Archive for category Gait Rehabilitation – Foot Drop

[ARTICLE] Locomotor skill acquisition in virtual reality shows sustained transfer to the real world – Full Text

Abstract

Background

Virtual reality (VR) is a potentially promising tool for enhancing real-world locomotion in individuals with mobility impairment through its ability to provide personalized performance feedback and simulate real-world challenges. However, it is unknown whether novel locomotor skills learned in VR show sustained transfer to the real world. Here, as an initial step towards developing a VR-based clinical intervention, we study how young adults learn and transfer a treadmill-based virtual obstacle negotiation skill to the real world.

Methods

On Day 1, participants crossed virtual obstacles while walking on a treadmill, with the instruction to minimize foot clearance during obstacle crossing. Gradual changes in performance during training were fit via non-linear mixed effect models. Immediate transfer was measured by foot clearance during physical obstacle crossing while walking over-ground. Retention of the obstacle negotiation skill in VR and retention of over-ground transfer were assessed after 24 h.

Results

On Day 1, participants systematically reduced foot clearance throughout practice by an average of 5 cm (SD 4 cm) and transferred 3 cm (SD 1 cm) of this reduction to over-ground walking. The acquired reduction in foot clearance was also retained after 24 h in VR and over-ground. There was only a small, but significant 0.8 cm increase in foot clearance in VR and no significant increase in clearance over-ground on Day 2. Moreover, individual differences in final performance at the end of practice on Day 1 predicted retention both in VR and in the real environment.

Conclusions

Overall, our results support the use of VR for locomotor training as skills learned in a virtual environment readily transfer to real-world locomotion. Future work is needed to determine if VR-based locomotor training leads to sustained transfer in clinical populations with mobility impairments, such as individuals with Parkinson’s disease and stroke survivors.

Background

In recent years, virtual reality (VR) has been increasingly used to provide engaging, interactive, and task-specific locomotor training [1,2,3,4,5,6,7,8]. These studies have simulated walking in different environments such as parks or streets [34], walking on a slope [3], or walking while avoiding obstacles [3,4,57]. VR-based locomotor training frequently includes obstacle negotiation because it is an essential locomotor skill in the community [457] and tripping over obstacles is a common cause of falls in many patient populations [9]. The clinical application of VR-based training interventions is predicated on the idea that practice in VR will lead to lasting changes in trained skills and that these changes will influence real-world behavior. Therefore, understanding how locomotor skills acquired in VR are retained and how these skills generalize to the real world is critical for determining the long-term utility of VR for locomotor rehabilitation.

The presence of lasting changes in a motor skill as a result of practice is a hallmark of motor learning and this retention process has been examined across a wide variety of real and virtual learning contexts. Retention of motor skills has been examined in response to VR training, particularly in fields such as flight and medical procedural training. For example, complex surgical and medical skills are performed faster and more accurately during a retention session following a single day of VR-based training [10,11,12,13]. Retention of locomotor skills is often explored in studies that analyze how people adapt to external perturbations such as a split-belt treadmill which has separate belts for the right and left legs [14,15,16], elastic force fields [17], robotic exoskeletons [18], or added loads [19]. For instance, studies of split-belt treadmill adaptation have revealed that the increases in step length asymmetry observed during initial exposure to the belts moving at different speeds significantly decreased with subsequent exposures to the device [14,15,16]. A recent study by Krishnan and colleagues also investigated locomotor skill learning during a tracking task in which participants were instructed to match a pre-defined target of hip and knee trajectories as accurately as possible during the swing phase of the gait [20]. They found that the reduction in tracking error achieved through practice is retained the following day. Although motor skill learning in VR and locomotor learning have been examined in isolation, it remains to be seen how locomotor skills are acquired and retained following training in a virtual environment.

Skill transfer, which is defined as “the gain or loss in the capability for performance in one task as a result of practice or experience on some other task” [21], is another key feature of motor learning. Skill transfer is particularly critical when skill acquisition occurs in a context that differs from the environment in which the skill is to be expressed. One way in which skill transfer has been evaluated during motor learning is by measuring how the adaptation of reaching in a robot-generated force field generalizes to unconstrained reaching. This work has shown that adaptation to reaching in a curl-field leads to increased curvature during reaching in free space [2223]. Moreover, studies of treadmill-based locomotor skill learning often evaluate transfer of learned skills from treadmill walking to over-ground. For example, during split-belt treadmill adaptation, the learned changes in interlimb symmetry partially transfer to over-ground walking [24]. Further, VR-based training of obstacle negotiation on a treadmill led to increased walking speeds in the lab [57] and community [4]. However, the evaluation of transfer in these VR-based training studies was based on outcome measures such as walking speed that did not reflect the objective of the training task, which was the control of foot clearance obstacle negotiation. Therefore, it remains to be seen if the elements of skill from VR-training transfer to over-ground walking.

Underlying individual differences in learning can influence motor skill retention and transfer to new environments. For example, a recent study demonstrated that healthy older adults and people post-stroke who acquire a motor sequence skill at a faster rate also show greater retention of that skill [25]. Similarly, the rate of skill acquisition for a reaching task during early training predicts faster trial completion time at 1-month follow-up [26]. Lastly, the magnitude of improvements in reaching speed during skill acquisition predicts long-term changes in reaching speed in healthy individuals [27]. Studies of individual differences in transfer have most often sought to understand how the practice of a skill with one limb influences performance of the same skill with the untrained limb. For example, interlimb transfer of motor skills acquired through visuomotor adaptation varies with handedness [28] and individual differences in baseline movement variability [29]. However, far less work has sought to understand how individual differences in skill acquisition affect the transfer of learned skills to new environments. Overall, the influence of individual differences in skill acquisition on locomotor skill retention and sustained transfer has yet to be determined.

Here, we determined how individual differences in locomotor skill learning during virtual reality treadmill-based training influence retention and transfer of learned skills to over-ground walking in the real world. We used a VR-based version of a previously established precision obstacle negotiation task [3031] and asked 1) whether healthy young adults could learn to minimize clearance during virtual obstacle negotiation, 2) if the learned skill transferred to over-ground walking, 3) if the learned skill was retained in both VR and the real world after 24 h, and 4) if individual differences in the amount or rate of skill acquisition could predict retention and transfer. We hypothesized that 1) participants would reduce foot clearance in VR during practice on Day 1 and that 2) the reduced foot clearance in VR would transfer to over-ground obstacle negotiation. We also hypothesized that 3) the reduction in foot clearance in VR and over-ground would be retained in each environment after a 24-h retention period. Lastly, given that the rate and magnitude of the performance improvement during skill acquisition have been established as predictors of skill retention in previous studies, we also hypothesized that 4) these measures would predict retention of the learned skill in VR and over-ground. Given the growing use of VR for motor skill learning, our results may provide a unique opportunity to understand the factors that influence how training in VR might lead to long-term improvements in skilled locomotion. […]

 

Continue —> Locomotor skill acquisition in virtual reality shows sustained transfer to the real world | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , ,

Leave a comment

[ARTICLE] Combining transcranial direct-current stimulation with gait training in patients with neurological disorders: a systematic review – Full Text

Abstract

Background

Transcranial direct-current stimulation (tDCS) is an easy-to-apply, cheap, and safe technique capable of affecting cortical brain activity. However, its effectiveness has not been proven for many clinical applications.

Objective

The aim of this systematic review was to determine whether the effect of different strategies for gait training in patients with neurological disorders can be enhanced by the combined application of tDCS compared to sham stimulation. Additionally, we attempted to record and analyze tDCS parameters to optimize its efficacy.

Methods

A search in Pubmed, PEDro, and Cochrane databases was performed to find randomized clinical trials that combined tDCS with gait training. A chronological filter from 2010 to 2018 was applied and only studies with variables that quantified the gait function were included.

Results

A total of 274 studies were found, of which 25 met the inclusion criteria. Of them, 17 were rejected based on exclusion criteria. Finally, 8 trials were evaluated that included 91 subjects with stroke, 57 suffering from Parkinson’s disease, and 39 with spinal cord injury. Four of the eight assessed studies did not report improved outcomes for any of its variables compared to the placebo treatment.

Conclusions

There are no conclusive results that confirm that tDCS can enhance the effect of the different strategies for gait training. Further research for specific pathologies, with larger sample sizes and adequate follow-up periods, are required to optimize the existing protocols for applying tDCS.

Introduction

Difficulty to walk is a key feature of neurological disorders [1], so much so that recovering and/or maintaining the patient’s walking ability has become one of the main aims of all neurorehabilitation programs [2]. Additionally, the loss of this ability is one of the most significant factors negatively impacting on the social and professional reintegration of neurological patients [3].

Strategies for gait rehabilitation traditionally focus on improving the residual ability to walk and compensation strategies. Over the last years, a new therapeutic paradigm has been established based on promoting neuroplasticity and motor learning, which has led to the development of different therapies employing treadmills and partial body-weight support, as well as robotic-assisted gait training [4]. Nevertheless, these new paradigms have not demonstrated superior results when compared to traditional therapies [5,6,7], and therefore recent studies advise combining therapies to enhance their therapeutic effect via greater activation of neuroplastic mechanisms [8].

Transcranial direct-current stimulation (tDCS) is an intervention for brain neuromodulation consisting of applying constant weak electric currents on the patient’s scalp in order to stimulate specific brain areas. The application of the anode (positive electrode) to the primary motor cortex causes an increase in neuron excitability whereas stimulation with the cathode (negative electrode) causes it to decrease [9].

The effectiveness of tDCS has been proven for treating certain pathologies such as depression, addictions, fibromyalgia, or chronic pain [10]. Also, tDCS has shown to improve precision and motor learning [11] in healthy volunteers. Improvements in the functionality of upper limbs and fine motor skills of the hand with paresis have been observed in patients with stroke using tDCS, although the results were somewhat controversial [1213]. Similarly, a Cochrane review on the effectiveness of tDCS in treating Parkinson’s disease highlights the great potential of the technique to improve motor skills, but the significance level of the evidence was not enough to clearly recommend it [14]. In terms of gait rehabilitation, current studies are scarce and controversial [10].

Furthermore, tDCS is useful not only as a therapy by itself but also in combination with other rehabilitation strategies to increase their therapeutic potential; in these cases, the subjects’ basal activity and the need for combining the stimulation with the behavior to be enhanced have been highlighted. Several studies have combined tDCS with different modalities of therapeutic exercising, such as aerobic exercise to increase the hypoalgesic effect in patients with fibromyalgia [15] or muscle strengthening to increase functionality in patients suffering from knee osteoarthritis [16]. Along these lines, various studies have combined tDCS with gait training in patients with neurological disorders, obtaining rather disparate outcomes [17,18,19,20]. As a result, the main aim of this systematic review was to determine whether the application of tDCS can enhance the effectiveness of other treatment strategies for gait training. Additionally, as a secondary objective, we attempted to record and identify the optimal parameters of the applied current since they are key factors for its effectiveness. […]

 

Continue —>  Combining transcranial direct-current stimulation with gait training in patients with neurological disorders: a systematic review | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , ,

Leave a comment

[WEB PAGE] Treatments for foot drop compared

 

Continue —> Treatments for foot drop compared | MS Trust

, , , , ,

1 Comment

[WEB SITE] Gait Rehabilitation Improvement Approach for Stroke Survivors Receives Research Funding

Published on 

RehabRobot

 

For stroke survivors whose ability to walk has been impaired by neurological damage, rehabilitation using robotics has proven to be an effective therapy to improve their gait. However, one of the major issues with this type of rehabilitation is that following training with a robotic device, motor improvements are not maintained in the patient’s daily life.

Gelsy Torres-Oviedo, assistant professor of bioengineering at the University of Pittsburgh Swanson School of Engineering, was awarded a $805,670 CAREER Award by the National Science Foundation to apply a novel approach to improve locomotor learning in stroke patients. She is the fifth Swanson School CAREER Award recipient in 2019, tying the school’s record from 2017.

“Our bodies adjust their movement to adapt to changes in the environment, but the very first thing that we need to do is sense that environment,” Torres-Oviedo, who directs the Sensorimotor Learning Laboratory at Pitt, explains in a media release.

“We then use this sensory information as input to our motor system, which drives our movement.”

The challenge with measuring sensation in people is that it is an internal variable; therefore, Torres-Oviedo’s group will use mathematical tools and perception experiments to estimate what individuals feel.

“We think that some stroke survivors have difficulty perceiving their asymmetric movement, and these proposed studies will help us characterize this deficit and indicate if split-belt walking – in which the legs move at different speeds – can correct it,” she says.

In the first part of this study, the lab will track how patients with brain lesions perceive asymmetries in their gait. They will then measure how their perception is adjusted once their movements are adapted in the split-belt environment.

In the second part of this study, the lab will use these data and a unique method to manipulate how people perceive their movement and create the illusion of error-free performance during split-belt walking, the release, from the University of Pittsburgh, continues.

They will use a human-in-the-loop (HITL) method, which is a closed-loop approach in which the behavioral output is feedback to tune the input to the motor system – in this case, the speed difference. This strategy creates an individualized outcome for each subject, which is a more effective method for training purposes.

“The idea is that if we understand how each patient adjusts their perceived movements, we can create the illusion of error-free performance where they think that they’re walking normally even though their movements are changing,” Torres-Oviedo explains.

“If they never perceive that they are doing something different, the hope is that changes in their movements can be carried over to the patient’s daily life.”

This research aims to enhance the generalization of movements from devices like treadmills and exoskeletons to daily activities.

“If Professor Torres-Oviedo and her group are successful in their work, it could have a profound effect on gait rehabilitation for stroke survivors,” notes Sanjeev G. Shroff, Distinguished Professor and the Gerald E. McGinnis Chair of Bioengineering.

Torres-Oviedo will also use this project as a way to increase the participation of students from underrepresented minorities (URM) in science and engineering. She will recruit, mentor, and prepare URM students from K-12 and college to pursue advanced education, with the ultimate goal of broadening the professional opportunities for this population, the release concludes.

[Source(s): University of Pittsburgh, EurekAlert]

 

via Gait Rehabilitation Improvement Approach for Stroke Survivors Receives Research Funding – Rehab Managment

, , , , ,

Leave a comment

[Abstract] Adaptive Physical Activity for Stroke: An Early-Stage Randomized Controlled Trial in the United States

Background. As stroke survival improves, there is an increasing need for effective, low-cost programs to reduce deconditioning and improve mobility.

Objective. To conduct a phase II trial examining whether the community-based Italian Adaptive Physical Activity exercise program for stroke survivors (APA-Stroke) is safe, effective, and feasible in the United States.

Methods. In this single-blind, randomized controlled trial, 76 stroke survivors with mild to moderate hemiparesis >6 months were randomized to either APA-Stroke (N = 43) or Sittercise (N = 33). APA-Stroke is a progressive group exercise regimen tailored to hemiparesis that includes walking, strength, and balance training. Sittercise, a seated, nonprogressive aerobic upper body general exercise program, served as the control. Both interventions were 1 hour, 3 times weekly, in 5 community locations, supervised by exercise instructors.

Results. A total of 76 participants aged 63.9 ± 1.2 years, mean months poststroke 61.8 ± 9.3, were included. There were no serious adverse events; completion rates were 58% for APA-Stroke, 70% for Sittercise. APA-Stroke participants improved significantly in walking speed. Sample size was inadequate to demonstrate significant between-group differences. Financial and logistical feasibility of the program has been demonstrated. Ongoing APA classes have been offered to >200 participants in county Senior Centers since study completion.

Conclusion. APA-Stroke shows great promise as a low-cost, feasible intervention. It significantly increased walking speed. Safety and feasibility in the US context are demonstrated. A pivotal clinical trial is required to determine whether APA-Stroke should be considered standard of care.

via Adaptive Physical Activity for Stroke: An Early-Stage Randomized Controlled Trial in the United States – Mary Stuart, Alexander W. Dromerick, Richard Macko, Francesco Benvenuti, Brock Beamer, John Sorkin, Sarah Chard, Michael Weinrich, 2019

, , , , , , ,

Leave a comment

[WEB SITE] Turn Up the Walking Intensity to Spur Further Stroke Recovery

TreadmillPatient

 

High-intensity step training  that mimics real-world conditions may better improve walking ability in stroke survivors compared to traditional, low-impact training, according to new research published in the American Heart Association’s journal Stroke.

“People who suffer strokes often have difficulty walking and impaired balance. Rehabilitation after a stroke traditionally focuses on patients practicing low-intensity walking, usually only in a forward direction, which does not provide enough of a challenge to the nervous system to enable patients to negotiate real-world situations, such as uneven surfaces, stairs or changing direction,” says study author T. George Hornby, PhD, professor of physical medicine and rehabilitation at Indiana University School of Medicine in Indianapolis, in a media release from the American Heart Association.

“Our study suggests that stroke patients can perform higher-intensity walking exercises and more difficult tasks than previously thought possible. We need to move beyond traditional, low-intensity rehabilitation to challenge the nervous and cardiovascular systems so patients can improve function and perform better in the real world.”

Researchers evaluated 90 people, 18- to 85-years-old with weakness on one side of the body who had survived a stroke at least six months prior.

Participants received training of either high-intensity stepping performing variable, difficult tasks; high-intensity stepping performing only forward walking; or low-intensity stepping of variable tasks. Variable tasks included walking on uneven surfaces, up inclines and stairs, over randomly placed obstacles on a treadmill and across a balance beam.

The researchers observed the following, the release explains:

  • Survivors in both the high-intensity, variable training and high-intensity, forward walking groups walked faster and farther than the low-intensity, variable training group.
  • For all walking outcomes, 57% to 80% of participants in the high-intensity groups had important clinical gains, while only 9% to 31% of participants did so following low-intensity training.
  • High-intensity variable training also resulted in improved dynamic balance while walking and improved balance confidence.

Hornby notes that no serious adverse events occurred during the training sessions, suggesting stroke survivors can be pushed to higher-intensity walking with more variable tasks during rehabilitation.

“Rehabilitation that allows walking practice without challenging the nervous system doesn’t do enough to make a statistical or clinically significant difference in a patient’s recovery after a stroke,” Hornby suggests.

“We found that when stroke patients are pushed harder, they see greater changes in less time, which translates into more efficient rehabilitation services and improved mobility.”

Ultimately, their goal is to incorporate high-intensity variable step training into regular clinical rehabilitation protocols.

The study was small compared to larger, multicenter clinical trials. Hornby adds in the release that the next step would be to test high-intensity, variable step training in larger patient populations in a large, multicenter clinical trial.

[Source(s): American Heart Association, Science Daily]

 

via Turn Up the Walking Intensity to Spur Further Stroke Recovery – Rehab Managment

, , , ,

Leave a comment

[Abstract] Design and Implementation of a Wearable Device for Motivating Patients With Upper and/or Lower Limb Disability Via Gaming and Home Rehabilitation

Abstract

Stroke survivors often suffer from a permanent or partial disability that restricts the movement of the hands, arms and/or legs. To help patients recover, rehabilitation should be at an earlier stage of the injury. Without motivation, it would be challenging for patients to successfully engage in the recovery process which can sometimes be painful of inconvenient. The application of wearable devices, games and Internet-of-Things (IoT) can create a motivating atmosphere to facilitate the rehabilitation process of patients while enabling remote monitoring of their health and progress. This paper presents the design and implementation of a rehabilitation system for aimed at helping stroke patients suffering from upper limb disability that exploits IoT by integrating gaming and wearable technology.

via Design and Implementation of a Wearable Device for Motivating Patients With Upper and/or Lower Limb Disability Via Gaming and Home Rehabilitation – IEEE Conference Publication

, , , , , , , , , , , ,

Leave a comment

[WEB PAGE] Ekso Bionics Unveils the EksoNR Neurorehabilitation Device

EksoNR, the latest exoskeleton from Ekso Bionics, features EksoView, a new touchscreen controller that allows therapists to intuitively adapt assistance to challenge patients using real-time feedback. (Photo courtesy of Ekso Bionics Holdings Inc)

EksoNR, the latest exoskeleton from Ekso Bionics, features EksoView, a new touchscreen controller that allows therapists to intuitively adapt assistance to challenge patients using real-time feedback. (Photo courtesy of Ekso Bionics Holdings Inc)

Published on 

The EksoNR is a next-generation EksoGT exoskeleton device developed by Ekso Bionics Holdings Inc to aid the neurorehabilitation of patients recovering from stroke and spinal cord injury, and to help them learn to walk again with a more natural gait.

Among the EksoNR’s new features and enhancements is EksoView, a new touchscreen controller that allows therapists to intuitively adapt assistance to challenge patients using real-time feedback and perform outcome measures during use.

Held in the palm of a therapists’ hand, EksoView provides visualization of various exercises beyond gait training, such as balancing, squatting from sit-to-stand positioning, lifting one leg, or standing in place, to actively engage patients and enhance the use of these beneficial features.

Another feature is the optimized SmartAssist software, developed to enable EksoNR to have a smoother and more natural gait path when transitioning between steps.

SmartAssist also gives gait symmetry and posture feedback and allows therapists to track patient progress with the upgraded EksoPulse, a cloud-based analytics solution. EksoPulse now uses rehabilitation data to generate insightful metrics and graphs for therapists and administrators to monitor patient progress and outcomes, Ekso Bionics notes in a media release.

“Ekso Bionics is committed to developing the latest exoskeleton advances for rehabilitation. We continue to innovate to ensure physical therapists have access to the latest tools to deliver better patient outcomes and superior care in neurorehabilitation,” says Jack Peurach, chief executive officer and president of Ekso Bionics, in the release.

“EksoNR is a full neurorehabilitation tool that is effective, intuitive, and differentiating. There is an increasing demand for adoption, as our technology sets rehabilitation centers apart,” he adds.

EksoNR is cleared by the US Federal Drug Administration for stroke and spinal cord injury rehabilitation. The device is also CE-marked and available in Europe.

Ekso Bionics will begin taking orders for EksoNR immediately. Existing customers will have the option to upgrade, the release continues.

[Source: Ekso Bionics]

 

via Ekso Bionics Unveils the EksoNR Neurorehabilitation Device – Rehab Managment

, , , , , , , ,

Leave a comment

[WEB PAGE] Aerobic Exercise Aids Post-Stroke Walking, Endurance Improvements

http://www.dreamstime.com/stock-photography-exercise-concept-wall-poster-image49345202

 

Stroke survivors who completed group-based aerobic exercise programs similar in design and duration to cardiac rehabilitation programs significantly improved their aerobic endurance and walking ability, according to a recent study.

The study was published in Journal of the American Heart Association, the Open Access Journal of the American Heart Association/American Stroke Association.

Stroke remains the leading cause of disability in the US, and physical therapy is often prescribed to improve physical impairments after stroke. Most current rehabilitation care following stroke has little to no focus on aerobic fitness, and when continued rehabilitation activity is suggested patients often fail to keep active without any support or guidance, according to an analysis of 19 published studies to assess the impact of aerobic exercise programs on endurance and walking ability after stroke.

“The physical therapy we currently provide to patients after a stroke focuses more on improving the ability to move and move well rather than on increasing how far and long you can move,” says Elizabeth Regan, DPT, study lead author, and PhD candidate in Exercise Science at the University of South Carolina, in a media release from the American Heart Association.

“It doesn’t matter how well you can walk if your endurance level keeps you at home.”

The study included nearly 500 adults (average ages between 54-71) who completed aerobic exercise programs similar in structure to cardiac rehabilitation. Participants attended two to three sessions per week for about three months. Of nearly two dozen different exercise groups, walking was the most common type of activity, followed by stationary cycling and then mixed mode aerobic exercise. Physical abilities were tested before and after the intervention.

Looking at results by activity type, researchers found:

  • Mixed aerobic activity provides the best result (four treatment groups) followed by walking (12 treatment groups).
  • Cycling or recumbent stepping (machine that allows stepping while in seated position) while still significant was the least effective (seven treatment groups).
  • Overall, participants significantly improved their endurance level and walking speed.
  • On average, participants walked almost half the size of a football field farther during a six-minute walking test. Participants with mild movement impairments benefited the most.

“These benefits were realized regardless of how long it had been since their stroke,” Regan comments, in the release. “Our analysis included stroke survivors across a wide range, from less than six months to greater than a year since their stroke, and the benefits were seen whether they started an aerobic exercise program one month or one year after having a stroke.”

“Cardiac rehab programs may be a viable option for patients after a stroke who have health risks and endurance losses similar to traditional cardiac rehab participants,” states Stacy Fritz, PhD, PT, the study’s co-author and associate professor of exercise science in the Physical Therapy Program at the University of South Carolina.

“Almost every hospital has a cardiac rehab program, so it’s an existing platform that could be used for stroke survivors. Funneling patients with stroke into these existing programs may be an easy, cost-effective solution with long-term benefits.”

While this study suggests group-based aerobic exercise programs improve health and endurance in stroke survivors, no control group analysis was performed for results comparison. Limited follow-up data were available to determine whether the health benefits persisted.

[Source(s): American Heart Association, Science Daily]

 

via Aerobic Exercise Aids Post-Stroke Walking, Endurance Improvements – Rehab Managment

, , ,

Leave a comment

[WEB PAGE] Embrace Comfort and Weight Distribution with CROW Boot and Neuropathic Walker

New York OMC manufactures all of its medical and orthopedic products by hand.  The New York OMC line can be used by practitioners and podiatrists as a way to increase mobility, avoid pain and surgery, and provide a better quality of life to patients.

The Charcot Restraint Orthotic Walker, or “CROW” Boot, is a cross between an ankle-foot orthoses and a custom boot. The design provides total contact for weight distribution.

New York OMC’s CROW Boot is available in any height and features a triple density custom insert to relieve plantar pressures and to increase comfort. A rocker sole ensures proper gait. The boot is lined with Volara for maximum comfort and versatility. Indications include Charcot deformities, chronic plantar ulcerations, non-union factures, traumatic injury, equinus contractures, reflex sympathetic dystrophy, and rheumatoid arthritis.

Also offered is the Neuropathic Walker – a more comfortable and advanced solution to the CROW Walker.  Like the CROW Boot, the Neuropathic Walker features a triple density custom insert. Taking comfort one step further, a soft foam padded collar decreases posterior proximal pressure. A rocker sole and integrated custom molded solid AFO are also incorporated. As an additional benefit, when ordering a Neuropathic Walker you can also order a matching shoe for the contralateral side, with the same pattern design and a sole height.

The Neuropathic Walker features total contact AFO straps that allow for greater adjustability and is available in any height. Lace, Velcro, and boot hooks allow the patient to don and doff the AFO more easily.

Contact New York OMC today for further details. Get a 10% discount on your first order by calling New York OMC at (718) 618-7292. (For discount you must call before ordering and mention LER)

via Embrace Comfort and Weight Distribution with CROW Boot and Neuropathic Walker – Act Now for 10% Discount | Lower Extremity Review Magazine

, , , ,

Leave a comment

%d bloggers like this: