Posts Tagged neuroscience

[BLOG POST] 10 brain books you should read in 2019

Brain Changer: The Good Mental Health Diet by [Jacka, Felice]

What’s on your “to-read” list this year?

Here are a few books that I’ve read (or plan to in 2019) chosen based on research rigour, chosen, publication date (the last year or two) and practical application. In other words: these books synthesise the most compelling brain science and smart ideas emerging from the research lab and make it relevant for our everyday lives.

Have fun exploring big topics like how our emotions are created, the importance of gut health, the latest on habit formation, understanding the teenage brain, epigenetics, mindfulness, depression and anxiety and the female brain. Happy reading!

1. Brain Changer by Professor Felice Jacka

How is our brain and mental health affected by what we eat? Australian scientist, Felice Jacka uncovers the link between obesity and depression, how gut health impacts brain health and how a Mediterranean diet can keep our brains healthy as we age.

2. The Neuroscience of Mindfulness by Dr Stan Rodski

Where is the proof that mindfulness works? Discover the neuroscience behind mindfulness as Dr Rodski explains how being in the moment can lower stress, increase energy levels, build resilience and protect us from a range of life-threatening illnesses.

3. Mind-Brain-Gene by Dr John Arden

In this groundbreaking book, Arden explores the fascinating world of epigenetics, the immune system and mental health. He takes us on a fascinating journey into the mind-brain-body feedback loops, showing how they influence mental and physical health.

4. Inventing Ourselves by Professor Sarah-Jayne Blakemore

Blakemore, often credited with pioneering adolescent neurosciences, takes us on a tour through the groundbreaking science behind the enigmatic, but crucial, brain developments of adolescence and how those translate into teenage behaviour. Blakemore demystifies this period of development, outlining what makes the teenage brain unique and why mental illness can develop in these years.

5. Lost Connections by Johann Hari

In his bold and inspiring book, Hari goes on a quest to explore nine different causes of depression and anxiety including disconnection from meaningful work, other people, the natural world and hope. He challenges what we have believed to be true about depression and anxiety and their unexpected solution – reconnection.

6. Atomic Habits by James Clear

How do we create habits that stick? In his book, Clear explores the neuroscience of habit formation, along with proven principles in biology and psychology to offer an effective system for change. According to Clear, it’s the small changes made consistently which compound into life-changing results.

7. How Emotions Are Made by Professor Lisa Feldman Barrett

Barrett shakes up what we have previously thought true about how emotions are created. She challenges the idea that emotions are automatic and hard-wired in certain parts of the brain, using the latest in emotion science to show how emotion is actually created from a complex interplay between our brain, body and culture.

8. From the Laboratory to the Classroom by editors Jared Cooney Horvath, Jason M. Lodge and John Hattie

Are we applying what we know about the neuroscience of learning in the classroom? Horvath’s book combines theory and practice exceptionally well, offering useful strategies based on the science of learning, motivation, attention and memory.

9. Every Note Ever Played by Dr Lisa Genova

From neuroscientist and author of Still Alice, Genova’s latest novel is compelling and thought-provoking. She explores what it means to be truly alive, looking at the way neurological conditions impact identity and relationships. Genova is gifted at bringing to life the struggles experienced by those living with a neurological condition and those who love and care for them.

10. The Women’s Brain Book by Dr Sarah McKay

Of course, how could I not include my own book on this list for must-reads of 2019! My book takes you on a journey through the female lifespan (from womb to tomb) and explores how how brains are shaped by the lives we live, and in turn how how lives are shaped by our neurobiology.

via 10 brain books you should read in 2019 – Your Brain Health

,

Leave a comment

[BLOG POST] 7 principles of neuroscience every coach and therapist should know – Your Brain Health

What does neuroscience have to do with coaching and therapy?

Short answer: EVERYTHING!

If you’re a coach or therapist, your job is to facilitate change in your client’s

  • thinking (beliefs and attitudes)
  • emotions (more mindfulness and resilience)
  • behaviour (new healthy habits).

Coaching builds the mental skills needed to support lasting change. Skills such as:

  • mindfulness
  • self-awareness
  • motivation
  • resilience
  • optimism
  • critical thinking
  • stress management

Health and wellness coaching, in particular, are emerging as powerful interventions to help people initiate and maintain sustainable change.

And we have academic research to support this claim: check out a list of RCTs in table 2 of this paper).

How can neuroscience more deeply inform coaching and therapy?

Back in the mid-1990s when I was an undergrad, the core text of my neuroscience curriculum was ‘Principles of Neural Science’ by Eric Kandel, James Schwartz and Thomas Jessell. Kandel won the 2000 Nobel Prize in Physiology or Medicine for his research on memory storage in neurons.

A few years before his Nobel, Kandel wrote a paper A new intellectual framework for psychiatry’. The paper explained how neuroscience can provide a new view of mental health and wellbeing.

Based on Kandel’s paper, researchers at the Yale School of Medicine proposed seven principles of brain-based therapy for psychiatrists, psychologists and therapists. The principles have been translated intopractical applications for health & wellness, business, and life coaches. 

One fundamental principle is,

“All mental processes, even the most complex psychological processes, derive from the operation of the brain.”

And another is:

“Insofar as psychotherapy or counseling is effective . . . it presumably does so through learning, by producing changes in gene expression that alter the strength of synaptic connections.”

That is, human interactions and experience influence how the brain works.

This concept of brain change is now well established in neuroscience and is often referred to as neuroplasticity. Ample neuroscience research supports the idea that our brains remain adaptable (or plastic) throughout our lifespan.

Here is a summary of Kandel, Cappas and colleagues thoughts on how neuroscience can be applied to therapy and coaching…

Seven principles of neuroscience every coach should know.

1. Both nature and nurture win.

Both genetics and the environment interact in the brain to shape our brains and influence behaviour.

Therapy or coaching can be thought of as a strategic and purposeful ‘environmental tool’ to facilitate change and may be an effective means of shaping neural pathways.

2.  Experiences transform the brain.

The areas of our brain associated with emotions and memories such as the pre-frontal cortex, the amygdala, and the hippocampus are not hard-wired (they are ‘plastic’).

Research suggests each of us constructs emotions from a diversity of sources: our physiological state, by our reactions to the ‘outside’ environment, experiences and learning, and our culture and upbringing.

3.  Memories are imperfect.

Our memories are never a perfect account of what happened. Memories are re-written each time when we recall them depending on how, when and where we retrieve the memory.

For example, a question, photograph or a particular scent can interact with a memory resulting in it being modified as it is recalled.

With increasing life experience we weave narratives into their memories.  Autobiographical memories that tell the story of our lives are always undergoing revision precisely because our sense of self is too.

Consciously or not, we use imagination to reinvent our past, and with it, our present and future.

4. Emotion underlies memory formation.

Memories and emotions are interconnected neural processes.

The amygdala, which plays a role in emotional arousal, mediate neurotransmitters essential for memory consolidation. Emotional arousal has the capacity to activate the amygdala, which in turn modulates the storage of memory.

 

5. Relationships are the foundation for change 

Relationships in childhood AND adulthood have the power to elicit positive change.

Sometimes it takes the love, care or attention of just one person to help another change for the better.

The therapeutic relationship has the capacity to help clients modify neural systems and enhance emotional regulation.

6. Imagining and doing are the same to the brain.

Mental imagery or visualisation not only activates the same brain regions as the actual behaviour but also can speed up the learning of a new skill.

Envisioning a different life may as successfully invoke change as the actual experience.

7. We don’t always know what our brain is ‘thinking’.

Unconscious processes exert great influence on our thoughts, feelings, and actions.

The brain can process nonverbal and unconscious information, and information processed unconsciously can still influence therapeutic and other relationships. It’s possible to react to unconscious perceptions without consciously understanding the reaction.

 

via 7 principles of neuroscience every coach and therapist should know – Your Brain Health

, , , , , , , , , ,

Leave a comment

[VIDEO] Your Brain on Depression: Neuroscience, Animated – YouTube

Depression is a multifaceted and insidious disorder, nearly as complex as the brain itself. As research continues to suggest, the onset of depression can be attributed to an interplay of the many elements that make us human—namely, our genetics, the structure and chemistry of our brains, and our lived experience. Second only, perhaps, to the confounding mechanics of anesthesia, depression is the ultimate mind-body problem; understanding how it works could unlock the mysteries of human consciousness.

Emma Allen, a visual artist, and Dr. Daisy Thompson-Lake, a clinical neuroscientist, are fascinated by the physical processes that underlie mental health conditions. Together, they created Adam, a stop-motion animation composed of nearly 1,500 photographs. The short film illuminates the neuroscience of depression while also conveying its emotive experience.

“It was challenging translating the complicated science into an emotional visual story with scenes that would flow smoothly into each other,” Allen told The Atlantic.

“One of the most complex issues we had to deal with,” added Thompson-Lake, “is that there no single neuroscientific explanation for depression…While scientists agree that there are biological and chemical changes within the brain, the actual brain chemistry is very unique to the individual—although, of course, we can see patterns when studying large numbers of patients.” As a result, Allen and Thompson-Lake attempted a visual interpretation of depression that does not rely too heavily on any one explanation.

The film’s first sequence depicts the brain’s vast network of neuronal connections. Neurons communicate via synapses, across which electrical and chemical signals are exchanged. In a depressed patient’s brain, some of these processes are inefficient or dysfunctional, as the animation illustrates. Next, we see a positron emission tomography (PET) scan of a depressed brain, demarcated by darkened areas. Finally, the animation shows activity in the hippocampus and the frontal lobe. Abnormalities in the activity of both of these areas of the brain have been implicated in depression by recent research.

For Allen, one of the main objectives in creating Adam was to help dispel the notion that depression is a character flaw. “A common misconception is that the person is at fault for feeling this way, and that to ask for help is a weakness or embarrassing,” Allen said. “But depression has a physical component that needs treating.”

“The shame surrounding mental health still exists,” Allen continued. “In fact, in the case of Kate Spade, it was reported that she was concerned about the stigma her brand might face if this were made public.”

And who, exactly, is Adam? “Daisy lost a friend to suicide,” said Allen, “so the film is named in his memory.”

“Adam” was directed by animator Emma Allen and neuroscientist Daisy Thompson-Lake. It is part of The Atlantic Selects, an online showcase of short films from independent creators, curated by The Atlantic.

via Your Brain on Depression: Neuroscience, Animated – YouTube

, , , ,

Leave a comment

[NEWS] Wireless ‘pacemaker for the brain’ could be new standard treatment for neurological disorders

A grey-colored sits on an illustration of a brain

A new neurostimulator developed by engineers at UC Berkeley can listen to and stimulate electric current in the brain at the same time, potentially delivering fine-tuned treatments to patients with diseases like epilepsy and Parkinson’s.

The device, named the WAND, works like a “pacemaker for the brain,” monitoring the brain’s electrical activity and delivering electrical stimulation if it detects something amiss.

These devices can be extremely effective at preventing debilitating tremors or seizures in patients with a variety of neurological conditions. But the electrical signatures that precede a seizure or tremor can be extremely subtle, and the frequency and strength of electrical stimulation required to prevent them is equally touchy. It can take years of small adjustments by doctors before the devices provide optimal treatment.

WAND, which stands for wireless artifact-free neuromodulation device, is both wireless and autonomous, meaning that once it learns to recognize the signs of tremor or seizure, it can adjust the stimulation parameters on its own to prevent the unwanted movements. And because it is closed-loop — meaning it can stimulate and record simultaneously — it can adjust these parameters in real-time.

“The process of finding the right therapy for a patient is extremely costly and can take years. Significant reduction in both cost and duration can potentially lead to greatly improved outcomes and accessibility,” said Rikky Muller, an assistant professor of electrical engineering and computer sciences at Berkeley. “We want to enable the device to figure out what is the best way to stimulate for a given patient to give the best outcomes. And you can only do that by listening and recording the neural signatures.”

WAND can record electrical activity over 128 channels, or from 128 points in the brain, compared to eight channels in other closed-loop systems. To demonstrate the device, the team used WAND to recognize and delay specific arm movements in rhesus macaques. The device is described in a study that appeared today (Dec. 31) in Nature Biomedical Engineering.

A WAND chip in a hand

Ripples in a pond

Simultaneously stimulating and recording electrical signals in the brain is much like trying to see small ripples in a pond while also splashing your feet — the electrical signals from the brain are overwhelmed by the large pulses of electricity delivered by the stimulation.

Currently, deep brain stimulators either stop recording while delivering the electrical stimulation, or record at a different part of the brain from where the stimulation is applied — essentially measuring the small ripples at a different point in the pond from the splashing.

“In order to deliver closed-loop stimulation-based therapies, which is a big goal for people treating Parkinson’s and epilepsy and a variety of neurological disorders, it is very important to both perform neural recordings and stimulation simultaneously, which currently no single commercial device does,” said former UC Berkeley postdoctoral associate Samantha Santacruz, who is now an assistant professor at the University of Texas in Austin.

Researchers at Cortera Neurotechnologies, Inc., led by Muller, designed the WAND custom integrated circuits that can record the full signal from both the subtle brain waves and the strong electrical pulses. This chip design allows WAND to subtract the signal from the electrical pulses, resulting in a clean signal from the brain waves.

A close up picture of an integrated circuit

Existing devices are tuned to record signals only from the smaller brain waves and are overwhelmed by the large stimulation pulses, making this type of signal reconstruction impossible.

“Because we can actually stimulate and record in the same brain region, we know exactly what is happening when we are providing a therapy,” Muller said.

In collaboration with the lab of electrical engineering and computer science professor Jan Rabaey, the team built a platform device with wireless and closed-loop computational capabilities that can be programmed for use in a variety of research and clinical applications.

In experiments lead by Santacruz while a postdoc at UC Berkeley, and by electrical engineering and computer science professor Jose Carmena, subjects were taught to use a joystick to move a cursor to a specific location. After a training period, the WAND device was capable of detecting the neural signatures that arose as the subjects prepared to perform the motion, and then deliver electrical stimulation that delayed the motion.

“While delaying reaction time is something that has been demonstrated before, this is, to our knowledge, the first time that it has been demonstrated in a closed-loop system based on a neurological recording only,” Muller said.

“In the future we aim to incorporate learning into our closed-loop platform to build intelligent devices that can figure out how to best treat you, and remove the doctor from having to constantly intervene in this process,” she said.

Andy Zhou and Benjamin C. Johnson of UC Berkeley join Santacruz as co-lead authors on the paper. Other contributing authors include George Alexandrov, Ali Moin and Fred L. Burghardt of UC Berkeley. This work was supported in part by the Defense Advanced Research Projects Agency (W911NF-14- 2- 0043) and the National Science Foundation Graduate Research Fellowship Program (Grant No. 1106400). Authors Benjamin C. Johnson, Jan M. Rabaey, Jose M. Carmena and Rikky Muller have financial interest in Cortera Neurotechnologies, Inc., which has filed a patent application on the integrated circuit used in this work.

RELATED INFORMATION

via Wireless ‘pacemaker for the brain’ could be new standard treatment for neurological disorders | Berkeley News

, , , , , , , ,

Leave a comment

[WEB SITE] Half the brain encodes both arm movements

October 8, 2018, Society for Neuroscience
Half the brain encodes both arm movements

Patients implanted with electrocorticography arrays completed a 3D center-out reaching task. Electrode locations were based upon the clinical requirements of each patient and were localized to an atlas brain for display (A). B. Patients were seated in the semi-recumbent position and completed reaching movements from the center to the corners of a 50cm physical cube based upon cues from LED lights located at each target while hand positions and ECoG signals were simultaneously recorded. Each patient was implanted with electrodes in a single cortical hemisphere and performed the task with the arm contralateral (C) and ipsilateral (D) to the electrode array in separate recording sessions. Credit: Bundy et al., JNeuros(2018)

Individual arm movements are represented by neural activity in both the left and right hemispheres of the brain, according to a study of epilepsy patients published in JNeurosci. This finding suggests the unaffected hemisphere in stroke could be harnessed to restore limb function on the same side of the body by controlling a brain-computer interface.

The right side of the brain is understood to control the left side of the body, and vice versa. Recent evidence, however, supports a connection between the same side of the brain and body during .

Eric Leuthardt, David Bundy, and colleagues explored brain activity during such ipsilateral movements during a reaching task in four  whose condition enabled invasive monitoring of their brains through implanted electrodes. Using a machine learning algorithm, the researchers demonstrate successful decoding of speed, velocity, and position information of both left and right arm movements regardless of the location of the electrodes.

In addition to advancing our understanding of how the brain controls the body, these results could inform the development of more effective rehabilitation strategies following brain injury.

Half the brain encodes both arm movements

In the study a patient implanted with electrodes only on the left side of the brain was asked to make movements to 8 targets in 3D space with both their right and left arms. Using recordings from these electrodes, the authors were able to predict the hand speed, direction, and position for both arms showing that movements of both arms are encoded on one side of the brain. Credit: David Bundy and Eric Leuthardt

 Explore further: New research on the brain’s backup motor systems could open door to novel stroke therapies

More information: Unilateral, Three-dimensional Arm Movement Kinematics are Encoded in Ipsilateral Human Cortex, JNeurosci (2018). DOI: 10.1523/JNEUROSCI.0015-18.2018

via Half the brain encodes both arm movements

, , , , , , ,

Leave a comment

[WEB SITE] Is There a Science to Psychotherapy?

Neuroscience findings suggest that psychotherapy alters the brain.

Since the decade of the brain, 1990-1999, neuroscience has captured enormous amounts of attention from both the scientific community and the general public. Many books and media reports describe the brain’s basic anatomy and function. There has been a proliferation of neuroscience institutes at universities. In laboratories all over the world, neuroscience has become one of the most exciting and productive branches of inquiry.

Yet not everyone is completely pleased with what neuroscience has to tell us. In particular, some decry neuroscience for trying to delegitimize the “mind.” Going back to the original Cartesian mind-body duality, these critics insist that neuroscience can only go so far by describing the function of neurons and neurotransmitters. What cannot be reached by science, they say, is that ineffable “mind” that constitutes the human spirit. For them, neuroscience is purely an attempt to reduce the complexities and wonders of human experience to brain scan images and electrical recordings from axons and dendrites.

In a new book, Neuroscience at the Intersection of Mind and Brain (Oxford University Press, 2018), one of us (Jack) attempts to allay fears that neuroscience will somehow reduce human experience and creativity to the “mere” workings of the physical brain. There is, in fact, nothing “reductive” about the physical brain. Rather, the brain is a gloriously complex, fascinating, and well-organized structure that constitutes, as neuroscientist Eric Kandel so eloquently put it, “the organ of the mind.”

Biologists versus Psychologists

As a resident in psychiatry in the late 1970s, Jack witnessed the emergence of psychopharmacology as the dominant discipline for academic psychiatry and lived through the often bitter battles between “biologists” and “psychologists.” This may be, in part, where the mistrust of neuroscience began. The biologists believed that their method of treating psychiatric illness—medication—was based on solid science and rejected psychotherapy as unscientific.  They also believed that neuroscience explained why the new psychiatric drugs worked and therefore promoted brain science as the basis for their discipline. Every lecture about depression or schizophrenia in those days began with a picture of a pre- and postsynaptic neuron forming a synapse across which neurotransmitters like serotonin, noradrenaline, and dopamine carried information. The new medications interact with receptors for these neurotransmitters and, it was taught at the time, this explains how they work to treat depression, anxiety, and psychosis.

 Andrew Rybalko/Shutterstock

Source: Andrew Rybalko/Shutterstock

It turns out that the picture of neurons everyone used back then was a vast oversimplification of what a synapse really looks like and that almost nothing we know about neurotransmitters and their receptors actually explains how psychiatric drugs work. But what really bothered the psychologists was the complete dismissal of psychotherapy by the biologists. Years of studying various types of psychotherapy convinced them that indeed they had science on their side. Furthermore, they objected to the biologists’ emphasis on inherited abnormalities as the sole basis for psychiatric illness. Psychologists had always been more interested in the ways that human experience, from birth onwards, shaped personality and behavior.

Over time, many (but thankfully not all) psychologists came to see neuroscience as the branch of science devoted to promoting pharmacology as the only treatment for psychiatric illness and to trying to prove that those illnesses were entirely due to inherited brain abnormalities. Biologists stood with nature; psychologists with nurture.

This fear of neuroscience’s aims is entirely misplaced. Over the last several decades, neuroscience has, in fact, focused a great deal of attention on the biology of experience, elucidating the ways in which what happens to us in life affects the structure and function of the brain. Every time we see, hear, smell, or touch something, learn a new fact, or have a new experience, genes are activated in the brain, new proteins are synthesized, and neural pathways communicate the new information to multiple brain regions.

Neuroscience is not, therefore, synonymous with psychopharmacology, nor does it invalidate the complexities of human experience. It has shown, for example, that early life interactions between a parent and child shape how the brain will function for the rest of a person’s life.

This has tremendous implications for understanding the mechanism of action of psychotherapy if we accept the idea that psychotherapy itself is a form of life experience and therefore capable of changing brain function at molecular, cellular, and structural levels. Here are two examples that illustrate ways in which neuroscience informs psychotherapy.

CBT and the Prefrontal to Amygdala Connection

It is now clear that the expression of conditioned fear is dependent upon an intact, functioning amygdala. Scientists have shown that the amygdala, located in a primitive part of the brain often referred to as the limbic cortex, reciprocally inhibits and is inhibited by a more evolutionarily advanced part of the brain, the medial prefrontal cortex (mPFC). Thus, under circumstances of heightened fear, the amygdala shuts down the ability of the mPFC to exert reason over emotion and initiates a cascade of fearful responses that include increased heart rate and blood pressure and freezing in place. When the mPFC is able to reassert its capacity for logic and reason, it can, in turn, inhibit the amygdala and reduce and extinguish fear.

Cognitive behavioral therapy (CBT) is an evidence-based intervention that is the first-line treatment for most anxiety disorders and for mild, moderate, and in many cases even severe depression. Because the automatic, irrational fears and avoidance behaviors manifested by patients with anxiety disorders and depression resemble the behavior of rodents in Pavlovian fear conditioning experiments, scientists have wondered if CBT works, at least in part, by strengthening the prefrontal cortex to amygdala pathway, thereby reducing amygdala activity. Indeed, many studies have shown that anxious and depressed patients have reduced activity in this pathway and exaggerated amygdala responses to fearful stimuli. Studies have also shown that successful CBT for social anxiety disorder decreases amygdala activation.

Most recently, a group of scientists from Oxford, Harvard, and Berkeley showed clearly that stimulation of the prefrontal cortex in human volunteers both reduced amygdala activation and fear. Maria Ironside and colleagues selected 18 women with high levels of trait anxiety and randomized them to receive either transcranial direct current stimulation (tDCS) to the prefrontal cortex or sham tDCS. The subjects underwent functional magnetic resonance imaging (fMRI) of the brain and performed an attentional load task that tests vigilance to threat. Real, but not sham, tDCS increased activity in the prefrontal cortex, decreased activity in the amygdala, and decreased threat responses.

This study is one example of preclinical and clinical neuroscience coming together to suggest a biological mechanism for the efficacy of a psychosocial intervention. We know that the cognitive portion of CBT strengthens a patient’s ability to assert reason over irrational thoughts and fears and that this decreases amygdala activity in some studies. We know clearly from animal studies that stimulating the prefrontal cortex reduces amygdala activation and potentiates fear extinction. Now we also know that in a group of anxious people, direct stimulation of the prefrontal cortex does exactly the same thing as it does in animal studies and, in addition, reduces anxiety. With this plausible hypothesis for how CBT works, scientists can now push further to see if brain imaging can ultimately help select patients with particularly weak prefrontal to amygdala pathway strength who might be prime candidates for CBT and then to track how they are doing in therapy objectively by repeating the brain imaging studies to see if and when that pathway is strengthened.

Psychoanalysis and Reconsolidation

CBT has been proven effective by many high-quality clinical trials and therefore is a prime candidate for biological studies, but can the same be said for such widely used but not empirically-validated treatments as psychoanalysis and psychoanalytic psychotherapy? In 2011, Jack and his colleague, Columbia psychiatrist and psychoanalyst Steven Roose, proposed that another aspect of fear conditioning—reconsolidation of fear memories—may explain one biological mechanism of action for how psychoanalysis works. In rats, when a conditioned fear memory is reactivated, it temporarily becomes labile and can be completely erased by blocking the biological mechanisms that permit reconsolidation of the memory. Could it be that in psychoanalytic therapies, the patient undergoes a process of reactivating distressing early memories that, once made conscious through the psychoanalytic process, can be manipulated by the therapist’s interpretations? According to this hypothesis, those now altered memories can then be reconsolidated into permanent memory in a less disturbing format.

The theory has been considered since then by many scientists and psychoanalytic theorists and a number of experiments show that the phenomena of labile reactivated memories and blockade of reconsolidation do indeed occur in humans. Blocking reconsolidation of reactivated memories has been shown to be effective in experiments attempting to help addicts overcome the powerful tendency to succumb to subtle cues and resume taking drugs even after successful rehabilitation. Here again, information gained from the basic neuroscience laboratory and from clinical neuroscience studies may help us understand how one aspect of psychoanalysis works to change the brain in ways that are helpful to people suffering with mental illness.

It is not necessary to invoke an ineffable “mind” to explain our unique human characteristics. Understanding the complexity of the human brain is sufficient to reveal how we are able to take what we experience and transform it into scientific theories, poetry, and philosophical ideas. Neuroscience is not superficial or reductionistic and it is not at all in the sole service of psychopharmacology and the genetic explanation for mental disorders. This becomes clear as we recognize the tremendous contributions neuroscientists have made to elucidating basic mechanisms that allow experiences to change the physical structure and function of the brain on a second-by-second basis. Everything we experience during life is translated into events that occur in the brain.

Psychotherapy is a form of life experience that changes the way the brain works, often ameliorating abnormalities caused by adverse experience and stressful life events. So yes, there is a science to psychotherapy, one that can be readily understood by learning about some of the fundamental and fascinating ways our brains work. Neuroscience at the Intersection of Mind and Brain tries to do just that.

via Is There a Science to Psychotherapy? | Psychology Today UK

, , , , ,

Leave a comment

[WEB SITE] Virtual Reality Reduces Pain and Increases Performance During Exercise – Neuroscience News

Summary: Researchers report virtual reality can help to lower pain levels and increase performance when undertaking physical activity. Participants using VR reported a pain intensity 10% lower than those not using the technology when performing isometric bicep curls.

Source: University of Kent.

The research, led by PhD candidate Maria Matsangidou from EDA, set out to determine how using VR while exercising could affect performance by measuring a raft of criteria: heart rate, including pain intensity, perceived exhaustion, time to exhaustion and private body consciousness.

To do this they monitored 80 individuals performing an isometric bicep curl set at 20% of the maximum weight they could lift, which they were then asked to hold for as long as possible. Half of the group acted as a control group who did the lift and hold inside a room that had a chair, a table and yoga mat on the floor.

The VR group were placed in the same room with the same items. They then put on a VR headset and saw the same environment, including a visual representation of an arm and the weight (see image below). They then carried out the same lift and hold as the non-VR group.

The results showed a clear reduction in perception of pain and effort when using VR technology. The data showed that after a minute the VR group had reported a pain intensity that was 10% lower than the non-VR group.

Furthermore the time to exhaustion for the VR group was around two minutes longer than those doing conventional exercise. The VR group also showed a lower heart rate of three beats per minute than the non-VR group.

Results from the study also showed no significant effect of private body consciousness on the positive impact of VR. Private body consciousness is the subjective awareness each of us has to bodily sensations.

the vr system

Previous research has shown that individuals who have a high private body consciousness tend to better understand their body and as a result perceive higher pain when exercising. However, the study’s findings revealed that VR was effective in reducing perceived pain and that private body consciousness did not lessen this effect.

As such, the improvements shown by the VR group suggest that it could be a possible way to encourage less active people to exercise by reducing the perceived pain that exercise can cause and improving performance, regardless of private body consciousness.

Lead researcher Maria Matsangidou said: ‘It is clear from the data gathered that the use of VR technology can improve performance during exercise on a number of criteria. This could have major implications for exercise regimes for everyone, from occasional gym users to professional athletes.’

ABOUT THIS NEUROSCIENCE RESEARCH ARTICLE

 

Dr Jim Ang from EDA and Dr Alex Mauger from the School of Sport and Exercise Sciences at Kent were also involved in the research.

Source: Dan Worth – University of Kent
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is credited to Maria Matsangidou.
Original Research: Abstract for “Is your virtual self as sensational as your real? Virtual Reality: The effect of body consciousness on the experience of exercise sensations” by Maria Matsangidou, Chee Siang Ang, Alexis R. Mauger, Jittrapol Intarasirisawat, Boris Otkhmezuri, and Marios N. Avraamides in Psychology of Sports and Exercise. Published July 18 2018.
doi:10.1016/j.psychsport.2018.07.004

CITE THIS NEUROSCIENCENEWS.COM ARTICLE
University of Kent”Virtual Reality Reduces Pain and Increases Performance During Exercise.” NeuroscienceNews. NeuroscienceNews, 1 October 2018.
<http://neurosciencenews.com/virtual-reality-pain-exercise-9941/&gt;.

Abstract

Is your virtual self as sensational as your real? Virtual Reality: The effect of body consciousness on the experience of exercise sensations

Objectives
Past research has shown that Virtual Reality (VR) is an effective method for reducing the perception of pain and effort associated with exercise. As pain and effort are subjective feelings, they are influenced by a variety of psychological factors, including one’s awareness of internal body sensations, known as Private Body Consciousness (PBC). The goal of the present study was to investigate whether the effectiveness of VR in reducing the feeling of exercise pain and effort is moderated by PBC.

Design and methods
Eighty participants were recruited to this study and were randomly assigned to a VR or a non-VR control group. All participants were required to maintain a 20% 1RM isometric bicep curl, whilst reporting ratings of pain intensity and perception of effort. Participants in the VR group completed the isometric bicep curl task whilst wearing a VR device which simulated an exercising environment. Participants in the non-VR group completed a conventional isometric bicep curl exercise without VR. Participants’ heart rate was continuously monitored along with time to exhaustion. A questionnaire was used to assess PBC.

Results
Participants in the VR group reported significantly lower pain and effort and exhibited longer time to exhaustion compared to the non-VR group. Notably, PBC had no effect on these measures and did not interact with the VR manipulation.

Conclusions
Results verified that VR during exercise could reduce negative sensations associated with exercise regardless of the levels of PBC.

 

via Virtual Reality Reduces Pain and Increases Performance During Exercise – Neuroscience News

 

, , , , , , , , , , ,

Leave a comment

[VIDEO] Your Brain on Depression: Neuroscience, Animated – YouTube

Depression is a multifaceted and insidious disorder, nearly as complex as the brain itself. As research continues to suggest, the onset of depression can be attributed to an interplay of the many elements that make us human—namely, our genetics, the structure and chemistry of our brains, and our lived experience. Second only, perhaps, to the confounding mechanics of anesthesia, depression is the ultimate mind-body problem; understanding how it works could unlock the mysteries of human consciousness.

Emma Allen, a visual artist, and Dr. Daisy Thompson-Lake, a clinical neuroscientist, are fascinated by the physical processes that underlie mental health conditions. Together, they created Adam, a stop-motion animation composed of nearly 1,500 photographs. The short film illuminates the neuroscience of depression while also conveying its emotive experience.

“It was challenging translating the complicated science into an emotional visual story with scenes that would flow smoothly into each other,” Allen told The Atlantic.

“One of the most complex issues we had to deal with,” added Thompson-Lake, “is that there no single neuroscientific explanation for depression…While scientists agree that there are biological and chemical changes within the brain, the actual brain chemistry is very unique to the individual—although, of course, we can see patterns when studying large numbers of patients.” As a result, Allen and Thompson-Lake attempted a visual interpretation of depression that does not rely too heavily on any one explanation.

The film’s first sequence depicts the brain’s vast network of neuronal connections. Neurons communicate via synapses, across which electrical and chemical signals are exchanged. In a depressed patient’s brain, some of these processes are inefficient or dysfunctional, as the animation illustrates. Next, we see a positron emission tomography (PET) scan of a depressed brain, demarcated by darkened areas. Finally, the animation shows activity in the hippocampus and the frontal lobe. Abnormalities in the activity of both of these areas of the brain have been implicated in depression by recent research.

For Allen, one of the main objectives in creating Adam was to help dispel the notion that depression is a character flaw. “A common misconception is that the person is at fault for feeling this way, and that to ask for help is a weakness or embarrassing,” Allen said. “But depression has a physical component that needs treating.”

“The shame surrounding mental health still exists,” Allen continued. “In fact, in the case of Kate Spade, it was reported that she was concerned about the stigma her brand might face if this were made public.”

And who, exactly, is Adam? “Daisy lost a friend to suicide,” said Allen, “so the film is named in his memory.”

“Adam” was directed by animator Emma Allen and neuroscientist Daisy Thompson-Lake. It is part of The Atlantic Selects, an online showcase of short films from independent creators, curated by The Atlantic.

 

, , , ,

Leave a comment

[WEB SITE] Christiana Care Health System opens first Epilepsy Monitoring Unit in Delaware

 

To increase access to advanced neurological care, Christiana Care Health System has opened the first Epilepsy Monitoring Unit (EMU) in the First State.

Specially outfitted private hospital rooms in the Transition Neuro Unit at Christiana Hospital provide state-of-the-art equipment for video and audio monitoring. In the rooms, brain waves are tracked with electroencephalography (EEG) and electrical activity in the heart is recorded with electrocardiography (EKG), helping clinicians understand what is happening during a seizure. To further enhance safety, nurses assist patients whenever they are out of their bed. And patients wear mobility vests that connect to a stationary lift, a system that allows patients to move around a room – and prevents them from falling if they have a seizure. This is one of the few EMUs in the U.S. that uses a patient lift to prevent falls.

Epilepsy is a central nervous system disorder, in which brain activity becomes abnormal, leading to seizures or periods of unusual behavior, sensations or loss of awareness. The U.S. Centers for Disease Control and Prevention report that there are 3.4 million Americans with epilepsy and there is a growing incidence of the disease among the adult population in Delaware, especially among people 60 and older.

“Our community deserves the very best in neurological care,” said Valerie Dechant, M.D., physician leader, Neuroscience Service Line, and medical director, Neurocritical Care and Acute Neurologic Services. “Our new Epilepsy Monitoring Unit will enable us to serve the complex neurologic needs of our adult patients.”

Christiana Care’s EMU is part of a larger effort to establish an epilepsy center of excellence, so adults of any age can receive the highest quality routine and specialty care for seizure disorders.

“We want to help patients who believe they have been over-diagnosed or under-diagnosed so they can see improvement in their lives,” said Neurologist John R. Pollard, M.D., medical director of the new EMU.

While most patients with epilepsy are successfully treated by a general neurologist or epileptologist, a significant number of patients have persistent fainting or seizure episodes – or they have unwanted side effects from medications. This new facility enables physicians to work more closely with these patients to understand their seizures and determine appropriate treatment.

“Typically, these patients visit an EMU where they may stay for several days so they can be safely taken off medications, inducing seizures that are recorded and studied so a proper diagnosis and treatment can be planned,” said Christy L. Poole, RN, BSN CRNI CCRC, a neurosciences program manager. Visiting an EMU to induce a seizure could be a source of anxiety for patients and their families.

“Our staff works with patients and families to reduce any fear by providing information on what to expect, stressing procedures that enhance patient safety and making the stay as pleasant as possible,” said Susan Craig, MSN, RNIII-BC, epilepsy clinical nurse practice coordinator.

via Christiana Care Health System opens first Epilepsy Monitoring Unit in Delaware

, , , , , , , , , ,

Leave a comment

[WEB SITE] Human brains make new nerve cells — and lots of them — well into old age.

Previous studies have suggested neurogenesis tapers off or stops altogether

BY
LAUREL HAMERS, APRIL 5, 2018
nerve cells in hippocampi

NEURON NURSERY  Roughly the same number of new nerve cells (dots) exist in the hippocampus of people in their 20s (three hippocampi shown, top row) as in people in their 70s (bottom). Blue marks the dentate gyrus, where new nerve cells are born.
M. BOLDRINI/COLUMBIA UNIV.

Your brain might make new nerve cells well into old age.

Healthy people in their 70s have just as many young nerve cells, or neurons, in a memory-related part of the brain as do teenagers and young adults, researchers report in the April 5 Cell Stem Cell. The discovery suggests that the hippocampus keeps generating new neurons throughout a person’s life.

The finding contradicts a study published in March, which suggested that neurogenesis in the hippocampus stops in childhood (SN Online: 3/8/18). But the new research fits with a larger pile of evidence showing that adult human brains can, to some extent, make new neurons. While those studies indicate that the process tapers off over time, the new study proposes almost no decline at all.

Understanding how healthy brains change over time is important for researchers untangling the ways that conditions like depression, stress and memory loss affect older brains.

When it comes to studying neurogenesis in humans, “the devil is in the details,” says Jonas Frisén, a neuroscientist at the Karolinska Institute in Stockholm who was not involved in the new research. Small differences in methodology — such as the way brains are preserved or how neurons are counted — can have a big impact on the results, which could explain the conflicting findings. The new paper “is the most rigorous study yet,” he says.

Researchers studied hippocampi from the autopsied brains of 17 men and 11 women ranging in age from 14 to 79. In contrast to past studies that have often relied on donations from patients without a detailed medical history, the researchers knew that none of the donors had a history of psychiatric illness or chronic illness. And none of the brains tested positive for drugs or alcohol, says Maura Boldrini, a psychiatrist at Columbia University. Boldrini and her colleagues also had access to whole hippocampi, rather than just a few slices, allowing the team to make more accurate estimates of the number of neurons, she says.

To look for signs of neurogenesis, the researchers hunted for specific proteins produced by neurons at particular stages of development. Proteins such as GFAP and SOX2, for example, are made in abundance by stem cells that eventually turn into neurons, while newborn neurons make more of proteins such as Ki-67. In all of the brains, the researchers found evidence of newborn neurons in the dentate gyrus, the part of the hippocampus where neurons are born.

Although the number of neural stem cells was a bit lower in people in their 70s compared with people in their 20s, the older brains still had thousands of these cells. The number of young neurons in intermediate to advanced stages of development was the same across people of all ages.

Still, the healthy older brains did show some signs of decline. Researchers found less evidence for the formation of new blood vessels and fewer protein markers that signal neuroplasticity, or the brain’s ability to make new connections between neurons. But it’s too soon to say what these findings mean for brain function, Boldrini says. Studies on autopsied brains can look at structure but not activity.

Not all neuroscientists are convinced by the findings. “We don’t think that what they are identifying as young neurons actually are,” says Arturo Alvarez-Buylla of the University of California, San Francisco, who coauthored the recent paper that found no signs of neurogenesis in adult brains. In his study, some of the cells his team initially flagged as young neurons turned out to be mature cells upon further investigation.

But others say the new findings are sound. “They use very sophisticated methodology,” Frisén says, and control for factors that Alvarez-Buylla’s study didn’t, such as the type of preservative used on the brains.

via Human brains make new nerve cells — and lots of them — well into old age | Science News

, , , , , , ,

Leave a comment

%d bloggers like this: