Posts Tagged exoskeletons

[Abstract + References] Multi-modal Intent Recognition Method for the Soft Hand Rehabilitation Exoskeleton

Abstract

Stroke has become the second most disabling disease in the world. Due to the intensive demand for physical therapists and the severe dependence on hospitals, the cost for the treatment of stroke patients is huge. As the most flexible limb of the human body, the hand faces more severe challenges, which has a much lower degree of recovery than the upper and lower limbs. In the face of these challenges, a new treatment, exoskeleton-based rehabilitation, has demonstrated new vitality. This paper proposes a novel design of the soft hand exoskeleton based on bionics and anatomy and the exoskeleton could help the users bend and extend their fingers, which would greatly improve the motor ability of stroke patients. Through the control of the six drive motors, the exoskeleton could achieve most of the hand’s freedom of training. At the same time, we propose a multi-modal intent recognition method based on machine vision and machine speech. Under specific rehabilitation training scenarios, both healthy subjects and patients could complete grasping tasks in the wearing of the exoskeleton, overcoming potential security risks caused by misidentification due to using the single-modal intent understanding method.

References

1. M. P. Lindsay, B. Norrving, R. L. Sacco, M. Brainin, W. Hacke, S. Martins, et al., “World stroke organization (wso): Global stroke fact sheet 2019”, 2019.CrossRef  Google Scholar 

2. [online] Available: http://www.sohu.com/a/306292195_243428. Show Context

3. K. B. Lee, S. H. Lim, K. H. Kim, K. J. Kim, Y. R. Kim, W. N. Chang, et al., “Six-month functional recovery of stroke patients: a multi-time-point study”, International journal of rehabilitation research. Internationale Zeitschrift fur Rehabilitationsforschung. Revue internationale de recherches de readaptation, vol. 38, no. 2, pp. 173, 2015. Show Context CrossRef  Google Scholar 

4. P. Polygerinos, S. Lyne, Z. Wang, L. F. Nicolini, B. Mosadegh, G. M. Whitesides, et al., “Towards a soft pneumatic glove for hand rehabilitation”, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1512-1517, 2013. Show Context View Article Full Text: PDF (1334KB) Google Scholar 

5. J. Yi, X. Chen and Z. Wang, “A three-dimensional- printed soft robotic glove with enhanced ergonomics and force capability”, IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 242-248, 2017. Show Context View Article Full Text: PDF (676KB) Google Scholar 

6. N. Ho, K. Tong, X. Hu, K. Fung, X. Wei, W. Rong, et al., “An emg-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation”, 2011 IEEE international conference on rehabilitation robotics, pp. 1-5, 2011. Show Context View Article Full Text: PDF (848KB) Google Scholar 

7. S. Park, L. Weber, L. Bishop, J. Stein and M. Ciocarlie, “Design and development of effective transmission mechanisms on a tendon driven hand orthosis for stroke patients”, 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2281-2287, 2018. Show Context View Article Full Text: PDF (2666KB) Google Scholar 

8. L. Gerez and M. Liarokapis, “An underactuated tendon-driven wearable exo-glove with a four-output differential mechanism”, 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6224-6228, 2019. Show Context View Article Full Text: PDF (3125KB) Google Scholar 

9. T. Bützer, J. Dittli, J. Lieber, H. J. van Hedel, A. Meyer-Heim, O. Lambercy, et al., “Pexo- a pediatric whole hand exoskeleton for grasping assistance in task-oriented training”, 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), pp. 108-114, 2019. Show Context View Article Full Text: PDF (1216KB) Google Scholar 

10. M. Mirakhorlo, N. Van Beek, M. Wesseling, H. Maas, H. Veeger and I. Jonkers, “A musculoskeletal model of the hand and wrist: model definition and evaluation”, Computer methods in biomechanics and biomedical engineering, vol. 21, no. 9, pp. 548-557, 2018. Show Context CrossRef  Google Scholar 

11. M. Suarez-Escobar and E. Rendon-Velez, “An overview of robotic/mechanical devices for post-stroke thumb rehabilitation”, Disability and Rehabilitation: Assistive Technology, vol. 13, no. 7, pp. 683-703, 2018. Show Context CrossRef  Google Scholar 

12. M. Li, Z. Liang, B. He, C.-G. Zhao, W. Yao, G. Xu, et al., “Attention-controlled assistive wrist rehabilitation using a low-cost eeg sensor”, IEEE Sensors Journal, vol. 19, no. 15, pp. 6497-6507, 2019. Show Context View Article Full Text: PDF (4401KB) Google Scholar 

13. D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black, M. Ravishankar and A. I. Rudnicky, “Pocketsphinx: A free real-time continuous speech recognition system for hand-held devices”, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 1, pp. I-I, 2006. Show Context View Article Full Text: PDF (89KB) Google Scholar 

14. J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You only look once: Unified real-time object detection”, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788, 2016. Show Context View Article Full Text: PDF (1742KB) Google Scholar 

Source: https://ieeexplore.ieee.org/abstract/document/9189174

, , , , , , , , , , , , , ,

Leave a comment

[Abstract + References] Toward Human-Powered Lower Limb Exoskeletons: A Review – Conference paper

Abstract

Most of the commercially available exoskeletons use rechargeable Li-ion batteries, which require frequent charging. The battery charging becomes a big bottleneck, when the person, wearing the exoskeleton, needs to go for a week trip on trekking or mountaineering. In order to make batteries more reliable and portable, an alternative energy source can be a good option. Human-powered devices are useful as an emergency electric power source, during natural disaster, war, or civil disturbance make regular power supplies unavailable. These devices have also been treated as an economical and environment-friendly option for use in underdeveloped countries, where batteries may be expensive and main power supply is unreliable or sometimes unavailable. Some of the environmental-energy-producing sources are piezoelectric devices, vibrational sources, RF transmitters, etc., where each method produces different amount of electricity. Some of these sources do not produce enough energy to charge an exoskeleton’s battery. Therefore, in this article, an effort has been made to review the human-powered products in order to develop a mechanism that can be used for charging the battery of exoskeletons. Human power is defined as the use of human work for energy generation. The energy is harvested from the user’s daily actions (walking, breathing, body heat, blood pressure, finger motion, etc.). This paper compares the various conventional and alternative methods to charge lower limb exoskeletons to be used for elderly people.

