Posts Tagged physical activity

[Thesis] Designing an augmented reality video game to assist stroke patients with independent rehabilitation

Abstract

Early, intense practice of functional, repetitive rehabilitation interventions has shown positive results towards lower-limb recovery for stroke patients. However, long-term engagement in daily physical activity is necessary to maximise the physical and cognitive benefits of rehabilitation. The mundane, repetitive nature of traditional physiotherapy interventions and other personal, environmental and physical elements create barriers to participation. It is well documented that stroke patients engage in as little as 30% of their rehabilitation therapies. Digital gamified systems have shown positive results towards addressing these barriers of engagement in rehabilitation, but there is a lack of low-cost commercially available systems that are designed and personalised for home use. At the same time, emerging mixed reality technologies offer the ability to seamlessly integrate digital objects into the real world, generating an immersive, unique virtual world that leverages the physicality of the real world for a personalised, engaging experience.
This thesis explored how the design of an augmented reality exergame can facilitate engagement in independent lower-limb stroke rehabilitation. Our system converted prescribed exercises into active gameplay using commercially available augmented reality mobile technology. Such a system introduced an engaging, interactive alternative to existing mundane physiotherapy exercises.
The development of the system was based on a user-centered iterative design process. The involvement of health care professionals and stroke patients throughout each stage of the design and development process helped understand users’ needs, requirements and environment to refine the system and ensure its validity as a substitute for traditional rehabilitation interventions.
The final output was an augmented reality exergame that progressively facilitates sit-to-stand exercises by offering immersive interactions with digital exotic wildlife. We hypothesize that the immersive, active nature of a mobile, mixed reality exergame will increase engagement in independent task training for lower-limb rehabilitation.

via Designing an augmented reality video game to assist stroke patients with independent rehabilitation

Advertisements

, , , , , ,

Leave a comment

[Study] Home Is a Better Bet Than Hospitals for Achieving More PA Poststroke

There’s no place like home for engaging in the levels of physical activity (PA) that can aid in recovery poststroke—at least compared with the current hospital setting—according to a small study from Australia.

For the study, researchers used accelerometers and self-reports to track the PA and sitting time of 32 participants (mean age of 68, 53% male) who had experienced a stroke, comparing data gathered during their last week in the hospital with data gathered during their first week home. Participants were also assessed in a number of areas during their final week in the hospital, including physical function, functional independence, pain, anxiety, and depression.

The researchers were interested in finding out if an individual’s environment plays a role in PA poststroke—something they describe as “pivotal” to recovery—and whether other factors, such as depression, have an effect on any changes in PA levels. Results were e-published ahead of print in theArchives of Physical Medicine and Rehabilitation (abstract only available for free).

They found that environment does seem to make a difference—and a fairly big one at that. While the amount of time spent awake didn’t change much from hospital to home (13.1 hours a day in the hospital vs 13.5 hours per day at home), the amount of PA achieved—and time spent in sedentary behaviors—varied significantly. Participants sat for an average of 45 fewer minutes a day at home than they did in their last week in the hospital, were upright for 45 more minutes a day, spent 12 more minutes a day walking, and completed an average of 724 additional daily steps.

The results were similar when adjusted for demographic variables and didn’t seem to be significantly affected by any of the secondary factors assessed in the hospital, save one—depression, which when present was associated with no gains in PA at home.

The researchers don’t pin the improvement to any single factor but speculate that “the home environment may provide greater opportunity for activities of daily living such as cooking, cleaning, social and community activities, and there may be fewer external restrictions such as hospital routines and safety concerns around mobilization.”

Authors of the study also believe the gap between home and hospital PA poststroke could be closed if hospitals were to take more cues from the home environment.

“Physically, cognitively, and socially enriched stroke rehabilitation environments appear to increase activity by 20%,” they write. “Wards [that] include communal areas to promote more time spent upright, and the need to transport patients further for personal care may create opportunities for activity. The low activity levels in [the] hospital and at home found in our study, and in prior reports…indicate that there is clearly more work to be done in promoting activity after stroke.”

via Study: Home Is a Better Bet Than Hospitals for Achieving More PA Poststroke

, , , ,

Leave a comment

[WEB SITE] Could robots be counselors? Early research shows positive user experience

 

Many participants in the University of Plymouth study praised the ‘non-judgmental’ nature of the humanoid NAO robot as it delivered its session — with one even saying they preferred it to a human.
Credit: University of Plymouth

New research has shown for the first time that a social robot can deliver a ‘helpful’ and ‘enjoyable’ motivational interview (MI) — a counselling technique designed to support behaviour change.

Many participants in the University of Plymouth study praised the ‘non-judgemental’ nature of the humanoid NAO robot as it delivered its session — with one even saying they preferred it to a human.

Led by the School of Psychology, the study also showed that the robot achieved a fundamental objective of MI as it encouraged participants, who wanted to increase their physical activity, to articulate their goals and dilemmas aloud.

MI is a technique that involves the counsellor supporting and encouraging someone to talk about their need for change, and their reasons for wanting to change.

The role of the interviewer in MI is mainly to evoke a conversation about change and commitment, and the robot was programmed with a set script designed to elicit ideas and conversation on how someone could increase their physical activity.

When finished answering each question, the participant taped the top of NAO’s head to continue, with some sessions lasting up to an hour.

Lead academic Professor Jackie Andrade explained that, because they are perceived as nonjudgmental, robots may have advantages over more humanoid avatars for delivering virtual support for behavioral change.

“We were pleasantly surprised by how easily the participants adapted to the unusual experience of discussing their lifestyle with a robot,” she said. “As we have shown for the first time that a motivational interview delivered by a social robot can elicit out-loud discussion from participants.

“In addition, the participants perceived the interaction as enjoyable, interesting and helpful. Participants found it especially useful to hear themselves talking about their behaviour aloud, and liked the fact that the robot didn’t interrupt, which suggests that this new intervention has a potential advantage over other technology-delivered adaptations of MI.

“Concern about being judged by a human interviewer came across strongly in praise for the non-judgemental nature of the robot, suggesting that robots may be particularly helpful for eliciting talk about sensitive issues.

“The next stage is to undertake a quantitative study, where we can measure whether participants felt that the intervention actually increased their activity levels.”

Story Source:

Materials provided by University of PlymouthNote: Content may be edited for style and length.


Journal Reference:

  1. Joana Galvão Gomes da Silva, David J Kavanagh, Tony Belpaeme, Lloyd Taylor, Konna Beeson, Jackie Andrade. Experiences of a Motivational Interview Delivered by a Robot: Qualitative StudyJournal of Medical Internet Research, 2018; 20 (5): e116 DOI: 10.2196/jmir.7737

via Could robots be counselors? Early research shows positive user experience: New research has shown for the first time that a social robot can deliver a ‘helpful’ and ‘enjoyable’ motivational interview — ScienceDaily

, , , , ,

Leave a comment

[ARTICLE] Effectiveness of a multimodal exercise rehabilitation program on walking capacity and functionality after a stroke – Full Text

Abstract

The aim of this study was to determine the effectiveness of a 12-week multimodal exercise rehabilitation program on walking speed, walking ability and activities of daily living (ADLs) among people who had suffered a stroke. Thirty-one stroke survivors who had completed a conventional rehabilitation program voluntarily participated in the study. Twenty-six participants completed the multimodal exercise rehabilitation program (2 days/wk, 1 hr/session). Physical outcome measures were: walking speed (10-m walking test), walking ability (6-min walking test and functional ambulation classification) and ADLs (Barthel Index). The program consisted on: aerobic exercise; task oriented exercises; balance and postural tonic activities; and stretching. Participants also followed a program of progressive ambulation at home. They were evaluated at baseline, postintervention and at the end of a 6-month follow-up period. After the intervention there were significant improvements in all outcomes measures that were maintained 6 months later. Comfortable and fast walking speed increased an average of 0.16 and 0.40 m/sec, respectively. The walking distance in the 6-min walking test increased an average of 59.8 m. At the end of the intervention, participants had achieved independent ambulation both indoors and outdoors. In ADLs, 40% were independent at baseline vs. 64% at the end of the intervention. Our study demonstrates that a multimodal exercise rehabilitation program adapted to stroke survivors has benefits on walking speed, walking ability and independence in ADLs.
Keywords: Exercise, Physical activity, Stroke rehabilitation, Walking speed, Activities of daily living

INTRODUCTION

As life expectancy increases, a larger number of persons may suffer from stroke. Stroke mortality rates have decreased, but the burden of stroke is increasing in terms of stroke survivors per year, correlated deaths and disability-adjusted life-years lost. These deficiencies are further highlighted by a trend towards more strokes in younger people (Feigin et al., 2014). Stroke not only causes permanent neurological deficits, but also a profound degradation of physical condition, which worsens disability and increases cardiovascular risk. Stroke survivors are likely to suffer functional decline due to reduction of aerobic capacity. This may involve further secondary complications such as progressive muscular atrophy, osteoporosis, peripheral circulation worsening and increased cardiovascular risk (Ivey et al., 2006). All these factors cause increased dependency, need of assistance from third parties in activities of daily living (ADLs) and a restriction on participation that can have a profound psychosocial impact (Carod-Artal and Egido, 2009). Gait capacity is one of the main priorities of persons who have suffered a stroke, but is often limited due to the high energy demands of hemiplegic gait and the poor physical condition of these persons (Ivey et al., 2006). Gait speed is a commonly used measure in patients who have suffered a stroke to differentiate the functional capacity to walk indoors or outdoors. Gait speed has been classified as: allowing indoor ambulation (<0.4 m/sec), limited outdoor ambulation (0.4–0.8 m/sec), and outdoor functional ambulation (>0.8 m/sec) (Perry et al., 1995). Gait speed can also help to establish the functional prognosis of the patient. It has been stated that improvements in walking speed correlate with improved function and quality of life (QoL) (Schmid et al., 2007). It is essential to achieve a proper gait speed for outdoors functional ambulation.
Falls are common among stroke survivors and are associated with a worsening of disability and QoL. Balance is a complex process that involves the reception and integration of afferent inputs and the planning and execution of movement. Stroke can impact on different systems involved in postural control. Multifactorial falls risk assessment and management, combined with fitness programs, are effective in reducing risk of falls and fear of falling (Stroke Foundation of New Zealand and New Zealand Guidelines Group, 2010). Falls often occur when getting in and out of a chair (Brunt et al., 2002). The 2013 Cochrane review (Saunders et al., 2013) recommends the repetitive practice of sit-to-stand in order to promote an ergonomic and automatic pattern of this movement. Recent studies demonstrate that exercises that improve trunk stability and balance provide a solid base for body and leg movements that entail an improved gait in people affected by stroke (Sharma and Kaur, 2017). Conventional rehabilitation programs after stroke focus on the subacute period. The aim is to recover basic ADLs, but they do not provide maintenance exercises to provide long-term health gains. Cardiac monitoring demonstrates that conventional physiotherapy exercises do not regularly provide adequate exercise intensity to modify the physical deconditioning, nor sufficient exercise repetition to improve motor learning (Ivey et al., 2006). Therapeutic physical exercise to optimize function, physical condition and cardiovascular health after a stroke is an emerging field within neurorehabilitation (Teasell et al., 2009). The wide range of difficulties experienced by stroke survivors justify the need to explore rehabilitation programs designed to promote an overall improvement and to maintain the gains obtained after rehabilitation programs. Numerous studies have demonstrated the efficacy of aerobic exercise (Saunders et al., 2016), but there are few data on the long term effects of multimodal programs that incorporate aerobic exercise, complemented by task-oriented training and balance exercises. Consequently, the aim of this study is to analyse the impact of a multimodal exercise rehabilitation program tailored to stroke survivors on walking speed, walking ability and ADLs. […]

Continue —> Effectiveness of a multimodal exercise rehabilitation program on walking capacity and functionality after a stroke

, , , ,

Leave a comment

[WEB SITE] Walk 4,000 steps every day to boost brain function

Recent research led by the University of California, Los Angeles shows that taking a short walk each day can help to keep the brain healthy, supporting the overall resilience of cognitive functioning.
seniors walking in the park

Could a walk in the park help to maintain cognitive health in old age?

As we grow older, memory problems can begin to set in. These could be a natural part of aging and a minor annoyance, but in some cases, the issues may indicate mild cognitive impairment and could even develop into dementia.

Regardless of how mild or severe these memory problems may be, they are definitely distressing and can affect an individual’s quality of life.

New research from the Semel Institute for Neuroscience and Human Behavior at the University of California, Los Angeles suggests that there is a relatively easy way of keeping your brain in top shape as you grow older: take a moderately long walk every day.

This could boost your attention, the efficiency with which you process information, and other cognitive skills, say first study author Prabha Siddarth and colleagues.

The research findings were recently published the Journal of Alzheimer’s Disease.

Cortical thickness to assess cognitive health

Siddarth and team initially recruited 29 adults aged 60 and over, of which 26 completed the study over a 2-year period. The participants were split into two distinct groups:

  • a low physical activity group, comprising people who walked 4,000 or fewer steps each day
  • a high physical activity group, made up of people who walked more than 4,000 steps per day

All the participants reported a degree of memory complaints at baseline, but none of them had a dementia diagnosis.

In order to explore the potential effect of physical activity on cognitive ability, the researchers used MRI to determine the volume and thickness of the hippocampus, which is a brain region associated with memory formation and storage, and spatial orientation.

Previous research suggested that the size and volume of this brain region can tell us something about cognitive health. For instance, a higher hippocampal volume has been shown to indicate more effective memory consolidation.

“Few studies have looked at how physical activity affects the thickness of brain structures,” says Siddarth.

“Brain thickness,” she notes, “a more sensitive measure than volume, can track subtle changes in the brain earlier than volume and can independently predict cognition, so this is an important question.”

Walk more every day for a resilient brain

In addition to the MRI scans, the participants also underwent a set of neuropsychological tests, to consolidate the assessment of their cognitive capacity.

It was found that those in the high physical activity group — who walked more than 4,000 steps (approximately 3 kilometers) each day — had thicker hippocampi, as well as thicker associated brain regions, when compared with that of the those falling under the low physical activity category.

The highly active group was also found to have better attention, speedier information processing abilities, and more efficient executive function, which includes working memory. Working memory is the resource that we tap into on a daily basis when we need to make spontaneous decisions.

However, Siddarth and colleagues reported no significant differences between the high activity and low activity groups when it came to memory recall.

The next step from here, the researchers suggest, should be to undertake a longitudinal analysis in order to test the relationship between physical activity and cognitive ability over time.

They also note the need to better understand the mechanisms behind cognitive decline in relation to hippocampal atrophy.

via Walk 4,000 steps every day to boost brain function

, , , ,

Leave a comment

[Abstract] Sleep Duration, Sedentary Behavior, Physical Activity, and Quality of Life after Inpatient Stroke Rehabilitation 

Objective

The aim of this study was to describe accelerometer-derived sleep duration, sedentary behavior, physical activity, and quality of life and their association with demographic and clinical factors within the first month after inpatient stroke rehabilitation.

Materials and Methods

Thirty people with stroke (mean ± standard deviation, age: 63.8 ± 12.3 years, time since stroke: 3.6 ± 1.1 months) wore an activPAL3 Micro accelerometer (PAL Technologies, Glasgow, Scotland) continuously for 7 days to measure whole-day activity behavior. The Stroke Impact Scale and the Functional Independence Measure were used to assess quality of life and function, respectively.

Results

Sleep duration ranged from 6.6 to 11.6 hours/day. Fifteen participants engaged in long sleep greater than 9 hours/day. Participants spent 74.8% of waking hours in sedentary behavior, 17.9% standing, and 7.3% stepping. Of stepping time, only a median of 1.1 (interquartile range: .3-5.8) minutes were spent walking at a moderate-to-vigorous intensity (≥100 steps/minute). The time spent sedentary, the stepping time, and the number of steps differed significantly by the hemiparetic side (P < .05), but not by sex or the type of stroke. There were moderate to strong correlations between the stepping time and the number of steps with gait speed (Spearman r = .49 and .61 respectively, P < .01). Correlations between accelerometer-derived variables and age, time since stroke, and cognition were not significant.

Conclusions

People with stroke sleep for longer than the normal duration, spend about three quarters of their waking hours in sedentary behaviors, and engage in minimal walking following stroke rehabilitation. Our findings provide a rationale for the development of behavior change strategies after stroke.

Source: Sleep Duration, Sedentary Behavior, Physical Activity, and Quality of Life after Inpatient Stroke Rehabilitation – Journal of Stroke and Cerebrovascular Diseases

, , , , ,

Leave a comment

[BOOK] Technology in Physical Activity and Health Promotion – Google Books

Front CoverAs technology becomes an ever more prevalent part of everyday life and population-based physical activity programmes seek new ways to increase lifelong engagement with physical activity, so the two have become increasingly linked. This book offers a thorough, critical examination of emerging technologies in physical activity and health, considering technological interventions within the dominant theoretical frameworks, exploring the challenges of integrating technology into physical activity promotion and offering solutions for its implementation.

Technology in Physical Activity and Health Promotion occupies a broadly positive stance toward interactive technology initiatives and, while discussing some negative implications of an increased use of technology, offers practical recommendations for promoting physical activity through a range of media, including:

  • social media
  • mobile apps
  • global positioning and geographic information systems
  • wearables
  • active videogames (exergaming)
  • virtual reality settings.

Offering a logical and clear critique of technology in physical activity and health promotion, this book will serve as an essential reference for upper-level undergraduates, postgraduate students and scholars working in public health, physical activity and health and kinesiology, and healthcare professionals.

Preview this book »

 

Source: Technology in Physical Activity and Health Promotion – Google Books

, , ,

Leave a comment

[Abstract] Fatigue and its’ relationship to physical activity in adolescents and young adults with traumatic brain injury: a cross-sectional study

Physical activity (PA) in patients with traumatic brain injury (TBI) may be impaired leading to secondary health issues and limitations in participation.This study aims to determine the level of PA and its determinants in adolescents and young adults with TBI.Cross-sectional survey study.Outpatient clinic of a rehabilitation centre.Discharged patients aged 12-39 years with a diagnosis of TBI >6 months treated in the rehabilitation centre between 2009-2012.The Activity Questionnaire for Adults and Adolescents (AQuAA) measuring PA, with results dichotomized for meeting or not meeting Dutch recommendations for health enhancing physical activity (D-HEPA) and the Checklist Individual Strength (CIS; range 20- 140, higher scores represent higher levels of fatigue), measuring fatigue, were administered.Fifty (47%) of the 107 invited patients completed the questionnaire. Mean age was 25.0 years (SD 7.2)) and 22 (44%) were male. Eighteen (36%) had a mild injury, 13 (26%) a moderate injury and 19 (38%) a severe injury. Median time spent on moderate-vigorous physical activity was 518 minutes/week (IQR 236-1725) (males performing significantly more minutes on moderate-vigorous activity than women) and on sedentary activity 2728 minutes/week (IQR 1637-3994). Thirty-two (64%) participants met the D-HEPA. According to the CIS, 19 participants (38%) were severely fatigued. Both the CIS total score and the subscales motivation and physical activitywere associated with meeting the D-HEPA.The proportion of individuals with TBI meeting D-HEPA was similar to the general population, with the PA level being associated with self-reported fatigue.Physical activity programmes are continuously being developed to increase the percentage of individuals meeting public health recommendations for PA; when developing programmes for individuals with TBI extra consideration should be taken for the presence of fatigue. As in the general population, females with TBI are less active, PA programmes should probably consider gender differences in their development.

Source: Fatigue and its’ relationship to physical activity in adolescents and young adults with… – Abstract – Europe PMC

, , , , , , , ,

Leave a comment

[ARTICLE] The effect of active video games on cognitive functioning in clinical and non-clinical populations: A meta-analysis of randomized controlled trials – Full Text

Abstract

Physically-active video games (‘exergames’) have recently gained popularity for leisure and entertainment purposes. Using exergames to combine physical activity and cognitively-demanding tasks may offer a novel strategy to improve cognitive functioning. Therefore, this systematic review and meta-analysis was performed to establish effects of exergames on overall cognition and specific cognitive domains in clinical and non-clinical populations. We identified 17 eligible RCTs with cognitive outcome data for 926 participants. Random-effects meta-analyses found exergames significantly improved global cognition (g = 0.436, 95% CI = 0.18–0.69, p = 0.001). Significant effects still existed when excluding waitlist-only controlled studies, and when comparing to physical activity interventions. Furthermore, benefits of exergames where observed for both healthy older adults and clinical populations with conditions associated with neurocognitive impairments (all p < 0.05). Domain-specific analyses found exergames improved executive functions, attentional processing and visuospatial skills. The findings present the first meta-analytic evidence for effects of exergames on cognition. Future research must establish which patient/treatment factors influence efficacy of exergames, and explore neurobiological mechanisms of action.

1. Introduction

Cognition can be broadly defined as the actions of the brain involved in understanding and functioning in our external environment (Hirschfeld and Gelman, 1994). As it is generally accepted that cognition requires multiple mental processes, this broader concept has been theoretically separated into multiple ‘cognitive domains’ (Hirschfeld and Gelman, 1994). Although definitions vary, and the boundaries between domains often overlap, examples of distinct areas of cognitive functioning include the processes for learning and remembering verbal and spatial information, attentional capacities, response speed, problem-solving and planning (Strauss et al., 2006).

Various neuropsychological tests have been developed as tools for assessing and quantifying an individual’s overall cognitive functioning (or ‘global cognition’) along with their performance within the separable domains of cognition (Strauss et al., 2006). Performance in these various cognitive tests has been found to be relatively stable over time in healthy adults, and moderately accurate predictors of real-world functioning and occupational performance (Chaytor and Schmitter-Edgecombe, 2003 ;  Hunter, 1986). Furthermore, neuropsychological tests can detect the deficits in cognitive functioning which arise as a consequence of various psychiatric and neurological diseases (Mathuranath et al., 2000 ;  Nuechterlein et al., 2004). For example, people with Parkinson’s disease show marked impairments in planning and memory tasks (Dubois and Pillon, 1996), whereas those with schizophrenia have cognitive pervasive deficits, 1–2 standard deviations below population norms, which also predict the severity of disability in this population (Green et al., 2000). Additionally, cognitive abilities decline naturally in almost all people during healthy ageing (Van Hooren et al., 2007). In an ageing population, the functional consequences of cognitive decline may ultimately have a severe social and economic impact. Thus, interventions which improve cognition hold promise for the treatment of psychiatric and neurological diseases, an have positive implications for population health.

Fortunately, interventions which stimulate the brain and/or body can improve cognition, or attenuate decline. For instance, physical exercise has been shown to significantly improve global cognition, along with working memory and attentional processes, in both clinical and healthy populations (Firth et al., 2016Smith et al., 2010 ;  Zheng et al., 2016). Interventions can also be designed to target cognition directly, as computerized training programs for memory and other functions have been found to provide significant cognitive benefits, at least in the short term (Hill et al., 2017 ;  Melby-Lervåg and Hulme, 2013). Furthermore, ‘gamification’ of cognitive training programs can maximize their clinical effectiveness, as more complex and interesting programs are capable of better engaging patients in cognitively-demanding tasks while also training multiple cognitive processes simultaneously (Anguera et al., 2013).

Previous studies have found that providing both aerobic exercise and cognitive training together may have additive effects, preventing ageing-related cognitive decline more effectively (Shatil, 2013). This may be due to aerobic and cognitive activity stimulating neurogenesis through independent but complementary pathways; as animal studies show that while exercise stimulates cell proliferation, learning tasks support the survival of these new cells (Kempermann et al., 2010), such that combining these two types of training results in 30% more new neurons than either task alone (Fabel et al., 2009).

Rather than delivering aerobic and cognitive training in separate training sessions, recent advances in technology has presented an opportunity for combining physical activity with cognitively-challenging tasks in a single session through ‘exergames’. Exergames are considered as interactive video-games which require the player to produce physical body movements in order to complete set tasks or actions, in response to visual cues (Oh and Yang, 2010). Common examples include the ‘Nintendo Wii’ (along with ‘Wii Fit’ or ‘Wii Sports software’) or the ‘Microsoft Xbox Kinect’. Additionally, virtual reality systems which use exercise bikes and/or treadmills as a medium for players to interact with three-dimensional worlds have also been developed to provide immersive training experiences (Sinclair et al., 2007).

Along with their popular usage for leisure and entertainment, there is growing interest in the application of exergame systems to improve clinical outcomes. Recent systematic reviews and meta-analyses of this growing literature have provided preliminary evidence that exergames can improve various health-related outcomes, including reducing childhood obesity, improving balance and falls risk factors in elderly adults, facilitating functional rehabilitation in people with parkinson’s disease, and even reduce depression (Barry et al., 2014Li et al., 2016 ;  van’t Riet et al., 2014). However, the effects of exergames on cognitive functioning have not been systematically reviewed, despite many individual studies in this area.

Therefore, the aim of this study was to systematically review all existing trials of exergames for cognition, and apply meta-analytic techniques to establish the effects of exergames on global cognition along with individual cognitive domains. We also sought to (i) examine the effects of exergames on cognition in healthy and clinically-impaired populations, and (ii) investigate if the effects of exergames differed from those of aerobic exercise alone, by comparing exergames to traditional physical activity control conditions.

Fig. 1

Fig. 1. PRISMA flow diagram of systematic search and study selection.

Continue —> The effect of active video games on cognitive functioning in clinical and non-clinical populations: A meta-analysis of randomized controlled trials

, , , , , , , ,

Leave a comment

[ARTICLE] mHealth or eHealth? Efficacy, Use, and Appreciation of a Web-Based Computer-Tailored Physical Activity Intervention for Dutch Adults: A Randomized Controlled Trial  – Full Text

ABSTRACT

Background: Until a few years ago, Web-based computer-tailored interventions were almost exclusively delivered via computer (eHealth). However, nowadays, interventions delivered via mobile phones (mHealth) are an interesting alternative for health promotion, as they may more easily reach people 24/7.

Objective: The first aim of this study was to compare the efficacy of an mHealth and an eHealth version of a Web-based computer-tailored physical activity intervention with a control group. The second aim was to assess potential differences in use and appreciation between the 2 versions.

Methods: We collected data among 373 Dutch adults at 5 points in time (baseline, after 1 week, after 2 weeks, after 3 weeks, and after 6 months). We recruited participants from a Dutch online research panel and randomly assigned them to 1 of 3 conditions: eHealth (n=138), mHealth (n=108), or control condition (n=127). All participants were asked to complete questionnaires at the 5 points in time. Participants in the eHealth and mHealth group received fully automated tailored feedback messages about their current level of physical activity. Furthermore, they received personal feedback aimed at increasing their amount of physical activity when needed. We used analysis of variance and linear regression analyses to examine differences between the 2 study groups and the control group with regard to efficacy, use, and appreciation.

Results: Participants receiving feedback messages (eHealth and mHealth together) were significantly more physically active after 6 months than participants in the control group (B=8.48, df=2, P=.03, Cohen d=0.27). We found a small effect size favoring the eHealth condition over the control group (B=6.13, df=2, P=.09, Cohen d=0.21). The eHealth condition had lower dropout rates (117/138, 84.8%) than the mHealth condition (81/108, 75.0%) and the control group (91/127, 71.7%). Furthermore, in terms of usability and appreciation, the eHealth condition outperformed the mHealth condition with regard to participants receiving (t182=3.07, P=.002) and reading the feedback messages (t181=2.34, P=.02), as well as the clarity of the messages (t181=1.99, P=.049).

Conclusions: We tested 2 Web-based computer-tailored physical activity intervention versions (mHealth and eHealth) against a control condition with regard to efficacy, use, usability, and appreciation. The overall effect was mainly caused by the more effective eHealth intervention. The mHealth app was rated inferior to the eHealth version with regard to usability and appreciation. More research is needed to assess how both methods can complement each other.

Trial Registration: Netherlands Trial Register: NTR4503; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4503 (Archived by WebCite at http://www.webcitation.org/6lEi1x40s)

Introduction

Insufficient physical activity is considered to be a major public health issue worldwide [1,2]. The Dutch public health guidelines recommend adults to engage in moderate- to vigorous-intensity physical activity for at least 30 minutes on at least 5 days per week [3,4]. Studies suggest that sufficient physical activity can effectively prevent numerous chronic diseases and mental health issues [2,46]. Lee et al [7] argued that 6% to 10% of worldwide deaths caused by noncommunicable diseases, such as cancer, cardiovascular diseases, and diabetes, can be attributed to physical inactivity. Therefore, there is a need for interventions that increase the level of physical activity and can reach a broad population cost effectively [1].

Empirical research suggests that Web-based computer-tailored interventions are a promising solution [8]. These interventions provide tailored information and feedback via the Internet and therefore have some important advantages. First, Web-based computer-tailored interventions can adapt intervention materials according to the specific situation, characteristics, and needs of an individual and accordingly make information more personally relevant for the individual [911]. Second, research has shown that tailored messages are more likely to be read, understood, discussed with others, and remembered by the receiver [1214]. Third, due to the fact that more and more people are using the Internet to search for health-related information and health advice [1517], Web-based computer-tailored health interventions offer an effective method to reach a broad population cost effectively [1822]. Fourth, even though a broad population is targeted simultaneously, each individual can make use of the intervention privately at any given point in time or place [18,23].

Until a few years ago, Web-based computer-tailored interventions were almost exclusively delivered via computer. This medium of delivery has formed the term eHealth (electronic Health). The concept of eHealth has been described as the use of the Internet and related technologies to deliver health-related information and interventions [23]. Even though eHealth has been shown to be an efficient strategy to lower costs and deliver health messages more interactively, it also has several disadvantages. One of the major problems with eHealth interventions is the high percentage of dropout [24,25].

To make interventions even more accessible, and thereby decrease chances of dropout, health promotion professionals are increasingly interested in the use of mHealth (mobile Health). mHealth refers to the delivery of health messages and interventions via mobile phones or tablets by making use of telecommunication and multimedia technologies [2631]. In the Netherlands, almost 70% of Dutch households use the Internet via mobile phones and approximately 45% use tablets [32]. Based on the increasing usage of mobile phones as a lifestyle device, it has been argued that mHealth might increase the use of interventions and thereby also their efficacy [28,29]. Whereas computers and laptops are relatively stationary, mobile phones and tablets can be carried and used everywhere [33]. People are able to use mHealth independent of time or space, which could improve the usage and evaluation of interventions compared with eHealth [28,31,33].

Most people already use their phones for a variety of personal and work-related matters, such as social networking, calendaring, financial tracking, or emailing [33]. This leads to the assumption that the inclusion of health-related information would be advisable. However, previous research shows some pitfalls of mHealth. First, mobile phone technology is a rapidly changing field that introduces new apps, communication possibilities, and additional gadgets nearly by the day. This makes it difficult for intervention developers to keep up with the newest technologies and interests of their users [34,35]. Second, although using text messaging can be a very effective way of communicating, some intervention messages might be too long or difficult to be presented in such a short manner. This restricted communication can lead to more misunderstandings between the participant and health professional, which in turn can influence the effectiveness of the intervention [36]. And third, both participants and health professionals claim to feel unsure about the safety of private and sensitive information. Although this concern can also arise in the eHealth sector, the inferior but rapidly growing mHealth sector evokes skepticism on both sides [37].

To examine whether mHealth can improve the use and efficacy and reduce dropout rates of Web-based computer-tailored interventions, this study examined the effects of an mHealth and eHealth intervention on physical activity compared with a control group. Both interventions were identical with regard to content but differed in the medium of delivery. The main aim of the study was to examine the efficacy of the 2 versions on physical activity and to compare them with a control group. A secondary aim was to study potential differences in dropout and appreciation of the mHealth and eHealth intervention.

Figure 1. Flowchart of the participation of respondents.

Continue —> JMIR-mHealth or eHealth? Efficacy, Use, and Appreciation of a Web-Based Computer-Tailored Physical Activity Intervention for Dutch Adults: A Randomized Controlled Trial | Gomez Quiñonez | Journal of Medical Internet Research

, , , , , ,

Leave a comment

%d bloggers like this: