Posts Tagged technology

[WEB SITE] How It All Works – Brainworks

eRehabilitation™: The future of rehab!


One thing we know for certain is that the future of rehab is inseparable from the Internet. To be client–centred, we have to go where our clients are … and our clients are everywhere, throughout the community and all over the Internet. The growth and complexity of knowledge, research and evidence for best practices in health mirrors the growth of the Internet and its tools to disseminate information, to provide forums for eclectic interactions and informative discussions. Our clients are aptly at this intersection – they are at the centre and we need to meet them there. This intersection is a magical place; it‘s on fire with prolific activity.

We are the benefactors of a modern revolution: the intersection of advances in technology, creative interfaces and evidence-based therapies are taking healthcare to levels only dreamed of. “The motive behind the use of this technology is to maintain the essential qualities of the health-care interaction, while improving access by overcoming barriers such as economics, culture, climate, and geography,” (Rees, 2004).

Telehealth has been touted as the most significant contribution to health-care delivery systems of the future (Bashshur, 1997). eRehabilitation™, a component of telehealth, is a cutting-edge, yet flourishing means of delivering rehabilitation, psychological & mental health services.

At Brainworks, we have developed eRehabilitation™ as a comprehensive treatment platform that uses interactive audio, video, or data communications to provide rehabilitation services at a distance.

 

Does eRehabilitation™ work?

Absolutely – eRehabilitation™ is Evidence-Based: there is a growing literature base that demonstrates the efficacy of these interactive, online modalities.

There are several areas for which online guided therapy based on CBT could be regarded as empirically-supported (Andersson, 2009), including panic disorder, social anxiety disorder, posttraumatic stress disorder (PTSD), and mild to moderate depression. progress. Carlbring et al. (2005) found equivalent outcomes of individual face-to-face CBT and Internet CBT for panic disorder. In a trial on depression (Spek, Nyklıcek, et al., 2007) found no differences between live group treatment and Internet CBT.

A recent study by Matsura et al. (2002) investigated the interrater reliability of videoconferencing compared with face-to-face assessment interviews. Perfect agreement was obtained between both interviewing conditions. Glueckauf et al. (2002) assessed the effects of videoconferencing-based counselling compared with counselling using a speakerphone, and conventional, face-to-face counselling. The counselling was provided to 22 rural teenagers with epilepsy. All treatment conditions were associated with similar outcomes, including significant reductions in problem severity and frequency.

Day and Schneider (2002) conducted a comprehensive and methodologically sound study evaluating the delivery of brief CBT via videoconferencing. A sample of 80 clients with concerns ranging from weight concerns to personality disorders were randomly assigned to one of three treatment groups (face-to-face, two-way audio, or two-way video) or a waiting list control group. No significant differences were found between treatment groups across outcome measures and all three groups were significantly superior to the no-treatment group.

A number of studies have demonstrated the benefits of conducting assessments via the Internet. These include: ease of administration, collecting data, communicating findings to clients, cost efficiency, reaching disabled persons and those that live in the rural areas (EmmelKamp, 2005; Fischer & Freid, 2001; Naus, Phillip, & Samsi 2009;).


References:

References available upon request. Please contact us for more information and literature to support your referral!

Source: How It All Works – Brainworks

, ,

Leave a comment

[Executive Summary] Rehabilitation Research at the National Institutes of Health: Moving the Field Forward – Full Text

Article Outline

  1. Rehabilitation across the lifespan
  2. Technology in rehabilitation: From cutaneous to implanted
  3. Mechanisms and markers of activity and function
    1. Exercise, plasticity, and mechanism: “How is rehabilitation happening?”
  4. Access to the lived environment
  5. Individuals, families, and community
  6. Understanding the context: Environmental impacts in rehabilitation
  7. Effective pathways to evidence for rehabilitation
  8. Central and peripheral mechanisms of rehabilitation
  9. Bending the arc of technology toward rehabilitation and health
  10. Transitions across the lifespan
  11. Novel outcomes in rehabilitation and integration into clinical care
  12. Using data to drive discovery
  13. Preventing secondary disability
  14. Development of an NIH rehabilitation research plan
  15. Acknowledgments

Approximately 53 million Americans live with a disability. For decades, the National Institutes of Health (NIH) has been conducting and supporting research to discover new ways to minimize disability and enhance the quality of life of people with disabilities. After the passage of the American With Disabilities Act, the NIH established the National Center for Medical Rehabilitation Research with the goal of developing and implementing a rehabilitation research agenda. Currently, a total of 17 institutes and centers at NIH invest more than $500 million per year in rehabilitation research. Recently, the director of NIH, Dr Francis Collins, appointed a Blue Ribbon Panel to evaluate the status of rehabilitation research across institutes and centers. As a follow-up to the work of that panel, NIH recently organized a conference under the title “Rehabilitation Research at NIH: Moving the Field Forward.” This report is a summary of the discussions and proposals that will help guide rehabilitation research at NIH in the near future.

The conference took place at the NIH Campus on May 25 and 26, 2016. It was cosponsored by The Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Institute of Biomedical Imaging and Bioengineering, the National Institute of Neurological Diseases and Stroke, the National Institute of Nursing Research, the National Institute on Deafness and other Communication Disorders, the National Center for Complementary and Integrative Health, and the Office of Disease Prevention. The main objectives of the Conference were to (1) discuss the current NIH portfolio in rehabilitation research, (2) highlight advances in rehabilitation research supported by NIH, and (3) provide an opportunity for scientists and the general public to comment on gaps in knowledge, opportunities for training, and infrastructure needs. The program included a total of 13 expert panels, four remarks by NIH leaders, a consumer keynote, a town hall, a poster session, and the use of social media to disseminate information in real time. The following is a summary of the discussion and the subheadings correspond to the title of the expert panels.

Continue —> Rehabilitation Research at the National Institutes of Health: Moving the Field Forward (Executive Summary) – Archives of Physical Medicine and Rehabilitation

,

Leave a comment

[Abstract] Use of Computer and Mobile Technologies in the Treatment of Depression

HIGHLIGHTS

  • Studies in technology-assisted self help for anxiety and depression found that therapist assisted treatment was optimal for clinical depression and technology-based treatment alone may be efficacious for subthreshold mood disorders.
  • There has been no robust evidence of health benefits from peer-to-peer electronic support groups, however, for patients who have social isolation, there may be some benefit.
  • Despite the preponderance of mental health apps and widespread acceptance, there is a significant lack of empirical data documenting likely uptake, best strategies for engagement, efficacy, or effectiveness of mHealth initiatives.
  • Biosensing technology offers the ability to reach an immense volume of people through automated monitoring which could lead to more widespread achievement of early diagnosis and intervention and ameliorate rising medical costs of acute or ineffective treatment.
  • mobile technologies can be used to record and monitor the type, intensity, frequency, and duration of exercise as a means to motivate users and enhance the potential effectiveness of exercise for treating depression.

ABSTRACT

Major depression (MDD) is a common and disabling disorder. Research has shown that most people with MDD receive either no treatment or inadequate treatment. Computer and mobile technologies may offer solutions for the delivery of therapies to untreated or inadequately treated individuals with MDD.

The authors review currently available technologies and research aimed at relieving symptoms of MDD. These technologies include computer-assisted cognitive-behavior therapy (CCBT), web-based self-help, Internet self-help support groups, mobile psychotherapeutic interventions (i.e., mobile applications or apps), technology enhanced exercise, and biosensing technology.

Source: Use of Computer and Mobile Technologies in the Treatment of Depression – Archives of Psychiatric Nursing

, , , ,

Leave a comment

[Executive Summary] Rehabilitation Research at the National Institutes of Health: Moving the Field Forward

Article Outline

Approximately 53 million Americans live with a disability. For decades, the National Institutes of Health (NIH) has been conducting and supporting research to discover new ways to minimize disability and enhance the quality of life of people with disabilities. After the passage of the American With Disabilities Act, the NIH established the National Center for Medical Rehabilitation Research with the goal of developing and implementing a rehabilitation research agenda. Currently, a total of 17 institutes and centers at NIH invest more than $500 million per year in rehabilitation research. Recently, the director of NIH, Dr Francis Collins, appointed a Blue Ribbon Panel to evaluate the status of rehabilitation research across institutes and centers. As a follow-up to the work of that panel, NIH recently organized a conference under the title “Rehabilitation Research at NIH: Moving the Field Forward.” This report is a summary of the discussions and proposals that will help guide rehabilitation research at NIH in the near future.

The conference took place at the NIH Campus on May 25 and 26, 2016. It was cosponsored by The Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Institute of Biomedical Imaging and Bioengineering, the National Institute of Neurological Diseases and Stroke, the National Institute of Nursing Research, the National Institute on Deafness and other Communication Disorders, the National Center for Complementary and Integrative Health, and the Office of Disease Prevention. The main objectives of the Conference were to (1) discuss the current NIH portfolio in rehabilitation research, (2) highlight advances in rehabilitation research supported by NIH, and (3) provide an opportunity for scientists and the general public to comment on gaps in knowledge, opportunities for training, and infrastructure needs. The program included a total of 13 expert panels, four remarks by NIH leaders, a consumer keynote, a town hall, a poster session, and the use of social media to disseminate information in real time. The following is a summary of the discussion and the subheadings correspond to the title of the expert panels.

REHABILITATION ACROSS THE LIFESPAN

(Moderator: Alan Jette, PhD, Boston University; Panelists: Andrea Cheville, MD, Mayo Clinic; Jonathan Bean, MD, Boston University; Shari Wade, PhD, Cincinnati Children’s Hospital Medical Center)

The theme of this session was moving rehabilitation interventions from a traditional “one-and-done” isolated model of care to one where rehabilitation interventions are integrated into the mainstream of health care. The speakers addressed integrated care approaches in cancer care, primary care, and pediatric rehabilitation.

Barriers to integrating function-directed care into the comprehensive management of progressive diseases, particularly those with a heavy treatment burden, were identified. Cancer was used an exemplar of the simultaneously dynamic and insidious nature of disablement in chronic illness. Collaborative care approaches, including telecare, validated for pain and depression management, was considered a promising means to proactively and patient-centrically address cancer-related disablement. Current research in cancer rehabilitation suggests that challenges revolve around issues such as patient selection and timing, when and how to intervene, limitations of linear impairment-to-disability models (with multiple mild impairments the norm), and competition with disease-modifying therapies. Although functional limitations are prevalent (seen in 65% of all cancer patients), rehabilitation intervention remains underused. In contrast to ischemic and traumatic injuries, rehabilitation interventions in patients with cancer are less prescriptive, more negotiable, and subject to patient preferences. Current care delivery overwhelmingly emphasizes primary disease management.

Another presentation focused on limitations with mobility tasks, such as walking, rising from a chair, or climbing stairs, as a signal condition identifying older adult primary care patients at an increased risk for disability, morbidity, and death. It was discussed how rehabilitative care can play a critical role with older adult primary care patients by developing integrated care paradigms between primary and rehabilitative care providers focused on prevention of mobility decline among older adults. Prevention of adverse health outcomes represents a new conceptual role for rehabilitative care. Research priorities include determining the optimal content and design of preventative rehabilitative care; the potential benefits for patients, families, and health care organizations; and the cost/benefit of such approaches to care.

Traumatic brain injury (TBI) was used as a case example to discuss the need for further research on ways to integrate pediatric rehabilitation into the broader framework of child development. TBI is currently viewed as a discrete event with time-limited consequences while evidence from the TBI Model Systems suggests lifelong physical and cognitive consequences. Long-term pediatric studies are lacking, but existing evidence suggests long-term effects on educational attainment and vocational and social success. However, after the post–acute recovery phase, children with TBI receive little ongoing rehabilitation. TBI-related problems that emerge with shifting developmental demands may go unrecognized or be inaccurately characterized. Families and schools constitute powerful contexts for ongoing rehabilitation and later habilitation. How families function and interact with the child exerts a powerful influence on the recovery trajectory. Interventions need to be developmentally tailored and address the current developmental and neural context. Challenges remain in framing rehabilitation/habilitation as an ongoing process with tune-ups at various developmental stages rather than a one and done model. A better understanding of adult outcome metrics (e.g., education and employment) and long-term burden (disability and life quality) is needed. To reduce heterogeneity and improve prediction, research is needed to better categorize the initial injury/insult along with better understanding of effects on neurodevelopment and how this relates to long-term functional outcomes. Multicenter consortiums are urgently needed to support larger-scale outcome studies and provide an infrastructure to link school and medical data as well as study interventions and management practices more efficiently.

Continue —> Rehabilitation Research at the National Institutes of Health… : American Journal of Physical Medicine & Rehabilitation

, , , , , , ,

Leave a comment

[Abstract] Home exercise programmes supported by video and automated reminders compared with standard paper-based home exercise programmes in patients with stroke: A randomized controlled trial

Abstract

Objective: To determine whether patients with stroke receiving rehabilitation for upper limb deficits using smart technology (video and reminder functions) demonstrate greater adherence to prescribed home exercise programmes and better functional outcomes when compared with traditional paper-based exercise prescription.

Design: Randomized controlled trial comparing upper limb home exercise programmes supported by video and automated reminders on smart technology, with standard paper-based home exercise programmes.

Setting: A community rehabilitation programme within a large metropolitan health service.

Subjects: Patients with stroke with upper limb deficits, referred for outpatient rehabilitation.

Interventions: Participants were randomly assigned to the control (paper-based home exercise programme) or intervention group (home exercise programme filmed on an electronic tablet, with an automated reminder). Both groups completed their prescribed home exercise programme for four weeks.

Main measures: The primary outcome was adherence using a self-reported log book. Secondary outcomes were change in upper limb function and patient satisfaction.

Results: A total of 62 participants were allocated to the intervention (n = 30) and control groups (n = 32). There were no differences between the groups for measures of adherence (mean difference 2%, 95% CI −12 to 17) or change in the Wolf Motor Function Test log transformed time (mean difference 0.02 seconds, 95% CI −0.1 to 0.1). There were no between-group differences in how participants found instructions (p = 0.452), whether they remembered to do their exercises (p = 0.485), or whether they enjoyed doing their exercises (p = 0.864).

Conclusions: The use of smart technology was not superior to standard paper-based home exercise programmes for patients recovering from stroke.

Source: Home exercise programmes supported by video and automated reminders compared with standard paper-based home exercise programmes in patients with stroke: A randomized controlled trial

, , , , , ,

Leave a comment

[WEB SITE] How Technology Is Changing Stroke Rehabilitation – Saebo

 

While everyday objects like clothespins and cups still play crucial roles in most patients’ journeys toward recovery, new technology is constantly changing the rehabilitation game. From video chats with doctors to robotic gloves and interactive video games, stroke recovery and rehabilitation tools have come a long way in the past decade. This new stroke recovery technology is helping link neuroplasticity and learning. A key part in recovery from a stroke.

This new stroke technology gives patients more repetitions, practice time and intensity compared to previous movement trainings. Not to mention this new technology is also more interactive, attention grabbing and really helps motivate the patient. These new technologies are really helping harness the brain’s ability to repair itself in ways that haven’t been seen before.

How Technology Kick-Starts Stroke Recovery

Just like the simple exercises that caregivers have used for years, the latest stroke recovery tools revolve around the concept of neuroplasticity. Though researchers have known about the brain’s ability to “retrain” itself for years, they now understand how crucial it is to begin this process as early as possible. That’s because the destruction of brain tissue during stroke is actually a temporary trigger for the rest of the brain.

“The tissue death that results from stroke appears to trigger a self-repair program in the brain,” says Karen Russell from The New Yorker.  

After stroke, healthy brain tissue reverts to a more malleable stage for one to three months. Neuroplasticity allows healthy brain tissue to create new connections to the affected muscles and nerves for years, but during these early months of recovery, the brain is especially open to forming these connections. Unfortunately, this is also when patients’ bodies face their most extreme limitations, preventing them from taking full advantage of their healthy brain tissue’s malleability.

neuroplasticity

That’s where modern technology comes in. Today’s stroke survivors have more recovery options than ever before, and many of them are designed to capitalize on this early recovery stage. Others allow doctors and caregivers to closely monitor patients’ progress and prevent common complications as they regain movement and retrain their brains in the months and years following stroke.

Video Games for Stroke Survivors

Perhaps one of the most innovative and exciting examples of stroke rehabilitation technology is in the video game space. Traditional low-tech stroke therapy options can be difficult and repetitive, making it less likely that patients follow through at home. Doctors are already noticing that video games are more engaging, exciting, and easy to incorporate into an at-home healing regimen.

One example of a new emerging video game gear toward stroke recovery is Bandit’s Shark Showdown. This is an interactive video game that allows players to control an animated dolphin’s movements. The version for stroke survivors incorporates a robotic sling, which patients wear to control the shark. This simulation synchronizes patients’ muscle movements with the dolphin’s leaps and dives, stimulating their brain and body simultaneously.

Stroke Technology, Video Games

(Source: Hub)

When you consider the brain itself, it’s not so unusual that a video game could recreate and reconnect key functions. John Krakauer, a neurologist who co-created the video game with a handpicked think tank, reminded The New Yorker that every simple muscle movement “requires an incredibly sophisticated set of computations“. His shark game is designed to break down “the physical-mental distinction” and restore function to impaired limbs.

“There’s no right and wrong when you’re playing as a dolphin,” John Krakauer told The New Yorker. “You’re learning the ABCs again—the building blocks of action. You’re not thinking about your arm’s limitations. You’re learning to control a dolphin. In the process, you’re going to experiment with many movements you’d never try in conventional therapy.”

Another example of this is a new therapeutic device that NYU Langone Medical Center has developed that creates an interactive canoe trip.

<iframe allowfullscreen=”true” webkitallowfullscreen=”true” mozallowfullscreen=”true” frameborder=”0″ scrolling=”no” width=”512″ height=”288″ src=”http://video-api.wsj.com/api-video/player/iframe.html?guid=FC4682A8-DE0A-47E1-8F81-5A0A56506E60″></iframe
Though the video game and device is still in the early stages of development and testing, doctors from NYU Langone say that they are seeing patients be more motivated and engaging that with current standard therapies. They also have shown to be another promising therapeutic option for stroke survivors who are too injured for traditional therapy.

 

Similar to the NYU Langone Medical Center’s device is the SaeboReJoyce workstation. Saebo’s ReJoyce workstation is a computerized task-oriented training system that involves a range of activity-based games that test speed, endurance, coordination, range of motion, strength, timing and cognitive demand. This helps patients practice repetitive gross motor and fine motor tasks with fun and motivating activities.

Because the games are customizable and incorporate a wide variety of grasp patterns, this workstation is useful for patients at each stage of recovery.

Saebo-Rejoyce

Robotics

Among the newest therapeutic tools used for stroke victims, those most commercially available are robotics and robotic exoskeletons, which attach directly to the affected part of the body to facilitate or enable movement. Therapeutic robotic devices include leg and arm supports that actually lift and support the limbs while reorganizing the pathways between the muscles, nerves, and healthy brain tissue. Like the robotic arm sling that researchers integrated into Bandit’s Shark Showdown robotic arm and leg devices contain sensors that track the limbs’ movements and monitor changes in force and terrain.

Bio Robotics

(Source: Bio Robotics)

 

The Wall Street Journal explains that robotic exoskeletons are especially useful because they are adjustable. As patients need less support, their therapists may adjust the robotic devices to let the patients’ muscles gradually resume more control. Because these exoskeletons can actually move the patients’ affected limbs until they regain movement, caregivers spend less time doing this themselves. When caregivers are free to observe patients’ movements – instead of manually moving their limbs – they can pay closer attention to the quality of each movement.

Body Weight Support Systems

Robots aren’t the only options for patients who need extra support for weak or paralyzed limbs. Because the force of gravity can turn patient’s’ own body weight into an obstacle, some of the most useful recovery devices like the SaeboMAS are designed to counteract this force. Support systems designed for the arms, legs and overall body, help support and facilitate movement to make task-oriented exercises possible. Motion that this is a much more affordable option as well.

Saebo-MAS

Support systems like the SaeboMAS aren’t used just to speed up the therapy process. One study found that stroke survivors who receive extra weight support actually walk better than patients who must support their own weight during rehabilitation. This makes sense, because gait training is more effective when patients are able to move their joints and muscles more quickly after stroke.

 

Neuromuscular Electrical Stimulation

Our everyday voluntary movements are made possible by connections between the brain and the body’s nerves, but after this connection is severed due to stroke, the affected nerves and muscles can no longer send or receive the sensory stimulation necessary to move. This is where neuromuscular electrical stimulation can be helpful. Neuromuscular electrical stimulation applies small electrical pulses to paralyzed muscles to restore or improve their function.

emg-triggered-stimulation

Devices  like the Saebo MyoTrac Infiniti uses EMG Triggered Stimulation which is a combination of biofeedback and electrical stimulation. Stimulation by devices like these are triggered to the desired muscle group (i.e., finger extensors, elbow extensors etc.) once the client deactivates or relaxes the opposite spastic muscle group (i.e., spastic finger flexors, elbow flexors etc.)

With Sensory Electrical Stimulation (SES), it is believed to enhance the neural plasticity and activate brain areas, helping with stroke rehabilitation. Studies show that providing SES to an impaired nervous system can prime the cortex ultimately leading to improve neuroplasticity, motor recovery and function. Using a Sensory Electrical Stimulation tool like the SaeboStim Micro is perfect for SES.

Saebo-stim

Research suggests that sensory electrical stimulation (SES) can be an effective treatment strategy for improving sensory and motor function. By providing low-level stimulation, increased signals are delivered to the brain and can lead to improved function and cortical reorgainzation.

Innovative Stroke Recovery Devices

Not all stroke recovery devices need electrical stimulation to aid in task-oriented training. Neurorehabilitation researchers have also incorporated mechanical features into lightweight gloves that simply ease the burden on the hands and fingers. For example, the SaeboGlove includes an innovative tension system that connects and controls the fingers, thumb, wrist, and forearm.

Saebo-Glove

(Source: Saebo)

Stroke P5glove-6sm

(Source: HWP)

Devices like the SaeboGlove and and the P5 Glove, a digital rehab glove designed to induce neural plasticity in the patient through specific and customized exercises with gamification, helps clients suffering from neurological and orthopedic injuries incorporate their hand functionally in therapy and at home.

Video Conferences with Doctors

Your odds of regaining movement after stroke are highly dependent on the speed with which you receive treatment. When stroke occurs, every second without proper diagnosis and treatment may cause more oxygen loss and damage to your brain cells. And after stroke, every moment of recovery is critical.

Ideally, all stroke patients would have immediate access to caregivers when stroke occurs, and then enjoy continuous access to rehabilitative and medical experts after they leave the hospital. In addition to caregivers who provide constant supervision, it’s important for patients’ healthcare providers to respond quickly to any concerns or questions as they monitor the patient’s progress.

Unfortunately, this isn’t always possible. Stroke is the country’s leading cause of long-term disability, and consistent, supervised therapy is one of the best ways to minimize complications and reduce a patient’s risks of suffering permanent mobility loss. But if patients can’t get to their therapist regularly – or get a proper diagnosis and treatment as soon as stroke occurs – they can face preventable setbacks. Now, the Internet is making it possible to maintain communication throughout the diagnosis, treatment, and recovery process.

Alabama’s Madison Hospital is one of many healthcare facilities that now use computers and cameras to connect neurologists with stroke patients. Patients who may be suffering a stroke – or complications during recovery – can now seek diagnosis and treatment through live conference calls with stroke experts at other hospitals. This makes incorrect diagnoses less likely, and ensures that stroke patients get the help they need immediately instead of waiting while more damage is done and experts are called in.

patient-exam-local-physician

(Source: Froedtert)

 

After patients return home, they may also conduct video chats with their physical therapists as they perform at-home stroke exercises. Virtual supervision may not be a substitute for the real thing, but it’s far more useful than unsupervised exercises that could do more harm than good, and it keeps patients accountable and their progress consistent. In fact, video conferencing is so useful that some insurance companies now cover virtual checkups.

Technology for The Greater Good

As video conferencing, video games, virtual reality, and robotics take off in the consumer sphere, medicine continues to come along for the ride, and our solutions for battling debilitating disabilities grow stronger. Whether our latest technology is infused into wearables, or whether it creates new categories of products, dollars spent researching, development, testing and distributing new solutions is a major key to improving healthcare in the 21st century.


 

Whether you are a caregiver, occupational therapist or a stroke survivor yourself, Saebo provides stroke survivors young or old, access to transformative and life changing products. We pride ourselves on providing affordable, easily accessible, and cutting-edge solutions to people suffering from impaired mobility and function. We have several products to help with the stroke recovery and rehabilitation process. From the SaeboFlex, which allows clients to incorporate their hand functionally in therapy or at home, to the SaeboMAS, an unweighting device used to assist the arm during daily living tasks and exercise training, we are commitment to helping create innovative products for stroke recovery. Check out all of our product offerings or let us help you find which product is right for you.

Source: How Technology Is Changing Stroke Rehabilitation | Saebo

, , , , ,

Leave a comment

[VIDEO] Rehabilitation and Technology Part 1

Δημοσιεύτηκε στις 20 Οκτ 2016

Learn how Physical and Occupational Therapists are using technology for stroke rehabilitation.

 

, , ,

Leave a comment

[WEB SITE] NeuroRehabLab | Exploring the human brain through Virtual Environment interaction

OUR MISSION

The NeuroRehabLab is an interdisciplinary research group of the University of Madeira that investigates at the intersection of technology, neuroscience and clinical practice to find novel solutions to increase the quality of life of those with special needs. We capitalize on Virtual Reality, Serious Games, and Brain-Computer Interfaces to exploit specific brain mechanisms that relate to functional recovery to approach motor and cognitive rehabilitation by means of non-invasive and low-cost technologies.

more —> NeuroRehabLab | Exploring the human brain through Virtual Environment interaction

, , , , , , , , ,

Leave a comment

[Webinar] “How advanced technology can help you overcome challenges in arm rehabilitation” – Hocoma Academy

“How advanced technology can help you overcome challenges in arm rehabilitation”

Recorded webinar, 1st of June 2016

Source: Webinar

, ,

Leave a comment

[ARTICLE] Is Virtual Reality (VR) Becoming an Effective Application for the Market Opportunity in Health Care, Manufacturing, and Entertainment Industry? – Full Text

Abstract

The purpose of this paper is to analyze how virtual reality technology has been blossoming and applying in the past few years to quickly become the next big new products development in high technology industry. Thanks to this technology being backed by major tech and manufacturing firms, such as Facebook, Ford, and Sony, it has shown much promise in impacting our lives by bringing something completely new to our experience of processing data. There are three sectors in particular where it benefits most; healthcare, manufacturing, and entertainment. The paper explains in detail how these areas are positively impacted and applied.

Introduction

Virtual Reality (VR) brings a new way of analyzing and viewing data and video content. Through the use of a headset it is the only medium people can use to recreate real life. We will be able to communicate with the world around us in a controlled and realistic way. VR has been used by very few organizations within the past decade, who were able to afford its large cost. For example NASA has utilized this VR technology as part of their astronauts training in order to simulate tasks they must complete at the International Space Station. Starting this year, 2016 organizations such as Facebook and Sony are investing billions of dollars in developing this product for businesses small and large. However, they plan to introduce it at an affordable price point so that it can be adopted by the general public.

Full Text PDF 

, , ,

Leave a comment

%d bloggers like this: