Posts Tagged Hemiparetic

[Abstract+References] A Home-Based Telerehabilitation Program for Patients With Stroke 

Background. Although rehabilitation therapy is commonly provided after stroke, many patients do not derive maximal benefit because of access, cost, and compliance. A telerehabilitation-based program may overcome these barriers. We designed, then evaluated a home-based telerehabilitation system in patients with chronic hemiparetic stroke. Methods. Patients were 3 to 24 months poststroke with stable arm motor deficits. Each received 28 days of telerehabilitation using a system delivered to their home. Each day consisted of 1 structured hour focused on individualized exercises and games, stroke education, and an hour of free play. Results. Enrollees (n = 12) had baseline Fugl-Meyer (FM) scores of 39 ± 12 (mean ± SD). Compliance was excellent: participants engaged in therapy on 329/336 (97.9%) assigned days. Arm repetitions across the 28 days averaged 24,607 ± 9934 per participant. Arm motor status showed significant gains (FM change 4.8 ± 3.8 points, P = .0015), with half of the participants exceeding the minimal clinically important difference. Although scores on tests of computer literacy declined with age (r = −0.92; P < .0001), neither the motor gains nor the amount of system use varied with computer literacy. Daily stroke education via the telerehabilitation system was associated with a 39% increase in stroke prevention knowledge (P = .0007). Depression scores obtained in person correlated with scores obtained via the telerehabilitation system 16 days later (r = 0.88; P = .0001). In-person blood pressure values closely matched those obtained via this system (r = 0.99; P < .0001). Conclusions. This home-based system was effective in providing telerehabilitation, education, and secondary stroke prevention to participants. Use of a computer-based interface offers many opportunities to monitor and improve the health of patients after stroke.

1. Winstein CJStein JArena R, . Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016;47:e98e169Google Scholar CrossrefMedline
2. Lang CEMacdonald JRReisman DS, . Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009;90:16921698Google Scholar CrossrefMedline
3. Bernhardt JChan JNicola ICollier JM. Little therapy, little physical activity: rehabilitation within the first 14 days of organized stroke unit care. J Rehabil Med. 2007;39:4348Google Scholar CrossrefMedline
4. Kimberley TJSamargia SMoore LGShakya JKLang CE. Comparison of amounts and types of practice during rehabilitation for traumatic brain injury and stroke. J Rehabil Res Dev. 2010;47:851862Google Scholar CrossrefMedline
5. Laver KESchoene DCrotty MGeorge SLannin NASherrington C. Telerehabilitation services for stroke. Cochrane Database Syst Rev. 2013;(12):CD010255Google Scholar Medline
6. Agostini MMoja LBanzi R, . Telerehabilitation and recovery of motor function: a systematic review and meta-analysis. J Telemed Telecare. 2015;21:202213Google Scholar Link
7. Brennan DTindall LTheodoros D, . A blueprint for telerehabilitation guidelines. Int J Telerehabil. 2010;2:3134Google Scholar CrossrefMedline
8. Demiris GShigaki CLSchopp LH. An evaluation framework for a rural home-based telerehabilitation network. J Med Syst. 2005;29:595603Google Scholar CrossrefMedline
9. Bayley MTHurdowar ATeasell R, . Priorities for stroke rehabilitation and research: results of a 2003 Canadian Stroke Network consensus conference. Arch Phys Med Rehabil. 2007;88:526528Google Scholar CrossrefMedline
10. Wolf SLWinstein CJMiller JP, . Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296:20952104Google Scholar CrossrefMedline
11. Wu JQuinlan EBDodakian L, . Connectivity measures are robust biomarkers of cortical function and plasticity after stroke. Brain. 2015;138(pt 8):23592369Google Scholar CrossrefMedline
12. Jimison HGorman PWoods S, . Barriers and Drivers of Health Information Technology Use for the Elderly, Chronically Ill, and Underserved. Rockville, MDAgency for Healthcare Research and Quality2008. Evidence Report/Technology Assessment No. 175. AHRQ Publication No. 09-E004. Google Scholar
13. Woldag HHummelsheim H. Evidence-based physiotherapeutic concepts for improving arm and hand function in stroke patients: a review. J Neurol. 2002;249:518528Google Scholar CrossrefMedline
14. Takahashi CDDer-Yeghiaian LLe VMotiwala RRCramer SC. Robot-based hand motor therapy after stroke. Brain. 2008;131(pt 2):425437Google Scholar CrossrefMedline
15. Kleim JAJones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51:S225S239Google Scholar CrossrefMedline
16. Cramer SCSur MDobkin BH, . Harnessing neuroplasticity for clinical applications. Brain. 2011;134(pt 6):15911609Google Scholar CrossrefMedline
17. Cramer SCRepairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol. 2008;63:272287Google Scholar CrossrefMedline
18. Dobkin BHDorsch A. The promise of mHealth: daily activity monitoring and outcome assessments by wearable sensors. Neurorehabil Neural Repair. 2011;25:788798Google Scholar Link
19. See JDodakian LChou C, . A standardized approach to the Fugl-Meyer assessment and its implications for clinical trials. Neurorehabil Neural Repair. 2013;27:732741Google Scholar Link
20. Mackay JCharles STKemp BHeckhausen J. Goal striving and maladaptive coping in adults living with spinal cord injury: associations with affective well-being. J Aging Health. 2011;23:158176Google Scholar Link
21. Sherbourne CDStewart AL. The MOS social support survey. Soc Sci Med. 1991;32:705714Google Scholar CrossrefMedline
22. Lewis SCDennis MSO’Rourke SJSharpe M. Negative attitudes among short-term stroke survivors predict worse long-term survival. Stroke. 2001;32:16401645Google Scholar CrossrefMedline
23. Williams LSWeinberger MHarris LEClark DOBiller J. Development of a stroke-specific quality of life scale. Stroke. 1999;30:13621369Google Scholar CrossrefMedline
24. Bunz U. The Computer-Email-Web (CEW) Fluency Scale: development and validation. Int J Hum Comput Interact. 2004;17:479506Google Scholar Crossref
25. Duncan PWallace DLai SJohnson DEmbretson SLaster L. The Stroke Impact Scale version 2.0: evaluation of reliability, validity, and sensitivity to change. Stroke. 1999;30:21312140Google Scholar CrossrefMedline
26. Jones FPartridge CReid F. The Stroke Self-Efficacy Questionnaire: measuring individual confidence in functional performance after stroke. J Clin Nurs. 2008;17(7B):244252Google Scholar CrossrefMedline
27. Zondervan DKFriedman NChang E, . Home-based hand rehabilitation after chronic stroke: Randomized, controlled single-blind trial comparing the MusicGlove with a conventional exercise program. J Rehabil Res Dev. 2016;53:457472Google Scholar CrossrefMedline
28. Page SJFulk GDBoyne P. Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys Ther. 2012;92:791798Google Scholar CrossrefMedline
29. van der Lee JBeckerman HLankhorst GBouter LThe responsiveness of the Action Research Arm test and the Fugl-Meyer Assessment scale in chronic stroke patients. J Rehabil Med. 2001;33:110113Google Scholar CrossrefMedline
30. Baranowski TBuday RThompson DIBaranowski J. Playing for real: video games and stories for health-related behavior change. Am J Prev Med. 2008;34:7482Google Scholar CrossrefMedline
31. Brox EFernandez-Luque LTøllefsen T. Healthy gaming—video game design to promote health. Appl Clin Inform. 2011;2:128142Google Scholar CrossrefMedline
32. Lieberman D. Designing serious games for learning and health in informal and formal settings. In: Ritterfeld MVorderer P eds. Serious Games: Mechanisms and Effects. New York, NYRouteledge; 2009:117130Google Scholar
33. Chou Y. Actionable Gamification—Beyond Points, Badges, and Leaderboards. Fremont, CAOctalysis Media2015Google Scholar
34. Winstein CJMiller JPBlanton S, . Methods for a multisite randomized trial to investigate the effect of constraint-induced movement therapy in improving upper extremity function among adults recovering from a cerebrovascular stroke. Neurorehabil Neural Repair. 2003;17:137152Google Scholar Link
35. Sluijs EMKok GJvan der Zee J. Correlates of exercise compliance in physical therapy. Phys Ther. 1993;73:771782; discussion 783-786. Google Scholar CrossrefMedline
36. Miller KKPorter REDeBaun-Sprague EVan Puymbroeck MSchmid AA. Exercise after stroke: patient adherence and beliefs after discharge from rehabilitation. Top Stroke Rehabil. 2017;24:142148Google Scholar CrossrefMedline
37. McCabe JMonkiewicz MHolcomb JPundik SDaly JJ. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96:981990Google Scholar CrossrefMedline
38. Griffith V. A Stroke in the Family. New York, NYDelacorte Press1970Google Scholar
39. Herrmann NSeitz DFischer H, . Detection and treatment of post stroke depression: results from the registry of the Canadian stroke network. Int J Geriatr Psychiatry. 2011;26:11951200Google Scholar Medline
40. Kothari RSauerbeck LJauch E, . Patients’ awareness of stroke signs, symptoms, and risk factors. Stroke. 1997;28:18711875Google Scholar CrossrefMedline
41. Zerwic JHwang SYTucco L. Interpretation of symptoms and delay in seeking treatment by patients who have had a stroke: exploratory study. Heart Lung. 2007;36:2534Google Scholar CrossrefMedline
42. Qureshi AISuri MFGuterman LRHopkins LN. Ineffective secondary prevention in survivors of cardiovascular events in the US population: report from the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2001;161:16211628Google Scholar CrossrefMedline
43. Putrino D. Telerehabilitation and emerging virtual reality approaches to stroke rehabilitation. Curr Opin Neurol. 2014;27:631636Google Scholar CrossrefMedline
44. Chen JJin WZhang XXu WLiu X-NRen C-C. Telerehabilitation approaches for stroke patients: systematic review and meta-analysis of randomized controlled trials. J Stroke Cerebrovasc Dis. 2015;24:26602668Google Scholar CrossrefMedline
45. Nakayama HJorgensen HRaaschou HOlsen T. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1994;75:394398Google ScholarCrossrefMedline
46. Ottenbacher KJSmith PMIllig SBLinn RTOstir GVGranger CV. Trends in length of stay, living setting, functional outcome, and mortality following medical rehabilitation. JAMA. 2004;292:16871695Google Scholar CrossrefMedline
47. Tong XKuklina EVGillespie CGeorge MG. Medical complications among hospitalizations for ischemic stroke in the United States from 1998 to 2007. Stroke. 2010;41:980986Google ScholarCrossrefMedline

Source: A Home-Based Telerehabilitation Program for Patients With StrokeNeurorehabilitation and Neural Repair – Lucy Dodakian, Alison L. McKenzie, Vu Le, Jill See, Kristin Pearson-Fuhrhop, Erin Burke Quinlan, Robert J. Zhou, Renee Augsberger, Xuan A. Tran, Nizan Friedman, David J. Reinkensmeyer, Steven C. Cramer, 2017


, , , , ,

Leave a comment

[ARTICLE] A novel generation of wearable supernumerary robotic fingers to compensate the missing grasping abilities in hemiparetic upper limb – Full Text PDF


This contribution will focus on the design, analysis, fabrication, experimental characterization and evaluation of a family of prototypes of robotic extra fingers that can be used as grasp compensatory devices for hemiparetic upper limb.

The devices are the results of experimental sessions with chronic stroke patients and consultations with clinical experts. All the devices share a common principle of work which consists in opposing to the paretic hand/wrist so to restrain the motion of an object.

Robotic supernumerary fingers can be used by chronic stroke patients to compensate for grasping in several Activities of Daily Living (ADL) with a particular focus on bimanual tasks.

The devices are designed to be extremely portable and wearable. They can be wrapped as bracelets when not being used, to further reduce the encumbrance. The motion of the robotic devices can be controlled using an Electromyography (EMG) based interface embedded in a cap. The interface allows the user to control the device motion by contracting the frontalis muscle. The performance characteristics of the devices have been measured through experimental set up and the shape adaptability has been confirmed by grasping various objects with different shapes. We tested the devices through qualitative experiments based on ADL involving a group of chronic stroke patients in collaboration with by the Rehabilitation Center of the Azienda Ospedaliera Universitaria Senese.

The prototypes successfully enabled the patients to complete various bi-manual tasks. Results show that the proposed robotic devices improve the autonomy of patients in ADL and allow them to complete tasks which were previously impossible to perform.

Full Text PDF

, , , , , , , , , , ,

Leave a comment

[Abstract] Design and Test of a Closed-Loop FES System for Supporting Function of the Hemiparetic Hand Based on Automatic Detection Using the Microsoft Kinect Sensor

This paper describes the design of a FES system automatically controlled in a closed loop using a Microsoft Kinect sensor, for assisting both cylindrical grasping and hand opening. The feasibility of the system was evaluated in real-time in stroke patients with hand function deficits. A hand function exercise was designed in which the subjects performed an arm and hand exercise in sitting position. The subject had to grasp one of two differently sized cylindrical objects and move it forward or backwards in the sagittal plane. This exercise was performed with each cylinder with and without FES support. Results showed that the stroke patients were able to perform up to 29% more successful grasps when they were assisted by FES. Moreover, the hand grasp-and-hold and hold-and-release durations were shorter for the smaller of the two cylinders. FES was appropriately timed in more than 95% of all trials indicating successful closed loop FES control. Future studies should incorporate options for assisting forward reaching in order to target a larger group of stroke patients.

, , , , , , , , , ,

Leave a comment

[Abstract] Effect of Close Kinematic Chain Exercises on Upper Limb Spasticity in Hemiparetic Adult


Background: As upper limb spasticity is the major hindrance in quality of life in hemiparesis, this project emphasizes on the effect of close kinematic chain exercises on upper limb spasticity. So, the present study was conducted to find out the effect combined effect of conventional exercises with close kinematic chain exercises on spasticity.

Method: Comparative study was conducted at Krishna College of Physiotherapy, Karad.20 subjects with age group between 40–60 years were taken. Participants of Group A (10) were treated with close kinematic chain exercises along with conventional treatment & GroupB(10)only with conventional treatment. Exclusion criteria of the study was: 1. Associated psychological disorder. 2. Perceptual disorders. 3. Any visual & auditory impairment. 4. Any orthopaedic disorder.

Results: Statistical analysis was done using paired, unpaired ”t’’test, Mann Whitney test and Friedman statistics. The results showed statistically significant reduction in spasticity in group A as compared to group B (p<0.001).

Conclusion: The study shows that close kinematic chain exercises helps in normalizing tone, reducing spasticity in upper extremity hemiparesis.

Source: Indian Journals

, , , , , , ,

Leave a comment

[ARTICLE] Late physiotherapy rehabilitation changes gait patterns in post-stroke patients – Full Text PDF

Study aim: To determine whether a physiotherapy protocol improves the electromyographic activation (EA) during the hemiparetic gait in patients with delayed access to rehabilitation. Material and methods: 40 post-stroke patients underwent clinical evaluation and gait assessment at the time of admission and at the end of treatment.

Results: The anterior leg muscles tibialis anterior and rectus femoris had earlier onset (p = 0.0001).

Conclusion: Electromyographic findings showed altered patterns during the hemiparetic gait cycle, even in patients with delayed access to treatment.

 Full Text PDF

, , , , , ,

Leave a comment

[ARTICLE] Dose-Dependent Effects of Abobotulinumtoxina (Dysport) on Spasticity and Active Movements in Adults With Upper Limb Spasticity: Secondary Analysis of a Phase 3 Study – Full Text



AbobotulinumtoxinA has beneficial effects on spasticity and active movements in hemiparetic adults with upper limb spasticity (ULS). However, evidence-based information on optimal dosing for clinical use is limited.


To describe joint-specific dose effects of abobotulinumtoxinA in adults with ULS.


Secondary analysis of a phase 3 study (NCT01313299).


Multicenter, international, double-blind, placebo-controlled clinical trial.


A total of 243 adults with ULS >6 months after stroke or traumatic brain injury, aged 52.8 (13.5) years and 64.3% male, randomized 1:1:1 to receive a single-injection cycle of placebo or abobotulinumtoxinA 500 U or 1000 U (total dose).


The overall effect of injected doses were assessed in the primary analysis, which showed improvement of angles of catch in finger, wrist, and elbow flexors and of active range of motion against these muscle groups. This secondary analysis was performed at each of the possible doses received by finger, wrist, and elbow flexors to establish possible dose effects.

Main Outcome Measures

Angle of arrest (XV1) and angle of catch (XV3) were assessed with the Tardieu scale, and active range of motion (XA).


At each muscle group level (finger, wrist, and elbow flexors) improvements in all outcome measures assessed (XV1, XV3, XA) were observed. In each muscle group, increases in abobotulinumtoxinA dose were associated with greater improvements in XV3 and XA, suggesting a dose-dependent effect.


Previous clinical trials have established the clinical efficacy of abobotulinumtoxinA by total dose only. The wide range of abobotulinumtoxinA doses per muscle groups used in this study allowed observation of dose-dependent improvements in spasticity and active movement. This information provides a basis for future abobotulinumtoxinA dosing recommendations for health care professionals based on treatment objectives and quantitative assessment of spasticity and active range of motion at individual joints.


Upper limb spasticity (ULS) is a common symptom after stroke and traumatic brain injury (TBI) and is associated with impaired self-care and additional burden of care [1-5]. Among several treatment strategies, guidelines recommend intramuscular botulinum toxin injections as a first-line treatment for adults with ULS [6-11].

Botulinum toxin type A (BoNT-A) injections may target upper extremity muscle groups from the shoulder, to decrease adductor and internal rotation tone, to the elbow, wrist, fingers, and thumb, to decrease flexor tone [12,13]. Specific muscle selection is based on the pattern of muscle overactivity, functional deficits, and patient goals [6]. These goals include increased passive and active range of motion, improved function (feeding and dressing), easier care (palmar and axillary hygiene), and reduction of pain [13].

Evidence-based information on optimal dosing for clinical use is relatively sparse. Dosing is not interchangeable between different BoNT-A products; therefore, improving our understanding of product-specific dosing will minimize confusion among injectors and improve the quality of patient care [13].

Among BoNT-A formulations, abobotulinumtoxinA (Dysport; Galderma Laboratories, LP, Fort Worth, TX) has been shown to decrease muscle tone (as measured by the Modified Ashworth Scale [MAS]) [13-17] and pain [18] and to facilitate goal attainment [19] in adults with ULS. A recent systematic review [13] of 12 randomized controlled trials (RCTs) in ULS concluded that abobotulinumtoxinA (total dose range, 500-1500 U) was generally well-tolerated, with “strong evidence” to support reduced muscle tone.

This paper presents the results of a secondary analysis from a recently published large international clinical trial, demonstrating improved active range of motion after abobotulinumtoxinA treatment in adults with hemiparesis and ULS >6 months after stroke or TBI [20]. This phase 3, randomized, double-blind, placebo-controlled study demonstrated that a total dose of either 500 U or 1000 U abobotulinumtoxinA injected in the upper extremity also resulted in decreased muscle tone and improvements in global physician-assessed clinical benefit compared with placebo.

Apart from a systematic measurement of active range of motion (XA) against finger, wrist, and elbow flexors, another unique aspect of the trial was the assessment of spasticity at the finger, wrist, and elbow flexor groups with the Tardieu scale (TS) [21,22]. The TS is a standardized evaluation used to assess the angle of arrest at slow speed (ie, passive range of motion, XV1) and the angle of catch at fast speed (XV3). The trial demonstrated improvements for finger, wrist, and elbow joints at week 4 in XV3 at both abobotulinumtoxinA doses and in XA at 1000 U; for the 500-U dose, improvements in XA were seen in the finger flexors. Both doses were associated with a favorable safety profile [20]. This analysis aims to provide a detailed description of improvements in spasticity and the active range of motion for individual muscle groups by dose and to provide information on muscle-specific dosing, which can be used in future recommendations for injectors.

Continue —> Dose-Dependent Effects of Abobotulinumtoxina (Dysport) on Spasticity and Active Movements in Adults With Upper Limb Spasticity: Secondary Analysis of a Phase 3 Study – ScienceDirect


Figure 1. Change from baseline of Tardieu scale parameters and of active range of motion week 4 postinjection in (A) extrinsic finger flexors, (B) wrist flexors, and (C) elbow flexors. Dose groups were as follows (lowest to highest dose): 500 U/non-PTMG, 500 U/PTMG, 1000 U/non-PTMG, and 1000 U/PTMG. Standard deviations and mean change from baseline values are detailed in Table 3. PTMG = primary targeted muscle group; XV1 = passive range of motion; XV3 = angle of catch at fast speed; XA = active range of motion.

, , , , , , ,

Leave a comment

[ARTICLE] Upper Extremity Motor Impairments and Microstructural Changes in Bulbospinal Pathways in Chronic Hemiparetic Stroke – Full Text

Following hemiparetic stroke, precise, individuated control of single joints is often replaced by highly stereotyped patterns of multi-joint movement, or abnormal limb synergies, which can negatively impact functional use of the paretic arm. One hypothesis for the expression of these synergies is an increased dependence on bulbospinal pathways such as the rubrospinal (RubST) tract and especially the reticulospinal (RetST) tracts, which co-activate multiple muscles of the shoulder, elbow, wrist, and fingers. Despite indirect evidence supporting this hypothesis in humans poststroke, it still remains unclear whether it is correct. Therefore, we used high-resolution diffusion tensor imaging (DTI) to quantify white matter microstructure in relation to severity of arm synergy and hand-related motor impairments. DTI was performed on 19 moderately to severely impaired chronic stroke individuals and 15 healthy, age-matched controls. In stroke individuals, compared to controls, there was significantly decreased fractional anisotropy (FA) and significantly increased axial and radial diffusivity in bilateral corona radiata and body of the corpus callosum. Furthermore, poststroke, the contralesional (CL) RetST FA correlated significantly with both upper extremity (UE) synergy severity (r = −0.606, p = 0.003) and hand impairment (r = −0.609, p = 0.003). FA in the ipsilesional RubST significantly correlated with hand impairment severity (r = −0.590, p = 0.004). For the first time, we separately evaluate RetST and RubST microstructure in chronic stroke individuals with UE motor impairment. We demonstrate that individuals with the greatest UE synergy severity and hand impairments poststroke have the highest FA in the CL RetST a pattern consistent with increased myelination and suggestive of neuroplastic reorganization. Since the RetST pathway microstructure, in particular, is sensitive to abnormal joint coupling and hand-related motor impairment in chronic stroke, it could help test the effects of specific, and novel, anti-synergy neurorehabilitation interventions for recovery from hemiparesis.


Approximately 85% of stroke survivors experience significant motor impairment in the contralesional (CL) arm (1), which can include a loss of independent joint control (2, 3), weakness (4), and spasticity (5). After stroke, precise, individuated control of single joints is often replaced by highly stereotyped patterns of multi-joint movement caused by abnormal muscle co-activation patterns (6). The most prevalent of these patterns is the flexion synergy, which is characterized by an abnormal coupling of shoulder abduction and elbow, wrist, and finger flexion (7, 8). This impairment has a negative impact on reaching ability (9) and hand function (3, 10), both critical components of functional use of the arm during activities of daily living. Despite the debilitating nature of this motor impairment, the underlying neuropathophysiology is not fully understood.

One hypothesis for why the flexion synergy emerges is that following a reduction of corticofugal input from the lesioned hemisphere, there is an increased dependence on CL motor cortex and bulbospinal pathways, such as reticulospinal (RetST) and rubrospinal (RubST) tracts. Therefore, in the present study, we quantify microstructural properties in white matter of both the brain and the brainstem, focusing primarily on corticoreticulospinal and corticorubrospinal systems. We evaluate whether these microstructural properties increase in integrity in relation to arm synergy and hand impairment severity, which could be indicative of increased use.

Although the RetST was previously believed to be predominantly involved in gross movements, such as locomotion (11, 12) and posture (13, 14), recent work in primates suggests the RetST also influences the motor neurons that control forearm and intrinsic hand muscles (15). In the non-human primate, stimulation of the RetST produces ipsilateral wrist flexor, elbow flexor, and shoulder abductor activation (16), mirroring the flexion synergy pattern observed in humans poststroke. Furthermore, stimulating the RetST after a corticospinal tract (CST) lesion elicits increased excitatory post-synaptic potentials in motoneurons innervating the forearm flexor and intrinsic hand muscles (17). This evidence makes the contralesional corticoreticulospinal system a compelling candidate for underlying abnormal joint coupling in humans with hemiparetic stroke.

In the non-human primate, the RubST also contributes to reaching and grasping movements (18) and has been shown to be important in recovery of hand function after CST damage (19, 20). One study showed that increased white matter integrity in bilateral red nucleus (RN) correlated with worse clinical outcomes in humans with chronic stroke (21); however, the RubST has been reported as relatively insignificant in humans (22, 23). The evidence for whether the RetST and the RubST contribute to abnormal joint coupling and hand impairment in humans poststroke still remains indirect and inconclusive.

We used high-resolution diffusion tensor imaging (DTI) (24) tract-based spatial statistics (TBSS) (25) to perform a voxel-wise comparison of white matter microstructure between stroke and control individuals. We analyzed fractional anisotropy (FA), a measurement typically associated with tract integrity, as well as axial diffusivity (AD) and radial diffusivity (RD), which represent diffusion parallel and perpendicular to the principle direction of diffusion, respectively. Because previous studies have reported altered diffusion properties in lesioned tissue (2628), we excluded potential lesion-compromised voxels from our TBSS analysis to assess changes in normal-appearing white matter. We used the TBSS-derived white matter skeleton to investigate whether microstructural tissue properties within specific regions of the brainstem (CST, RetST, RubST) and subcortical white matter within CL motor areas [primary motor area (M1), premotor area (PM), supplementary motor area (SMA), body of the corpus callosum] are sensitive to upper extremity (UE) motor impairment in chronic stroke individuals.

We evaluated UE motor impairment using the Fugl-Meyer Assessment (FMA), a stroke-specific, performance-based motor impairment index, which measures impairments, such as loss of independent joint function, stretch reflex hyper-excitability, and altered sensation (29). It is one of the most widely used clinical scales of motor impairment poststroke (30). While previous studies have looked at diffusion MRI metrics in relation to the entire FMA score (31, 32), we used only the UE measurements of arm synergies and hand function to determine whether microstructural properties in specific white matter regions of interest (ROIs) were correlated.

In the present study, we hypothesized that microstructural integrity in specific regions of the extrapyramidal brainstem would be increased in chronic stroke in a manner sensitive to synergy and hand-related impairment severity. We demonstrate a significant decrease in FA in bilateral corona radiata and body of the corpus callosum in chronic stroke when compared to controls; however, within stroke subjects, specific brainstem regions show the highest FA in individuals with the most synergy-driven arm and hand impairment. More precisely, we describe the relation between CL RetST integrity and both expression of synergy and hand impairment and between ipsilesional (IL) RubST integrity and hand impairment in chronic hemiparetic stroke individuals.[…]

Continue —> Frontiers | Upper Extremity Motor Impairments and Microstructural Changes in Bulbospinal Pathways in Chronic Hemiparetic Stroke | Neurology

Figure 1. Region of interest masks in Montreal Neurological Institute’s space. (A) Primary motor area (red), supplementary motor area (green), premotor area (blue), (B) body of the corpus callosum (light blue), (C) horizontal midbrain cross-section showing cerebral peduncle (CP) portion of the corticospinal tract (yellow) and red nucleus (RN) (red), (D) horizontal pontine cross-section showing reticular formation (RF) (green), and (E) sagittal brainstem showing RF including reticulospinal (green) and RN including rubrospinal tracts (red).

, , , , , , , , ,

Leave a comment

[Abstract] The Impact of Shoulder Abduction Loading on Volitional Hand Opening and Grasping in Chronic Hemiparetic Stroke

Background. Up to 60% of individuals with moderate to severe chronic hemiparetic stroke experience excessive involuntary wrist/finger flexion that constrains functional hand movements including hand opening. It’s not known how stroke-induced brain injury impacts volitional hand opening and grasping forces as a result of the expression of abnormal coupling between shoulder abduction and wrist/finger flexion or the flexion synergy.

Objective. The goal of this study is to understand how shoulder abduction loading affects volitional hand opening and grasping forces in individuals with moderate to severe chronic hemiparetic stroke.

Methods. Thirty-six individuals (stroke, 26; control, 10) were recruited for this study. Each participant was instructed to perform maximal hand opening and grasping forces while the arm was either fully supported or lifted with a weight equal to 25% or 50% of the participant’s maximal shoulder abduction torque. Hand pentagon area, defined as the area formed by the tips of thumb and fingers, was calculated during hand opening. Forces were recorded during grasping.

Results. In individuals with moderate stroke, increasing shoulder abduction loading reduced the ability to maximally open the hand. In individuals with severe stroke, who were not able to open the hand, grasping forces were generated and increased with shoulder abduction loading. Stroke individuals also showed a reduced ability to control volitional grasping forces due to the enhanced expression of flexion synergy.

Conclusions. Shoulder abduction loading reduced the ability to volitionally open the hand and control grasping forces after stroke. Neural mechanisms and clinical implications of these findings are discussed.

Source: The Impact of Shoulder Abduction Loading on Volitional Hand Opening and Grasping in Chronic Hemiparetic Stroke – Mar 08, 2017

, , , , , , , , , ,

Leave a comment

[ARTICLE] Validity of gait asymmetry estimation by using an accelerometer in individuals with hemiparetic stroke – Full Text PDF


[Purpose] The purpose of this study was to evaluate the validity of estimating step time and length asymmetries, using an accelerometer against force plate measurements in individuals with hemiparetic stroke.

[Subjects and Methods] Twenty-four individuals who previously had experienced a stroke were asked to walk without using a cane or manual assistance on a 16-m walkway. Step time and length were measured using force plates, which is the gold standard for assessing gait asymmetry. In addition to ground reaction forces, trunk acceleration was simultaneously measured using an accelerometer. To estimate step time asymmetry using accelerometer data, the time intervals between forward acceleration peaks for each leg were calculated. To estimate step length asymmetry using accelerometer data, the integration of the positive vertical accelerations following initial contact of each leg was calculated. Asymmetry was considered the affected side value divided by the unaffected side value.

[Results] Significant correlations were found between the accelerometer and the force plates for step time and length asymmetries (rho=0.83 and rho=0.64, respectively).

[Conclusion] An accelerometer might be useful for assessing step time and length asymmetries in individuals with hemiparetic stroke, although improvements are needed for estimating the accuracy of step length asymmetry.

Download PDF

, , , , , ,

Leave a comment

[WEB SITE] ReGrasp by Rehabtronics

The ReGrasp FES hand stimulator system is the most state-of-the-art hand stimulator available.

more —>: ReGrasp by Rehabtronics

, , , , , , , ,

1 Comment

%d bloggers like this: