techniques to improve function of the arm and hand in chronic hemiplegia,” Arch. Phys. Med. Rehabil., vol. 73, no. 3, pp. 220–227, Mar. 1992.

22. G. van Overeem Hansen, “EMG-controlled functional electrical stimulation of the paretic hand,” Scand. J. Rehabil. Med., vol. 11, no. 4, pp. 189–193, 1979.

23. J. H. Cauraugh, S. B. Kim, and A. Duley, “Coupled bilateral movements and active neuromuscular stimulation: Intralimb transfer evidence during bimanual aiming,” Neurosci. Lett., vol. 382, nos. 1–2, pp. 39–44, Jul. 2005.

24. J. S. Knutson, D. D. Gunzler, R. D. Wilson, and J. Chae, “Contralaterally controlled functional electrical stimulation improves hand dexterity in chronic hemiparesis: A randomized trial,” Stroke, vol. 47, no. 10, pp. 2596–2602, Oct. 2016.

25. D. A. E. Bolton, J. H. Cauraugh, and H. A. Hausenblas, “Electromyogram-triggered neuromuscular stimulation and stroke motor recovery of arm/hand functions: A meta-analysis,” J. Neurol. Sci., vol. 223, no. 2, pp. 121–127, Aug. 2004.

26. M. K.-L. Chan, R. K.-Y. Tong, and K. Y.-W. Chung, “Bilateral upper limb training with functional electric stimulation in patients with chronic stroke,” Neurorehabilitation Neural Repair, vol. 23, no. 4, pp. 357–365, May 2009.

27. J. B. Manigandan, G. S. Ganesh, M. Pattnaik, and P. Mohanty, “Effect of electrical stimulation to long head of biceps in reducing gleno humeral subluxation after stroke,” Neuro Rehabil., vol. 34, no. 2, pp. 245–252, 2014.

28. S. Li, C. Zhuang, C. M. Niu, Y. Bao, Q. Xie, and N. Lan, “Evaluation of functional correlation of task-specific muscle synergies with motor performance in patients poststroke,” Frontiers Neurol., vol. 8, p. 337, Jul. 2017.

29. A. d’Avella, P. Saltiel, and E. Bizzi, “Combinations of muscle synergies in the construction of a natural motor behavior,” Nature Neurosci., vol. 6, no. 3, pp. 300–308, Mar. 2003.

30. V. C. K. Cheung, “Muscle synergy patterns as physiological markers of motor cortical damage,” Proc. Nat. Acad. Sci. USA, vol. 109, no. 36, pp. 14652–14656, Sep. 2012.

31. D. J. Clark, L. H. Ting, F. E. Zajac, R. R. Neptune, and S. A. Kautz, “Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke,” J. Neurophysiol., vol. 103, no. 2, pp. 844–857, Feb. 2010.

32. E. Ambrosini, “Neuro-mechanics of recumbent leg cycling in post-acute stroke patients,” Ann. Biomed. Eng., vol. 44, pp. 3238–3251, Jun. 2016.

33. C. Zhuang, J. C. Marquez, H. E. Qu, X. He, and N. Lan, “A neuromuscular electrical stimulation strategy based on muscle synergy for stroke rehabilitation,” in Proc. IEEE 7th Int./EMBS Conf. Neural Eng. (NER), vol. 15, Apr. 2015, pp. 816–819.

34. R. S. Razavian, B. Ghannadi, N. Mehrabi, M. Charlet, and J. McPhee, “Feedback control of functional electrical stimulation for 2-D arm reaching movements,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 10, pp. 2033–2043, Oct. 2018.

35. C. M. Niu, C. Zhuang, Y. Bao, S. Li, N. Lan, and Q. Xie, “Synergy-based NMES intervention accelerated rehabilitation of post-stroke hemiparesis,” in Proc. Assoc. Acad. Physiatrists Annu. Conf., Las Vegas, NV, USA, 2017.

36. H. Qu, “Development of network-based multichannel neuromuscular electrical stimulation system for stroke rehabilitation,” J. Rehabil. Res. Develop., vol. 52, no. 3, pp. 263–278, 2016.

37. C. M. Niu, “Effectiveness of short-term training with a synergy-based FES paradigm on motor function recovery post stroke,” in Proc. 12th Int. Soc. Phys. Rehabil. Med. World Congr., Paris, France, 2018.

38. T. Wang, “Customization of synergy-based FES for post-stroke rehabilitation of upper-limb motor functions,” in Proc. IEEE 40th Annu. Int. Conf. Eng. Med. Biol. Soc. (EMBS), Jul. 2018, 3541–3544.

39. L. L. Baker, D. R. McNeal, L. A. Benton, B. R. Bowman, and R. L. Waters, Ed., Neuromuscular Electrical Stimulation a Practical Guide, 4th ed. Downey, CA, USA: Los Amigos Research & Education Institute, 2000.

40. A. d’Avella, A. Portone, L. Fernandez, and F. Lacquaniti, “Control of fast-reaching movements by muscle synergy combinations.,” J. Neurosci., vol. 26, no. 30, pp. 7791–7810, Jul. 2006.

41. R. D. Wilson, “Upper-limb recovery after stroke: A randomized controlled trial comparing EMG-triggered, cyclic, and sensory electrical stimulation,” Neurorehabilitation Neural Repair, vol. 30, no. 10, pp. 978–987, Nov. 2016.

42. A. J. Levine, “Identification of a cellular node for motor control pathways,” Nature Neurosci., vol. 17, no. 4, pp. 586–593, Apr. 2014.

43. S. B. Frost, S. Barbay, K. M. Friel, E. J. Plautz, and R. J. Nudo, “Reorganization of remote cortical regions after ischemic brain injury: A potential substrate for stroke recovery,” J. Neurophysiol., vol. 89, no. 6, pp. 3205–3214, Jun. 2003.

44. P. Langhorne, J. Bernhardt, and G. Kwakkel, “Stroke rehabilitation,” Lancet, vol. 377, no. 9778, pp. 1693–1702, May 2011.

45. M. D. Ellis, B. G. Holubar, A. M. Acosta, R. F. Beer, and J. P. A. Dewald, “Modifiability of abnormal isometric elbow and shoulder joint torque coupling after stroke,” Muscle Nerve, vol. 32, pp. 170–178, Aug. 2005.

46. J. P. A. Dewald, P. S. Pope, J. D. Given, T. S. Buchanan, and W. Z. Rymer, “Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects,” Brain, vol. 118, no. 2, pp. 495–510, 1995.

47. D. G. Kamper, A. N. McKenna-Cole, L. E. Kahn, and D. J. Reinkensmeyer, “Alterations in reaching after stroke and their relation to movement direction and impairment severity,” Arch. Phys. Med. Rehabil., vol. 83, no. 5, pp. 702–707, May 2002.

48. C. L. Massie, S. Fritz, and M. P. Malcolm, “Elbow extension predicts motor impairment and performance after stroke,” Rehabil. Res. Pract., vol. 2011, pp. 1–7, 2011.

49. V. C. K. Cheung, L. Piron, M. Agostini, S. Silvoni, A. Turolla, and E. Bizzi, “Stability of muscle synergies for voluntary actions after cortical stroke in humans,” Proc. Nat. Acad. Sci. USA, vol. 106, no. 46, pp. 19563–19568, Nov. 2009.

50. J. Roh, W. Z. Rymer, and R. F. Beer, “Robustness of muscle synergies underlying three-dimensional force generation at the hand in healthy humans,” J. Neurophysiol., vol. 107, no. 8, pp. 2123–2142, Apr. 2012.

51. J. Roh, W. Z. Rymer, and R. F. Beer, “Evidence for altered upper extremity muscle synergies in chronic stroke survivors with mild and moderate impairment,” Frontiers Hum. Neurosci., vol. 9, p. 6, Feb. 2015.

52. J. Roh, W. Z. Rymer, E. J. Perreault, S. B. Yoo, and R. F. Beer, “Alterations in upper limb muscle synergy structure in chronic stroke survivors,” J. Neurophysiol., vol. 109, no. 3, pp. 768–781, Feb. 2013.

53. W. H. Backes, W. H. Mess, V. van Kranen-Mastenbroek, and J. P. H. Reulen, “Somatosensory cortex responses to median nerve stimulation: fMRI effects of current amplitude and selective attention,” Clin. Neurophysiol., vol. 111, no. 10, pp. 1738–1744, Oct. 2000.

54. G. Francisco, “Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: A randomized pilot study,” Arch. Phys. Med. Rehabil., vol. 79, no. 5, pp. 570–575, May 1998.

55. S. K. Sabut, C. Sikdar, R. Kumar, and M. Mahadevappa, “Functional electrical stimulation of dorsiflexor muscle: Effects on dorsiflexor strength, plantarflexor spasticity, and motor recovery in stroke patients,” Neurorehabilitation, vol. 29, no. 4, pp. 393–400, 2011.

56. Y.-H. Wang, F. Meng, Y. Zhang, M.-Y. Xu, and S.-W. Yue, “Full-movement neuromuscular electrical stimulation improves plantar flexor spasticity and ankle active dorsiflexion in stroke patients: A randomized controlled study,” Clin. Rehabil., vol. 30, no. 6, pp. 577–586, Jun. 2016.

57. W. H. Chang and Y.-H. Kim, “Robot-assisted therapy in stroke rehabilitation,” J. Stroke, vol. 15, no. 3, p. 174, 2013.

58. H. G. Wu, Y. R. Miyamoto, L. N. G. Castro, B. P. Ölveczky, and M. A. Smith, “Temporal structure of motor variability is dynamically regulated and predicts motor learning ability,” Nature Neurosci., vol. 17, no. 2, pp. 312–321, Jan. 2014.

59. J. Frère and F. Hug, “Between-subject variability of muscle synergies during a complex motor skill,” Frontiers Comput. Neurosci., vol. 6, p. 99, Dec. 2012.

60. S. Muceli, A. T. Boye, A. d’Avella, and D. Farina, “Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane,” J. Neurophysiol., vol. 103, no. 3, pp. 1532–1542, Mar. 2010.

61. J. F. Soechting and F. Lacquaniti, “Invariant characteristics of a pointing movement in man,” J. Neurosci., vol. 1, no. 7, pp. 710–720, Jul. 1981.

62. B. Cesqui, A. d’Avella, A. Portone, and F. Lacquaniti, “Catching a ball at the right time and place: Individual factors matter,” PLoS ONE, vol. 7, no. 2, p. e31770, Feb. 2012.

 

via Synergy-Based FES for Post-Stroke Rehabilitation of Upper-Limb Motor Functions – IEEE Journals & Magazine

, , , , , , , , , , , ,

Leave a comment

[WEB SITE] Technology helps stroke patients get moving again

Electronic devices are helping stroke patients walk and move their hands again.
Provided

Electronic devices are helping stroke patients walk and move their hands again.

This may bode well for the 20 percent of survivors that have foot drop, and 87 percent of stroke survivors that have lost the use of their hands.

When a person has a stroke, multiple sclerosis or brain injury, most of the neurons that help signal muscles to move are broken. This keeps the brain from being able to send signals to certain muscle groups telling them to move.

A stroke, for example, can destroy millions of brain cells that you need to tie your shoes, pick up a grandchild or reach into your closet. To gain lost function, rehabilitation used to focus on teaching patients how to compensate for their physical deficits.

Today, research shows that neural plasticity (the ability of the brain to repair itself) can be applied effectively for improved outcomes and enhanced functional abilities.

To do this successfully, the central nervous system must seek other neural pathways and find new connections that bypass the damaged areas. With a little help from functional electrical stimulation (FES), which is low energy electrical pulses, the process to find the new connections is a bit easier.

New electrical orthotics target muscles with FES and can help accelerate muscle-nerve recovery. The electronic orthosis and its control unit transmit synchronized electric pulses to the peripheral nerves through electrodes built into the orthosis — these pulses are driven in precise sequence and accurately activate five muscles in the forearm.

“Muscles relearn when electrical stimulation provides feedback to the brain that can facilitate neuro re-education and promote neuroplasticity, which is the ability of the central nervous system to remodel itself,” says physical therapist Imelda Ungos, director of rehabilitation for Melbourne Terrace, a facility that specializes in the active and aging population. “And patients can learn a better way to function just by having new input, regardless of age.”

Ungos reports that the ultimate goal with this method of therapy is to restore voluntary movement. Patients with a history of brain lesions, such as stroke conditions and movement disorders, may have the most to gain with the neuro-orthotics and the rehab to learn how to use them.

“The latest therapy equipment from Bioness can drive the brain to new connections, and newer technology and techniques encourage the neuronal changes necessary for improved function,” says Ungos. “This kind of therapy is very specialized, and we’re the only sub-acute facility in the Space Coast area with the Bioness FES technologies,” says Ungos.

For improved hand function, the orthosis fits to the forearm and wrist, and communicates wirelessly with the control unit. Inside the orthosis, electrodes deliver mild pulses to stimulate muscle contraction.

The level of stimulation can be adjusted toward each function. With an intuitive interface, clinicians are better able to help their patients obtain simple control of desired hand activation.

The wireless device is portable and allows for quick detection of the best electrode position for each individual. A control unit enables easy programming of functional modes and training regimens.

For patients with poor safety and balance due to foot drop, which is the inability to lift the foot during walking, there’s an electronic orthosis that fits below the knee. The unit has stimulating electrodes placed over the correct nerve and fits below the knee. A heel sensor sends a muscle-contracting signal during the correct step phase to enable the foot to lift.

After the initial custom fitting of the orthosis, patients can enhance their abilities to perform daily activities, and the carry-over results from continued use will improve voluntary movement.

Ungos adds that the other benefits of interacting with the device include a reduction in muscle spasm, an increase in range of motion, and improved blood circulation. “That all goes towards retarding disuse atrophy,” she says.

“Efforts must be directed towards preventing complications and learning how to use affected limb along with active rehabilitation… especially when the use is started early in post stroke rehabilitation,” says online Bioness reports from Harold Weingarden, MD, Director of Rehabilitation Day Hospital Sheba Medical Center in Israel.

“An early start to rehab gives patients hope of what is possible in terms of present and future improvement,” says Ungos. She adds that the devices allow patients to move in more natural ways.

Feeling “normal” again can improve mood, function, and quality of life.

For more information, call Melbourne Terrace Rehabilitation Center at 321-725-3990. They offer comprehensive rehabilitative outpatient and inpatient services for short or long term care located at 251 East Florida Ave., Melbourne, FL 32901

via Technology helps stroke patients get moving again

, , , , , ,

Leave a comment

[VIDEO] What is Functional Electrical Stimulation Billy Woods from Active Linx – YouTube

Functional Electrical Stimulation (FES) is an innovation in the field of muscle stimulation, which allows people with a complete spinal cord injury and paralyzed muscles to move again. It can be combined with a BerkelBike or EasyLegs. The technology allows patients with a spinal cord injury to bike using their own leg muscles.

 

, , ,

Leave a comment

[VIDEO] Kid getting treatment with foot drop system – YouTube

Slow motion shot of a child receiving treatment with functional electrical stimulation. He wearing foot drop system

 

, , , ,

Leave a comment

[Abstract] sEMG Bias-driven Functional Electrical Stimulation System for Upper Limb Stroke Rehabilitation

Abstract:

It is evident that the dominant therapy of functional electrical stimulation (FES) for stroke rehabilitation suffers from heavy dependency on therapists experience and lack of feedback from patients status, which decrease the patients’ voluntary participation, reducing the rehabilitation efficacy. This paper proposes a closed loop FES system using surface electromyography (sEMG) bias feedback from bilateral arms for enhancing upper-limb stroke rehabilitation. This wireless portable system consists of sEMG data acquisition and FES modules, the former is used to measure and analyze the subject’s bilateral arm motion intention and neuromuscular states in terms of their sEMG, the latter of multi-channel FES output is controlled via the sEMG bias of the bilateral arms. The system has been evaluated with experiments proving that the system can achieve 39.9 dB signal-to-noise ratio (SNR) in the lab environment, outperforming existing similar systems. The results also show that voluntary and active participation can be effectively employed to achieve different FES intensity for FES-assisted hand motions, demonstrating the potential for active stroke rehabilitation.
Published in: IEEE Sensors Journal ( Early Access ) Date of Publication: 18 June 2018

Related Articles

via sEMG Bias-driven Functional Electrical Stimulation System for Upper-Limb Stroke Rehabilitation – IEEE Journals & Magazine

, , , , , , , , , , , , ,

Leave a comment