References

  1. 1.Kazerooni, H., Steger, R.: The berkeley lower extremity exoskeleton. Trans. ASME, J. Dyn. Syst. Meas. Control. 128, 14–25 (2006)CrossRefGoogle Scholar
  2. 2.Huang, G.T.: Wearable robots, Technol. Rev., pp. 70–73, (2004)Google Scholar
  3. 3.Kawamoto, H., Lee, S., Kanbe, S., Sankai, Y.: Power assist method for HAL-3 using EMG-based feedback controller. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 1648–1653, (2003)Google Scholar
  4. 4.Yamamoto, K, Hyodo, H., Ishii, M., Matsuo, T.: Development of power assisting suit for assisting nurse labor. JSME Int. J., Ser. C., 3. 45, 703–711 (2002)Google Scholar
  5. 5.Pratt J.E., Krupp, B.T., Morse, J.C., Collins, S.H.: The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. In: Proceeding International Conference on Robotics and Automation New Orleans, LA, pp. 2430–2435, (2004)Google Scholar
  6. 6.Honda: The power of dreams, http://www.walkassist.honda.com
  7. 7.Dollar, A.M., Herr, H.: Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans. On Robotics, 1. 24 (2008)Google Scholar
  8. 8.Brokaw, E.B., Black, I., Holley, R.J., Lum, P.S.: Hand spring operated movement enhancer (handsome): a portable, passive hand exoskeleton for stroke rehabilitation. IEEE Tran. on Neu. Sys. and Rehab. Engg., 4. 19, 391–399 (2011)Google Scholar
  9. 9.Toyama, S., Yamamoto, G.: Development of wearable-agri-robot: mechanism for agricultural work. In: IEEE International Conference on Intelligent Robotics and Systems, pp. 5801–5806, (2009)Google Scholar
  10. 10.Shima, K., Eguchi, R., Shiba, K., Tsuji, J.: CHRIS: cybernetic human-robot interface systems. In: Proceedings of International Symposium on Robotics, vol. 36 (2005)Google Scholar
  11. 11.Egawa, S., Takeuchi, I., Koseki, A., Ishii, T.: Electrically assisted walker with supporter-embedded force-sensing device. In: 8th International Conference on Rehabilitation Robotics, (2003)Google Scholar
  12. 12.Toyota motor corporation, http://www.toyota.co.jp/en/news/04/1203_1d.html
  13. 13.Colson, C.M., Nehrir, M.H.: Evaluating the benefits of a hybrid solid oxide fuel cell combined heat and power plant for energy sustainability and emissions avoidance. IEEE Trans. Energy Convers. 1(26), 140–148 (2011)CrossRefGoogle Scholar
  14. 14.Lee, J., Koo, D., Moon, S., Han, C.: Design of an axial flux permanent magnet generator for a portable hand crank generating system. IEEE Tran. on Magn., 11. 48, (2012)Google Scholar
  15. 15.Rao, Y., Cheng, S., Arnold, D. P.: An energy harvesting system for passively generating power from human activities. J. Micromech. Microengg. 11. 23, (2013)Google Scholar
  16. 16.Huong, H.O.C., Sarah, S., Parasuraman, S., Ahamed-Khan, MKA., Elamvazuthi, I.: Energy harvesting from human locomotion: gait analysis, design and state of art. In: Int. Con. on Robot PRIDE Proc. Comp. Sci. Vol. 42, pp. 327 – 335, (2014)Google Scholar
  17. 17.Bowers, B.J., Arnold, D.P.: Spherical, rolling magnet generators for passive energy harvesting from human motion. J. Micromech. Microengg. 9. Vol. 19, (2009)Google Scholar
  18. 18.Roundy, S.J.: Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. Diss. University of California, Berkeley (2003)Google Scholar
  19. 19.Sterken, T., Fiorini, P., Baert, K., Borghs, G., Puers, R.: Novel design and fabrication of a MEMS electrostatic vibration scavenger. In: Power MEMS Conference, pp. 18–21, (2004)Google Scholar
  20. 20.Ani, S.O., Bang, D., Polinder, H., Lee, J.Y., Moon, S.R., Koo, D.H.: Human powered axial flux permanent magnet machines: review and comparison. In: IEEE In Energy Conversion Congress and Exposition (ECCE), pp. 4165–4170, (2010)Google Scholar
  21. 21.Ani, S.O., Bang, D., Polinder, H., Lee, J.Y., Moon, S.R., Koo, D.H.: Design of portable axial flux permanent magnet machines for human power generation. In: IEEE International Conference on Electrical Machines and Systems (ICEMS), pp. 414–417, 2010Google Scholar
  22. 22.Louie, H., Peng, K., Hoffstetter, E., Szablya, S.J.: Design and testing of a small human-powered generator for developing rural communities. In: IEEE North American Power Symposium (NAPS), pp. 1–8, (2010)Google Scholar
  23. 23.Snyder, D.S.: Vibrating transducer power supply for use in abnormal tire condition warning systems. U.S. Patent 4, 384,482 (1983)Google Scholar
  24. 24.Snyder, D.S.: Piezoelectric reed power supply for use in abnormal tire condition warning systems. U.S. Patent 4, 510,484, (1985)Google Scholar
  25. 25.Sodano, H.A., Park, G., Leo, D.J., Inman, D.J.: Use of piezoelectric energy harvesting devices for charging batteries. Smart Struct. Mater.: Smart Sensor Technol. Meas. Syst. Proc. SPIE. 5050, 101–108 (2003)Google Scholar
  26. 26.Roundy, S., Wright, P.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131–1142 (2004)CrossRefGoogle Scholar
  27. 27.Torres, E.O., Rincon-Mora, G.A.: Electrostatic energy-harvesting and battery-charging cmos system prototype. IEEE Trans. on Circuits and Syst. 9(56):1938–1948 (2008)Google Scholar
  28. 28.Beeby, S.P., Tudor, M. J., White, N. (2006) Energy harvesting vibration sources for microsystems applications. Meas. Sci. and Tech. 12(17):175–195Google Scholar
  29. 29.Vullers, R.J.M., Schaijk, R.V., Doms, I., Hoof, C.V., Mertens, R.: Micropower energy harvesting. Solid-State Electron. 53, 684–693 (2009)CrossRefGoogle Scholar
  30. 30.Neerg trading LTD. catalogue human power generators, http://www.neerg.cn/products/human-power-generator-catalogue.html
  31. 31.Tiwari, P.S., Gite, L.P., Pandey, M.M., Shrivastava, A.K.: Pedal power for occupational activities: effect of power output and pedaling rate on physiological responses. Int. J. Ind. Ergon. 3(41), 261–267 (2011)CrossRefGoogle Scholar
  32. 32.Strzelecki, R., Jarnut, M., Benysek, G.: Exercise bike powered electric generator for fitness club appliances. In: European Conference on Power Electronics and Applications, pp. 1–8, (2007)Google Scholar
  33. 33.Mechtenberg, A.R., Borchers, K., Miyingo, E.W., Hormasji, F., Hariharan, A., Makanda, J.V., Musaazi, M.K.: Human power (HP) as a viable electricity portfolio option below 20 W/Capita. Energy Sust. Dev. 16, 125–145 (2012)CrossRefGoogle Scholar
  34. 34.Bang, D., Ani, S., Polinder, H., Lee, J., Moon, S., Koo, D.: Design of portable axial flux permanent magnet machines for human power generation. IEEE Trans. on Magn., 11. vol. 48, pp. 2977–2980, (2012)Google Scholar
  35. 35.Ashe, S., Navarro, S.,: Merry-Go-Round Human Powered Generators. Senior Project, California Polytechnic State University, (2013–14)Google Scholar
  36. 36.Bock, T., Linner, T., Ikeda, W.: Exoskeletons and humanoid robotic technology in construction and built environment, INTECH open Access Publisher, (2012)Google Scholar
  37. 37.Tariq, M., Shamsi, K., Akhtar, T.: A portable manual charkha based power generation system for rural areas. ISESCO, J. Sci. Technol. 16(9), 89–93 (2013)Google Scholar
  38. 38.Linqiang, L., Dahu, W., Tong, Z., Mingke, H.: A manual mobile phone charger. In: International Conference on Electrical and Control Engineering, pp. 79–82, (2010)Google Scholar
  39. 39.Windstream Power LLC—Permanent Magnet DC generators for wind and pedal power, http://www.windstreampower.com/humanpower/hpgmk3.html
  40. 40.Jansen, A., Slob, P.: Human power: comfortable one-hand cranking. Presented at International conference on engineering design (ICED), Stockholm, August (2003)Google Scholar
  41. 41.Moyers, W.L., Coombe, H.S., Hartman, A.: Harvesting energy with hand-crank generators to support dismounted soldier missions. http://www.dtic.mil/cgibin/GetTRDoc?AD=ADA433537&Location=U2&doc=GetTRDoc.pdf
  42. 42.Lopez, E.P.: Design and testing of a novel human-powered generator device as a backup solution to power Cranfield’s nano-membrane toilet. M.Sc. thesis, Cranfield University, (2014)Google Scholar
  43. 43.Foot Powered Generator, http://www.energyharvestingjournal.com/articles/1718/foot-powered-generator
  44. 44.Riener, R., Lünenburger, L., Maier, I.C., Colombo, G., Dietz, V.: Locomotor training in subjects with sensorimotor deficits: an overview of the robotic gait orthosis lokomat. J. Healthc Eng. 1(2), 197–216 (2010)Google Scholar

Source: https://link.springer.com/chapter/10.1007%2F978-981-13-0761-4_75

, , , , , ,

Leave a comment

[ARTICLE] Exoskeleton use in post-stroke gait rehabilitation: a qualitative study of the perspectives of persons post-stroke and physiotherapists – Full Text

Abstract

Background

Wearable powered exoskeletons are a new and emerging technology developed to provide sensory-guided motorized lower limb assistance enabling intensive task specific locomotor training utilizing typical lower limb movement patterns for persons with gait impairments. To ensure that devices meet end-user needs it is important to understand and incorporate end-users perspectives, however research in this area is extremely limited in the post-stroke population. The purpose of this study was to explore in-depth, end-users perspectives, persons with stroke and physiotherapists, following a single-use session with a H2 exoskeleton.

Methods

We used a qualitative interpretive description approach utilizing semi-structured face to face interviews, with persons post-stroke and physiotherapists, following a 1.5 h session with a H2 exoskeleton.

Results

Five persons post-stroke and 6 physiotherapists volunteered to participate in the study. Both participant groups provided insightful comments on their experience with the exoskeleton. Four themes were developed from the persons with stroke participant data: (1) Adopting technology; (2) Device concerns; (3) Developing walking ability; and, (4) Integrating exoskeleton use. Five themes were developed from the physiotherapist participant data: (1) Developer-user collaboration; (2) Device specific concerns; (3) Device programming; (4) Patient characteristics requiring consideration; and, (5) Indications for use.

Conclusions

This study provides an interpretive understanding of end-users perspectives, persons with stroke and neurological physiotherapists, following a single-use experience with a H2 exoskeleton. The findings from both stakeholder groups overlap such that four over-arching concepts were identified including: (i) Stakeholder participation; (ii) Augmentation vs. autonomous robot; (iii) Exoskeleton usability; and (iv) Device specific concerns. The end users provided valuable perspectives on the use and design of the H2 exoskeleton, identifying needs specific to post-stroke gait rehabilitation, the need for a robust evidence base, whilst also highlighting that there is significant interest in this technology throughout the continuum of stroke rehabilitation.

Introduction

Over the period 1990–2017 there has been a 3% increase in age-standardized rates of global stroke prevalence [1] and a 33% decrease in mortality due to improved risk factor control and treatments [2]. Therefore, stroke survivors are living longer with mild to severe lifelong disabilities requiring long term assistance [1]. As a result, stroke presents a significant socioeconomic burden accounting for the largest proportion of total disability adjusted life years (47.3%) of neurological disorders [3]. Walking impairments, one aspect of stroke disabilities, negatively impact independence and quality of life [4], and recovery of walking is a primary goal post-stroke [5].

Wearable powered exoskeletons are a new and emerging technology originally developed as robots to enable persons who were completely paralyzed due to spinal cord injury to stand and walk [67], but more recently developed to provide sensory-guided motorized lower limb assistance to persons with gait impairments [8]. They require the active participation of the user from the perspective of integrating postural control/balance and the locomotion pattern in real life environments whilst simultaneously providing assistance to achieve typical lower limb movement patterns in a task specific manner [8]. The Exo-H2 is a novel powered exoskeleton in that it has six actuated joints, the hip, knee and ankle bilaterally, and uses an assistive gait control algorithm to provide lower limb assistance when the gait pattern deviates from a prescribed pattern [9]. As stroke impairments typically influence hip, knee and ankle movements the H2 was considered an appropriate exoskeleton for our study [810].

Significant limitations persist in current exoskeleton designs such as weight, cost, size, speed and efficiency [11]. Although end-users’ perspectives are essential in the design and development of assistive technology [1213], there is a paucity of literature from both persons with disabilities and physiotherapists (PTs) perspectives [1415]. Over the last decade end-user perspectives have primarily been studied in spinal cord injury (SCI) in which four studies used semi-structured interviews [16,17,18,19], and 3 studies used survey methods [20,21,22] with sample size ranging from 3 to 20 persons. However, these studies included both complete and incomplete SCI with most participants being non-ambulatory representing a very different end-user population compared to persons post-stroke. A further two studies reported end-user perspectives using survey methods with persons with multiple sclerosis (MS) [23], and persons with MS, SCI or acquired brain injury (ABI) [24]. Wolff et al.,(2014) utilized an online survey to evaluate perspectives on potential use of exoskeletons with wheelchair users, primarily persons with SCI, and healthcare professionals, but no PTs were included [25]. To date only one study by Read et al.,(2020) specifically investigated perspectives of 3 PTs on exoskeleton use using semi-structured interviews with persons with SCI or stroke. Currently, a mixed-methods study is underway to investigate perspectives of PTs and persons with stroke [26]. Thus, further research is needed to explore in-depth, utilizing a qualitative research approach, end-users’ perspectives on lower limb exoskeleton use in post-stroke gait rehabilitation.

It is important to understand and incorporate end-user perspectives [27], persons post-stroke and physiotherapists, with respect to the design of exoskeletons and their implementation to effectively facilitate uptake both in clinical practice and community settings. Therefore, the purpose of our study is to explore the perspectives of persons post-stroke and physiotherapists following a 1.5 h single-use session with a H2 exoskeleton.[…]

Continue —-> https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-020-00750-x

, , , , , , ,

Leave a comment

[Abstract + References] Adaptive Gait Planning for Walking Assistance Lower Limb Exoskeletons in Slope Scenarios

Abstract

Lower-limb exoskeleton has gained considerable interests in walking assistance applications for paraplegic patients. In walking assistance of paraplegic patients, the exoskeleton should have the ability to help patients to walk over different terrains in the daily life, such as slope terrains. One critical issue is how to plan the stepping locations on slopes with different gradients, and generate stable and human-like gaits for patients. This paper proposed an adaptive gait planning approach which can generate gait trajectories adapt to slopes with different gradients for lower-limb walking assistance exoskeletons. We modeled the human-exoskeleton system as a 2D Linear Inverted Pendulum Model (2D-LIPM) with an external force in the two-dimensional sagittal plane, and proposed a Dynamic Gait Generator (DGG) based on an extension of the conventional Capture Point (CP) theory and Dynamic Movement Primitives (DMPs). The proposed approach can dynamically generate reference foot locations for each step on slopes, and human-like adaptive gait trajectories can be reproduced after the learning from demonstrated trajectories that sampled from level ground walking of normal healthy human. We demonstrated the efficiency of the proposed approach on both the Gazebo simulation platform and an exoskeleton named AIDER. Experimental results indicate that the proposed approach is able to provide the ability for exoskeletons to generate appropriate gaits adapt to slopes with different gradients.

References

1. A. Esquenazi, M. Talaty, A. Packel and M. Saulino, “The rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury”, Am J Phys Med Rehabil, vol. 91, no. 11, pp. 911-921, 2012. Show Context CrossRef  Google Scholar 

2. L. E. Miller, A. K. Zimmermann and W. G. Herbert, “Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis”, Medical Devices, vol. 9, pp. 455, 2016. Show Context CrossRef  Google Scholar 

3. C. Tefertiller, K. Hays, J. Jones, A. Jayaraman, C. Hartigan, T. Bush-nik, et al., “Initial outcomes from a multicenter study utilizing the indego powered exoskeleton in spinal cord injury”, Topics in Spinal Cord Injury Rehabilitation, 2017. Show Context Google Scholar 

4. H. Kawamoto, S. Lee, S. Kanbe and Y. Sankai, “Power assist method for hal-3 using emg-based feedback controller”, IEEE International Conference on Systems Man and Cybernetics, vol. 2, pp. 1648-1653, 2003. Show Context View Article Full Text: PDF (459KB) Google Scholar 

5. S. Kajita, F. Kanehiro, K. Kaneko and K. Yokoi, “The 3d linear inverted pendulum mode: a simple modeling for a biped walking pattern generation”, IEEE/RSJ International Conference on Intelligent Robots and Systems 2001. Proceedings, vol. 1, pp. 239-246, 2001. Show Context View Article Full Text: PDF (558KB) Google Scholar 

6. S. Kajita and K. Tani, “Study of dynamic walk control of a biped robot on rugged terrain using the linear inverted pendulum mode”, Transactions of the Society of Instrument & Control Engineers, vol. 27, no. 2, pp. 177-184, 2009. Show Context CrossRef  Google Scholar 

7. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, et al., “Biped walking pattern generation by using preview control of zero-moment point”, IEEE International Conference on Robotics and Automation 2003. Procedings. ICRA, pp. 1620-1626, 2003. Show Context View Article Full Text: PDF (382KB) Google Scholar 

8. M. Morisawa, S. Kajita, F. Kanehiro and K. Kaneko, “Balance control based on capture point error compensation for biped walking on uneven terrain”, IEEE-RAS International Conference on Humanoid Robots, pp. 734-740, 2012. Show Context View Article Full Text: PDF (1560KB) Google Scholar 

9. S. Kajita, H. Hirukawa, K. Harada and K. Yokoi, Introduction to humanoid robotics, Springer Berlin Heidelberg, 2014. Show Context Google Scholar 

10. W. Pierre-Brice, “Model predictive control for biped walking motion generation”, Journal of the Robotics Society of Japan, vol. 32, no. 6, pp. 503-507, 2014. Show Context Google Scholar 

11. P. B. Wieber and C. Chevallereau, “Online adaptation of reference trajectories for the control of walking systems”, Robotics & Autonomous Systems, vol. 54, no. 7, pp. 559-566, 2006. Show Context CrossRef  Google Scholar 

12. H. Diedam, D. Dimitrov, P. B. Wieber and K. Mombaur, “Online walking gait generation with adaptive foot positioning through linear model predictive control”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1121-1126, 2008. Show Context Google Scholar 

13. C. Brasseur, A. Sherikov, C. Collette, D. Dimitrov and P.-B. Wieber, “A robust linear mpc approach to online generation of 3d biped walking motion”, Humanoid Robots (Humanoids) 2015 IEEE-RAS 15th International Conference on, pp. 595-601, 2015. Show Context View Article Full Text: PDF (255KB) Google Scholar 

14. J. Englsberger and C. Ott, “Integration of vertical com motion and angular momentum in an extended capture point tracking controller for bipedal walking”, IEEE-RAS International Conference on Humanoid Robots, pp. 183-189, 2012. Show Context View Article Full Text: PDF (252KB) Google Scholar 

15. M. Krause, J. Englsberger, P. B. Wieber and C. Ott, “Stabilization of the capture point dynamics for bipedal walking based on model predictive control”, IFAC Proceedings Volumes, vol. 45, no. 22, pp. 165-171, 2012. Show Context CrossRef  Google Scholar 

16. J. Englsberger, C. Ott and A. Albu-Schaffer, “Three-dimensional bipedal walking control using divergent component of motion”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2600-2607, 2013. Show Context View Article Full Text: PDF (434KB) Google Scholar 

17. J. Englsberger, T. Koolen, S. Bertrand and J. Pratt, “Trajectory generation for continuous leg forces during double support and heel-to-toe shift based on divergent component of motion”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4022-4029, 2014. Show Context View Article Full Text: PDF (412KB) Google Scholar 

18. S. A. Murray, K. H. Ha, C. Hartigan and M. Goldfarb, “An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke”, IEEE Transactions on Neural Systems & Rehabilitation Engineering, vol. 23, no. 3, pp. 441-449, 2015. Show Context View Article Full Text: PDF (1319KB) Google Scholar 

19. B. E. Lawson, H. A. Varol, A. Huff, E. Erdemir and M. Goldfarb, “Control of stair ascent and descent with a powered transfemoral prosthesis”, IEEE Transactions on Neural Systems & Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society, vol. 21, no. 3, pp. 466-473, 2013. Show Context View Article Full Text: PDF (1330KB) Google Scholar 

20. A. H. Shultz, B. E. Lawson and M. Goldfarb, “Variable cadence walking and ground adaptive standing with a powered ankle prosthesis”, IEEE Transactions on Neural Systems & Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society, vol. 24, no. 4, pp. 495, 2015. Show Context View Article Full Text: PDF (1260KB) Google Scholar 

21. T. Koolen, T. D. Boer, J. Rebula, A. Goswami and J. Pratt, “Capturability-based analysis and control of legged locomotion part 1: Theory and application to three simple gait models”, International Journal of Robotics Research, vol. 31, no. 9, pp. 1094-1113, 2012. Show Context CrossRef  Google Scholar 

22. J. Pratt, J. Carff, S. Drakunov and A. Goswami, “Capture point: A step toward humanoid push recovery”, IEEE-RAS International Conference on Humanoid Robots, pp. 200-207, 2006. Show Context View Article Full Text: PDF (798KB) Google Scholar 

23. J. E. Pratt, P. D. Neuhaus, M. Johnson, J. Carff and B. T. Krupp, “Towards humanoid robots for operations in complex urban environments”, Proceedings of SPIE – The International Society for Optical Engineering, pp. 769-769, 2010. Show Context CrossRef  Google Scholar 

24. A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor and S. Schaal, “Dynamical movement primitives: Learning attractor models for motor behaviors”, Neural Computation, vol. 25, no. 2, pp. 328-373, 2013. Show Context View Article Full Text: PDF (2567KB) Google Scholar 

25. S. Schaal, Dynamic Movement Primitives -A Framework for Motor Control in Humans and Humanoid Robotics, Tokyo:Springer, 2006. Show Context CrossRef  Google Scholar 

26. P. Pastor, H. Hoffmann, T. Asfour and S. Schaal, “Learning and generalization of motor skills by learning from demonstration”, IEEE International Conference on Robotics and Automation, pp. 763-768, 2009. Show Context View Article Full Text: PDF (2900KB) Google Scholar 

27. R. Krug and D. Dimitrov, “Model predictive motion control based on generalized dynamical movement primitives”, Journal of Intelligent & Robotic Systems, vol. 77, no. 1, pp. 17-35, 2015. Show Context CrossRef  Google Scholar 

28. J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal and M. Kawato, “A framework for learning biped locomotion with dynamical movement primitives”, IEEE/RAS International Conference on Humanoid Robots, pp. 925-940, 2005. Show Context Google Scholar 

29. S. Schaal and C. G. Atkeson, “Constructive incremental learning from only local information”, Neural Computation, vol. 10, no. 8, pp. 2047-2084, 1998. Show Context View Article Full Text: PDF (572KB) Google Scholar 

Source: https://ieeexplore.ieee.org/document/8793863/references#references

, , , , , , , , , , ,

Leave a comment

[Conference Paper] HandMATE: Wearable Robotic Hand Exoskeleton and Integrated Android App for At Home Stroke Rehabilitation – Full Text

Abstract

We have developed HandMATE (Hand Movement Assisting Therapy Exoskeleton); a wearable motorized hand exoskeleton for home-based movement therapy following stroke. Each finger and the thumb is powered by a linear actuator which provides flexion and extension assistance. Force sensitive resistors integrated into the design measure grasp and extension initiation force. An assistive therapy mode is based on an admittance control strategy. We evaluated our control system via subject and bench testing. Errors during a grip force tracking task while using the HandMATE were minimal (<1%) and comparable to unassisted healthy hand performance. We also outline a dedicated app we have developed for optimal use of HandMATE at home. The exoskeleton communicates wirelessly with an Android tablet which features guided exercises, therapeutic games and performance feedback. We surveyed 5 chronic stroke patients who used the HandMATE device to further evaluate our system, receiving positive feedback on the exoskeleton and integrated app.

SECTION I.

Introduction

Stroke is the leading cause of severe long-term disability in the US [1]. The probability of regaining functional use of the impaired upper extremity is low [2]. At 6 months post stroke, 62% of survivors failed to achieve some dexterity [3]. Such impairments can inhibit the individual’s ability to perform activities of daily living (ADL). Subsequently, upper limb rehabilitation recovery to improve ADL is one of the main self-reported goals of stroke survivors [4].

Outpatient rehabilitation is recommended for survivors that have been discharged from inpatient rehabilitative services [5]. However, outpatient rehabilitation in general is largely underutilized, with only 35.5% of stroke survivors using services [6]. Factors inhibiting outpatient therapy include cost, lack of resources and transportation. Wearable robotics that enable home-based therapy have the potential to overcome these barriers. They provide assistive movement forces which enable task-specific training in real-life situations that patients are often unable to practice without a clinician. See [7] for wearable hand robots for rehabilitation review.

At home therapy is not without its limitations. The inability to motivate oneself and fatigue are the most common reported factors resulting in failure to adhere to home based exercise programs for stroke recovery [8]. While wearable robotics can reduce fatigue during exercise, it does not directly address lack of motivation. Research has shown incorporating games into home therapy can encourage compliance [9]. Zondervan et al. showed that use of an instrumented sensor glove, named the MusicGlove, improved self-reported use and quality of movement, greater than convention at home exercises [9]. Other studies showed increased motivation to complete the therapeutic exercises and optimized movement when the user is given feedback of their performance via the Microsoft Kinect [10]. Wearable robotic systems that offer feedback and gaming capability may optimize at home stroke therapy.

Such a system was presented by Nijenhuis et al. in which stroke survivors showed motor improvements after completing a 6 week self-administered training program comprised of a dynamic hand orthosis and gaming environment [11]. However, the hand device was passive, assisting only with extension, which limits the range of stroke survivors who could utilize such a system. Research groups have proposed combining their powered take-home wearable hand devices with custom integrated gaming systems [12], or guided exercises [13]; however, they have yet to conduct clinical trials. Notably, Ghassemi et al., have developed an integrated multi-user VR system to use with their X-Glove actuated orthosis, which will allow for client-therapist sessions without the patient having to travel [12].

Tablets are relatively inexpensive, portable, and straight forward to use, with 47% of internet users globally already owning one [14]. Furthermore, a recent study demonstrated the success of a tablet based at home exercise program in improving the recovery of stroke survivors [15]. Notably, the study evaluated the accessibility of tablets, concluding every participant used the tablet successfully. Therefore a wearable powered hand robot with a dedicated tablet app which will provide functional games, task-specific guided exercises and feedback of movement, could optimize at home stroke therapy.

SECTION II.

Aims

The goal of this project was to create a wearable robotic exoskeleton that enables repetitive practice of task-specific and goal orientated movements, which translates into improvements in ADL. Furthermore, for maximum use and successful integration into home-based rehabilitation, we aimed to create an Android application compatible with the robotic exoskeleton.

To meet these goals, the following design objectives were established: 1) Assistance with finger flex/extension. 2) Assistance with thumb carpometacarpal (CMC) add/abduction and thumb metacarpophalangeal (MCP) flex/extension. 3) Independent assistive control of each finger and thumb. 4) Portable for at home use, meaning the device has to be lightweight and wireless. 5) Relatively affordable. 6) Integrated with android tablet app. Specific design goals for the app included: 1) Easy to use. 2) Allow the user to control the exoskeletons assistance mode through the app. 3) Records the user’s data and prompts the user via notifications to complete the allocated daily or weekly recommended activity time.

In this paper we will evaluate if the proposed device and app goals have been achieved via bench and subject testing.

SECTION III.

Design

The HandMATE device (Fig. 1) builds upon the Hand Spring Operated Movement Enhancer (HandSOME) devices [16][17][18]. The HandSOME devices are non-motorized wearable exoskeletons that assists stroke patients with finger and thumb extension movements. The HandSOME I device assists with gross whole hand opening movements, while the HandSOME II assists isolated extension movement of 15 finger and thumb degrees of freedom (DOF), allowing performance of various grip patterns used in ADL. While both devices have been shown to significantly increase range of motion (ROM) and functional ability in chronic stroke subjects [16],[18], the HandSOME devices only assist with extension movements and require enough flexion activity to overcome the assistance of the extension springs. As many stroke patients also suffer finger and thumb flexion weakness, we decided to build upon the work of the high DOF HandSOME II and additionally utilize power actuation so we can assist with both flexion and extension movements.

Figure 1: - 
HandMATE device. Individually actuated fingers and thumb shown. Electronics box is affixed to back of splint.
Figure 1:
HandMATE device. Individually actuated fingers and thumb shown. Electronics box is affixed to back of splint.

Continue —-> https://ieeexplore.ieee.org/abstract/document/9175332

, , , , , , , , , , , , ,

Leave a comment

[WEB PAGE] ReWalk Robotics Expands Rehab Product Portfolio

ReWalk Robotics Expands Rehab Product Portfolio

 

ReWalk Robotics Ltd has finalized and moved to implement two separate agreements to distribute additional product lines in the United States market. These include telehealth-capable stroke rehabilitation devices as well as clinic and home use devices for persons with spinal cord injury.

Upon commencement of the effective periods of these agreements, the company will be the exclusive distributor of the MediTouch Tutor movement biofeedback systems in the United States, and will also have distribution rights for the MYOLYN MyoCycle Functional Electrical Stimulation (FES) cycles to US rehabilitation clinics and personal sales through the US Department of Veterans Affairs hospitals, the company notes in a media release.

“These impressive technologies serve similar clinician and patient profiles as our current products, which presents an opportunity to increase same-site sales, and offering a broader portfolio of solutions also potentially expands our access to new customers,” says Andy Dolan, Vice President of Marketing at ReWalk.

“The MediTouch Tutor devices will also give us an entry into the telehealth-capable products category to leverage recent COVID-19 related reimbursement changes and trends in rehabilitative care.”

The MediTouch Tutor movement biofeedback product line includes the Arm, Hand, 3D and Leg Tutor devices. These devices are used by physical and occupational therapists to evaluate functional tasks during rehabilitation of neurologic disorders, and can also be used by patients remotely at home. The system consists of sensors attached to textiles worn on the patient’s hand, arm or leg to detect motion and a web-based program which uses game play to provide instruction and motivation to the patient user. The program also captures and evaluates patient progress and provides feedback to the clinician.

“Entering the US physical rehabilitation clinic and home telehealth markets with our innovative wearable devices and web-based MediTutor app in order to provide the best clinical care and affordable cost effective treatment, while enabling social distancing specifically during this pandemic is a key goal for our company, and we believe that this partnership with ReWalk gives us the customer access we need,” states Giora Ein-ZVi, CEO of MediTouch, the release continues.

The MYOLYN MyoCycles use FES to facilitate therapeutic exercise for persons with muscle weakness or paralysis caused by disorders like spinal cord injury, multiple sclerosis, and stroke. Similar to the ReWalk exoskeleton, these devices can be used in a clinic for rehabilitation or training for an individual to eventually use their own at home. Both the MyoCycle Pro for clinic use and MyoCyle Home for patient home use have Federal Supply Schedule contracts to facilitate sales to VA hospitals and patients with VA benefits.

For more information, visit ReWalk Robotics Ltd.

[Source(s): ReWalk Robotics Ltd, GlobeNewswire]

via ReWalk Robotics Expands Rehab Product Portfolio – Rehab Managment

, , , , , , ,

Leave a comment

[ARTICLE] A new lower limb portable exoskeleton for gait assistance in neurological patients: a proof of concept study – Full Text

Abstract

Background

Few portable exoskeletons following the assist-as-needed concept have been developed for patients with neurological disorders. Thus, the main objectives of this proof-of-concept study were 1) to explore the safety and feasibility of an exoskeleton for gait rehabilitation in stroke and multiple sclerosis patients, 2) to test different algorithms for gait assistance and measure the resulting gait changes and 3) to evaluate the user’s perception of the device.

Methods

A cross-sectional study was conducted. Five patients were recruited (4 patients with stroke and 1 with multiple sclerosis). A robotic, one-degree-of-freedom, portable lower limb exoskeleton known as the Marsi Active Knee (MAK) was designed. Three control modes (the Zero Force Control mode, Mode 1 and Mode 3) were implemented. Spatiotemporal gait parameters were measured by the 10-m walking test (10MWT), the Gait Assessment and Intervention Tool (G.A.I.T.) and Tinetti Performance Oriented Mobility Assessment (gait subscale) before and after the trials. A modified QUEST 2.0 questionnaire was administered to determine each participant’s opinion about the exoskeleton. The data acquired by the MAK sensors were normalized to a gait cycle, and adverse effects were recorded.

Results

The MAK exoskeleton was used successfully without any adverse effects. Better outcomes were obtained in the 10MWT and G.A.I.T. when Mode 3 was applied compared with not wearing the device at all. In 2 participants, Mode 3 worsened the results. Additionally, Mode 3 seemed to improve the 10MWT and G.A.I.T. outcomes to a greater extent than Mode 1. The overall score for the user perception of the device was 2.8 ± 0.4 95% CI.

Conclusions

The MAK exoskeleton seems to afford positive preliminary results regarding safety, feasibility, and user acceptance. The efficacy of the MAK should be studied in future studies, and more advanced improvements in safety must be implemented.

Background

In 2015, neurological disorders accounted for 16.8% of the total deaths worldwide and 10.2% of the global disability-adjusted life-years (DALYs) [1]. These numbers have increased since 1990 due to growing size of the population and aging, and they are expected to continue to increase. By 2030, it is estimated that the population affected by neurological diseases will include as many as 1.136 million people [2]. In Spain, between 6.7–7.5 million people are affected by neurological diseases [3]. The total direct and indirect cost related to neurological diseases was 10.9 million euros in 2004 in this country [34].

Neurological diseases cause functional disturbances, including gait disabilities, that affect patients’ ability to perform activities of daily living [1]. Between 50 and 60% of patients with stroke still have some degree of motor impairment after a conventional rehabilitation period [5]. In multiple sclerosis (MS) patients, gait impairment is a major contributor to social, personal and economic burdens [6]. Thus, gait impairment is one of the main problems in patients with stroke or MS [78].

Due to the extent that gait impairment affects patients, gait rehabilitation is considered a key aspect of physical rehabilitation [9,10,11,12,13,14]. Currently, there is a growing interest in determining which characteristics of training should be involve in gait rehabilitation, as therapies are currently based on repetitive and intensive training and functional and feedback-based interventions [15,16,17]. These characteristics are aligned with the use of exoskeletons in gait rehabilitation. In recent years, this technology has been widely used in stroke and MS studies [18,19,20,21,22,23,24].

To the best of our knowledge, few portable exoskeletons that are lightweight and have the capability to execute or modify gait assistance algorithms have been developed, and a high degree of customization can be allowed by following the assist-as-needed concept [25] for gait assistance in stroke and MS patients. The exoskeleton evaluated in this study is a single-limb exoskeleton with actuation at the knee level (Fig. 1). Thus, the main objectives of this study were 1) to explore the safety and feasibility of the exoskeleton developed by the research team for gait rehabilitation in stroke and MS patients as a proof of concept, 2) to test different algorithms for gait assistance and measure the resulting gait changes and 3) to evaluate the user’s perception of the device.

figure1

Fig. 1 Marsi Active Knee (MAK) exoskeleton, by Marsi Bionics

 

[…]

Continue —-> A new lower limb portable exoskeleton for gait assistance in neurological patients: a proof of concept study | Journal of NeuroEngineering and Rehabilitation | Full Text

 

, , , , , , , , ,

Leave a comment

[BLOG POST] Rehabilitation Medicine is Changing: Use Tech to Keep Up – Hocoma

Rehabilitation Medicine is Changing: Use Tech to Keep Up

The needs of patients are continually evolving just as the aging population continues to grow. Advancements in neurological rehabilitation help top facilities keep the best talent and optimize outcomes in the face of increasing stroke events.

A delicate balance

For neurorehabilitation therapy, there is a delicate balance between available resources and their ever-increasing demand. As demographics change and the global population ages, the healthcare system faces an even heavier economic burden. Experts estimate that stroke rates in Europe will increase by 30% by the year 20501. Improved acute care translates to a growing need for rehab. Limited time with a therapist and a shrinking work force translates to a significant gap in rehabilitation needs versus the availability of care.

 

A growing senior population

It is a well-known fact that in the coming years, the majority of the world’s population will be advanced in age.2 Many aging individuals will experience health complications such as neurological or cardiovascular diseases that require rehabilitative care.3 As acute medical care and survival rates improve, so does the urgent need for rehabilitation. If current rehabilitation practices do not change, hospitals and other medical facilities will likely struggle to accommodate their patients.

Limited Therapist Time

Reports show that even in top European rehab facilities, only a few hours a day are devoted to hands-on care.4 While intensity and repetition have been shown to produce the best clinical outcomes in neurological or physical rehab programs, the majority of a patient’s time in the hospital is spent idle. To maximize therapy time, a change in how rehabilitation is administered would likely benefit patients and providers tremendously. One such change includes technology-assisted training.

Emerging Trends in Biotech

Robotic rehabilitation has been shown to be as effective, if not more effective than conventional care5,6. In addition to facilitating more intense and thorough rehab for patients, this technology confers benefits such as:

  • Empowerment – by giving real-time feedback and promoting autonomy, technology helps patients heal themselves. The internet has also led to increased patient knowledge — a significant boon when handled appropriately by health care professionals.
  • Telemedicine – patients can connect to the best doctors through remote care, allowing them to heal from home. National healthcare systems have successfully reduced the length of inpatient rehabilitation via alternatives like telerehabilitation so that patients can continue their training after discharge.
  • Gamification – increases patient engagement in rehab practice through play. Not only for pediatric patients, games and virtual reality can help older patients remain motivated to complete rehab programs.
  • Body sensors – provide real-time, accurate and digital measurements for feedback and optimal care. Incorporating body sensors, virtual reality and gamification can provide an immersive therapy experience with digital precision.
  • Exoskeletons and prosthetics – enable movement assistance that stabilizes patients and helps them to walk and to complete daily life activities when they would never have been able to achieve this before.

As rehabilitation facilities incorporate new technologies, patient care will become more efficient. Technology enables hospitals to better meet the needs of a growing senior population while preventing therapist burnout in therapists — ultimately making world-class care a reality.

 

References:

1 Norrving B, Barrick J, Davalos A, et al. Action Plan for Stroke in Europe 2018-2030. Eur Stroke J. 2018;3(4):309–336. doi:10.1177/2396987318808719
2 Beard JR, Officer A, de Carvalho IA, et al. The World report on ageing and health: a policy framework for healthy ageing. Lancet. 2016;387(10033):2145–2154. doi:10.1016/S0140-6736(15)00516-4
3 Béjot Y, Bailly H, Graber M, Garnier L, Laville A, Dubourget L, Mielle N, Chevalier C, Durier J, Giroud M. Impact of the Ageing Population on the Burden of Stroke: The Dijon Stroke Registry. Neuroepidemiology. 2019;52(1-2):78-85. doi: 10.1159/000492820. Epub 2019 Jan 2. PubMed PMID: 30602168.
4 De Wit L, Putman K, Dejaeger E, Baert I, Berman P, Bogaerts K, Brinkmann N, Connell L, Feys H, Jenni W, Kaske C, Lesaffre E, Leys M, Lincoln N, Louckx F, Schuback B, Schupp W, Smith B, De Weerdt W. Use of time by stroke patients: a comparison of four European rehabilitation centers. Stroke. 2005 Sep;36(9):1977-83. doi: 10.1161/01.STR.0000177871.59003.e3. Epub 2005 Aug 4. PubMed PMID: 16081860.
5 Mehrholz, J., S. Thomas, C. Werner, J. Kugler, M. Pohl and B. Elsner (2017). “Electromechanical-Assisted Training for Walking after Stroke (Update).” Cochrane Database Syst Rev 5: Cd006185.
6 Mehrholz, J., M. Pohl, T. Platz, J. Kugler and B. Elsner (2018). “Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke.” Cochrane Database Syst Rev 9: CD006876.

 

Want to know more? For the full story of the changing landscape of rehabilitation medicine for an aging population, download our pdf: 5 Reasons Technology is the Future of Rehab Medicine

Download Industry Insight PDF

 

via Rehabilitation Medicine is Changing: Use Tech to Keep Up – Hocoma

, , , , , , , ,

Leave a comment

[WEB PAGE] Gaining Ground Against Neurological Injury

Gaining Ground Against Neurological Injury

photo caption: Elizabeth Watson, PT, DPT, NCS, works with a client on gait training using a robot-assisted over-treadmill dynamic body weight support system.

by Elizabeth Watson, PT, DPT, NCS

Recovery following a neurological injury is a long, slow process and does not follow a set time frame. Recovery is about more than just walking; it is about regaining function and improving overall quality of life.

This article explores a specialized program at Magee Rehabilitation Hospital-Jefferson Health in Philadelphia called Gaining Ground. The goal of Gaining Ground is to extend Magee’s mission beyond traditional physical and cognitive therapy services and reduce the barriers to continued exercise and wellness. This article also highlights the different technologies used during this program and the impact on the quality of life of the participants.

Increased evidence supports the benefits of exercise and physical activity on the physiologic and psychosocial function of individuals following neurological injuries.1 In addition, physical inactivity following a neurological injury leads to increased vulnerability to secondary health complications, including cardiovascular disease and loss of bone density and muscle mass.1 Evidence-based physical activity guidelines have been established for the general population and those with disabilities. These guidelines highlight the importance of moderate-intensity aerobic exercise and strength training for individuals with spinal cord injuries and stroke survivors.2,3

Making Progress Accessible

Barriers to continued exercise following a neurological injury include lack of accessible fitness facilities, absence of personal assistants knowledgeable about exercise programs appropriate for those with neurological injuries, absence of specialized equipment, and fear of injury. Gaining Ground was developed to reduce these barriers.

Gaining Ground is an individualized exercise program, taking into account the goals and abilities of the client. The intensive, boot camp-style program takes place 3 days a week for 4 weeks. Clients vary in presentation from those at a power wheelchair level to ambulatory patients. Some are more recently injured, just finishing outpatient therapy and looking to be challenged further and establish a wellness program. Other clients have been injured for more than 20 years and are exploring newer technologies and treatment techniques that did not exist when they were first injured. These clients find that the program’s intense nature often encourages a continued wellness program after Gaining Ground ends.

Program Structure

Each day includes 4 hours of exercise. A one-on-one training session with an activity-based therapy specialist focuses on increasing cardiovascular endurance, muscle strength and flexibility, sitting or standing tolerance, and balance. Working with a physical therapist provides the opportunity to continue working toward goals not reached during traditional therapy, as well as a chance to trial different technologies and specialized equipment working toward more neurological recovery. Once a client’s program is established, he or she is set up on specialized equipment such as a locomotor device or FES cycle for an hour of activity-based exercise.

A daily group exercise class helps increase strength, improve cardiovascular endurance, and enhance overall well-being. Exercises emphasize the muscle groups of the upper extremity and core necessary to complete daily functional activities. Group sessions include a circuit using the multi-station wheelchair-accessible weight machine, a wheelchair-accessible upper extremity exerciser, a conventional weight machine, a free weight and therapy band circuit training program, and getting onto the floor to work on whole body exercises. This allows clients the opportunity to practice getting on and off the floor in a safe environment and reduce the negative association of being on the floor related to falls. The group environment fosters interaction with others working toward a common goal.

Cardiorespiratory and strength training presented in a group setting with peers provides not just physical but also emotional improvements.1,4 Depression scores and bodily pain scores decreased after participation in a group exercise program for individuals with spinal cord injuries. Past participants of Gaining Ground have commented on the motivating environment of the group sessions.

Equipment utilized during the program may include functional electrical stimulation systems, gait training devices such as the robot-assisted over-treadmill dynamic body weight support system, mobile robotic over-ground body weight support system, lower extremity robotic exoskeletons, vibration therapy plate, computerized balance system, wheelchair-accessible upper extremity exerciser, multi-station wheelchair accessible weight machine, resistance circuit trainer, rowing ergometer, recumbent trainer, and upper body ergometer. A few of the more advanced technologies are detailed below.

Most Gaining Ground clients utilize the robot-assisted body weight support system two to three times a week.
One-on-one training focuses on cardiovascular endurance, strength and flexibility, sitting or standing tolerance, and balance.

Body Weight Support Training

The robot-assisted over-treadmill dynamic body weight support system utilizes robotic-assisted gait training. A harness suspends the patient over a treadmill while the legs are guided through the walking pattern using a robotic orthosis. Speed, the amount of load through the legs, and the amount of guidance provided by the robotic orthosis, are all variables that can be adjusted to appropriately challenge the client. The robot-assisted over-treadmill body weight support system enables effective and intensive training promoting neuroplasticity and recovery potential.

This system can be used with various augmented performance feedback games. The level of difficulty can be chosen based on the client’s ability and therapy focus. Studies have shown that when using augmented performance feedback, muscle activation and cardiovascular exertion can be considerably increased.5 Most clients in the Gaining Ground Program utilize this device two to three times a week.

The mobile robotic over-ground body weight support system allows a therapist to work on overground balance and gait training, bridging the gap between treadmill-based activities and free walking. The system can provide body-weight support equally or asymmetrically depending on a client’s impairments. Therapists can steer this device or choose the mode that allows a patient to work on self-directed gait. Therapists can challenge the patient with various balance and functional activities by using a balance board, steps, or varied terrain within the width of the device’s frame.

Exoskeleton Training

Another type of equipment used for upright positioning and gait training are robotic exoskeletons designed for the lower limbs. These wearable bionic suits help patients with lower extremity weakness or paralysis to stand and walk overground using a reciprocal pattern with full weight bearing using a walker, crutches, or cane. Sensors in the device trigger a step once the patient shifts weight in the appropriate manner. Motors in the hip and knee joints power the movement in place of decreased leg function. During the Gaining Ground program, therapists use the exoskeletal devices in two ways. The robotic exoskeleton allows those with motor complete spinal cord injuries the opportunity to be upright and reap the benefits of dynamic weight bearing. These include maintenance of bone mass, improved balance and trunk activation, improved sleep, mental outlook, mood and motivation, improved bowel and bladder function with decreased incidence of UTIs, decreased pain, decreased incidence of pressure ulcers, reduction in fat mass, and increase in lean body mass.

These devices can also be used to retrain weight shifting and gait patterns of clients with incomplete spinal cord injuries, and post stroke or traumatic brain injury. As a client relearns the appropriate gait pattern, the amount of assistance provided by the motors is adjusted at each leg and each joint individually to challenge the client. Improved gait parameters and gait speed have been seen following gait retraining using exoskeletal devices with individuals who have incomplete paralysis.

Functional Electrical Stimulation

Functional electrical stimulation (FES) is used in various forms during the Gaining Ground program. Some clients are set up on the FES cycle or FES seated elliptical. Electrodes are placed on up to 12 muscles of the upper extremity, core, or lower extremities. The therapist can customize the stimulation settings to evoke the desired muscle contraction for each muscle group. The motor of the cycle provides the support necessary to complete the cycling motion in conjunction with the stimulation-producing muscle contractions for either upper extremity or lower extremity cycling.

Many patients with neurological injuries experience decreased mobility and physiological function. This more sedentary lifestyle caused by immobility contributes to secondary health complications and the chance of re-hospitalization. The benefits of the FES systems extend beyond reducing muscle atrophy and improving motor function. Studies have shown a positive therapeutic benefit affecting many health conditions including pneumonia, hypertension, heart disease, spasticity, bone density, pressure wounds, urinary tract infections, sepsis, diabetes, weight gain, depression, and quality of life.6

The task-specific integrated functional electrical stimulation systems are utilized by therapists in the Gaining Ground program to work on coordinated, dynamic movement patterns and functional skills with up to 12 channels of stimulation. Each activity has the correct sequenced stimulation pattern to perform the prescribed activity. Common programs worked on during the Gaining Ground program include seated postural correction, bridging, sit to stands, standing, and UE movement patterns. One client with a diagnosis of C4 AIS B tetraplegia demonstrated improved self-feeding and the ability to access the controls on his power wheelchair joystick versus switch options after using the forward reach and grasp program for two consecutive rounds of Gaining Ground.

A robotic exoskeleton was used to help retrain Nicole’s weight shifting and gait patterns during Gaining Ground therapy sessions.

Case Study

Nicole suffered a T2 AIS B injury on August 18, 2018, after an auto accident. In addition to several broken vertebrae, she also suffered six broken ribs, a collapsed lung, and lacerations to her head, face, and hands. Doctors performed two surgeries on her spine, and she underwent intense respiratory therapy. Nicole attended Gaining Ground about 7 months after her injury. She “loved how it pushed [her] out of her comfort zone.” Nicole recognized the individualized nature of the program and how it could be customized to fit her goals. Nicole’s program incorporated use of the exoskeleton or the task-specific integrated FES system for postural retraining and standing during her therapy hours and the robotic over-treadmill dynamic body weight support system three times a week. The training sessions with the activity-based therapy specialist demonstrated what she could achieve independently to continue to challenge herself after the program. As a personal trainer prior to injury, Nicole found this especially valuable. Nicole demonstrated significant progress in her ability to get up and down off the floor each week and realized how important a skill this is.

Magee’s Gaining Ground Program offers clients the opportunity to improve their functional independence and emotional well-being, while setting goals for future wellness initiatives. The small group setting has proven beneficial in helping individuals achieve these goals and make new friends in the process. RM

Elizabeth Watson, PT, DPT, NCS, is clinical supervisor of the Locomotor Training Clinic at Magee Rehabilitation in Philadelphia. She also serves as adjunct professor for area physical therapy programs. In 2018, Dr Watson received the SCI Spinal Interest Group Award for Excellence. Watson earned her DPT from Temple University and is ABPTS certified in Neurologic Physical Therapy. She has presented nationally and published case studies on locomotor training. For more information, contact RehabEditor@medqor.com.

References

  1. Crane DA, Hoffman JM, Reyes MR. Benefits of an exercise wellness program after spinal cord injury. J Spinal Cord Med. 2017;40(2):154-158.
  2. Martin Ginis KA, van der Scheer JW, Latimer-Cheung AE, et al. Evidence-based scientific exercise guidelines for adults with spinal cord injury: an update and a new guideline. Spinal Cord. 2018;45:308-321.
  3. Gordon NF, Gulanick M, Costa F, et al. Physical activity and exercise recommendations for stroke survivors: an American Heart Association scientific statement from the Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention; the Council on Cardiovascular Nursing; the Council on Nutrition, Physical Activity, and Metabolism; and the Stroke Council. Stroke. 2004;35(5):1230-1240.
  4. Saunders DH, Greig CA, Mead GE. Physical activity and exercise after stroke, review of multiple meaningful benefits. Stroke. 2014;45: 3742–3747.
  5. Zimmerli L, Jacky M, LÜnenburger L, Reiner R, Bolliger M. Increasing patient engagement during virtual reality-based motor rehabilitation. Arch Phys Med Rehabil. 2013;94(9):1737-1746.
  6. Dolbow DR, Gorgey AS, Ketchum JM, Gater DR. Home-based functional electrical stimulation cycling enhances quality of life in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil. 2013 Fall;19(4):324-329.

via Gaining Ground Against Neurological Injury – Rehab Managment

, , , , , ,

Leave a comment

[Abstract + References] Auto-LEE: A Novel Autonomous Lower Extremity Exoskeleton for Walking Assistance – IEEE Conference Publication

Abstract

Wearable exoskeletons have been proven to be efficacious in aiding walking for individuals suffering from lower limb mobility disorder. However, the application of most existing devices is limited to inconvenience of usage, e.g., complicated training and unnatural gait. This paper presents a novel autonomous lower extremity exoskeleton, Auto-LEE, for the purpose of improving the practicality of walking assistive devices as well as simplifying their application process. The developed exoskeleton consists of two robotic legs, and each of them has 5 active degrees-of-freedom (DOFs) to independently control the rotations of hip, knee and ankle joints in the sagittal and coronal planes, which enables the device to possess self-balancing ability and flexible gait. The modular design concept is introduced into the structure and hardware development of Auto-LEE, making it more convenient to be assembled and maintained. In order to validate the self-balancing walking ability, virtual prototype simulation and preliminary experiment on flat terrain are implemented.
1. “Spinal cord injury facts and figures at a glance”, 2018, [online] Available: https://www.nscisc.uab.edu.

2. J. W. Mcdonald, C. Sadowsky, “Spinal-cord injury”, Lancet, vol. 359, no. 9304, pp. 417-425, 2002.

3. D. L. Brown-Triolo, M. J. Roach, K. Nelson, R. J. Triolo, “Consumer perspectives on mobility: implications for neuroprosthesis design”, Journal of Rehabilitation Research & Development, vol. 39, no. 6, pp. 659-669, 2002.

4. A. Tsukahara, Y. Hasegawa, K. Eguchi, Y. Sankai, “Restoration of gait for spinal cord injury patients using hal with intention estimator for preferable swing speed”, IEEE Transactions on Neural Systems & Rehabilitation Engineering, vol. 23, no. 2, pp. 308-318, 2015.

5. A. D. Gardner, J. Potgieter, F. K. Noble, “A review of commercially available exoskeletons’ capabilities”, International Conference on Mechatronics and Machine Vision in Practice, pp. 1-5, 2017.

6. M. Talaty, A. Esquenazi, J. E. Briceno, “Differentiating ability in users of the rewalk(tm) powered exoskeleton: an analysis of walking kinematics”, IEEE International Conference on Rehabilitation Robotics, pp. 6650469, 2013.

7. “Indego”, 2018, [online] Available: http://www.indego.com.

8. “Ekso”, 2018, [online] Available: https://eksobionics.com/.

9. K. A. Strausser, T. A. Swift, A. B. Zoss, H. Kazerooni, “Prototype medical exoskeleton for paraplegic mobility: First experimental results”, ASME 2010 Dynamic Systems and Control Conference, pp. 453-458, 2010.

10. Y. Mori, T. Taniguchi, K. Inoue, Y. Fukuoka, N. Shiroma, “Development of a standing style transfer system able with novel crutches for a person with disabled lower limbs”, Jsdd, vol. 5, no. 5, pp. 83-93, 2011.

11. K. Kong, D. Jeon, “Design and control of an exoskeleton for the elderly and patients”, IEEE/ASME Transactions on Mechatronics, vol. 11, no. 4, pp. 428-432, 2006.

12. K. Kong, H. Moon, B. Hwang, D. Jeon, M. Tomizuka, “Impedance compensation of subar for back-drivable force-mode actuation”, IEEE Transactions on Robotics, vol. 25, no. 3, pp. 512-521, 2009.

13. Y. Fang, Y. Yu, F. Chen, Y. Ge, “Dynamic analysis and control strategy of the wearable power assist leg”, IEEE International Conference on Automation and Logistics, pp. 1060-1065, 2008.

14. S. Zhang, C. Wang, X. Wu, Y. Liao, X. Hu, C. Wu, “Real time gait planning for a mobile medical exoskeleton with crutche”, IEEE International Conference on Robotics and Biomimetics, pp. 2301-2306, 2016.

15. D. Zanotto, P. Stegall, S. K. Agrawal, “Alex iii: A novel robotic platform with 12 dofs for human gait training”, IEEE International Conference on Robotics and Automation, pp. 3914-3919, 2013.

16. M. Cenciarini, A. M. Dollar, “Biomechanical considerations in the design of lower limb exoskeletons”, IEEE International Conference on Rehabilitation Robotics, pp. 5975366, 2011.

17. B. Protection, M. Labour, “Gb10000-88 human dimensions of chinese adults”.

18. S. Gao, Practical anatomical atlas: lower limbs volume, 2004.

19. S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, “The 3d linear inverted pendulum mode: a simple modeling for a biped walking pattern generation”, Ieee/rsj International Conference on Intelligent Robots and Systems 2001. Proceedings, vol. 1, pp. 239-246, 2001.

via Auto-LEE: A Novel Autonomous Lower Extremity Exoskeleton for Walking Assistance – IEEE Conference Publication

, , , , , , , , ,

Leave a comment

%d bloggers like this: