Posts Tagged UE

[WEB PAGE] The Use of Noninvasive Brain Stimulation, Specifically Transcranial Direct Current Stimulation After Stroke

Motor impairment is a leading cause of disability after stroke. Approaches such as noninvasive brain stimulation are being investigated to attempt to increase effectiveness of stroke rehabilitation interventions. There are several types of noninvasive brain stimulation: repetitive transcranial magnetic stimulation, transcranial direct stimulation (tDCS), transcranial alternative current stimulation, and transcranial pulsed ultrasound to name a few. Of the types of noninvasive brain stimulation, repetitive transcranial magnetic stimulation and tDCS have been most extensively tested to modulate brain activity and potentially behavior. These two techniques have distinctive modes of action. Repetitive transcranial magnetic stimulation directly stimulates neurons in the brain and, given the appropriate conditions, leads to new action potentials. On the other hand, tDCS polarizes neuronal tissue including neurons and glia modulating ongoing firing patterns. There are also differences in cost, utility, and knowledge skill required to apply tDCS and repetitive transcranial magnetic stimulation. Transcranial direct stimulation is relatively inexpensive, easy to administer, portable, and may be applied while undergoing therapy, with lasting excitability changes detectable up to 90 minutes after administration. Repetitive transcranial magnetic stimulation equipment is bulkier, expensive, technically more challenging, and a patient’s head must remain still when treatment is being applied therefore needs to be administered before or after a session of rehabilitation. Because of these differences, tDCS has been more accessible and has rapidly grew as a potential tool to be used in neurorehabilitation to facilitate retraining of activities of daily living (ADL) capacity and possibly to improve restoration of neurological function after stroke.

There are three current stimulation approaches using tDCS to modulate corticomotor regions after stroke. In anodal stimulation mode, the anode electrode is placed over the lesioned brain area and a reference electrode is applied over the contralateral orbitofrontal cortex. Anodal tDCS is placed over the ipsilesional hemisphere to improve the responses of perilesional areas to training protocols. In cathodal stimulation, the cathode electrode is placed over the nonlesioned brain area and reference electrode over the contralateral (ipsilesional) orbitofrontal cortex. This approach has been predicated on the hypothesis that the nonstroke hemisphere will be inhibited by tDCS resulting in an increased activation of the ipsilesional hemisphere due to rebalancing of a presumably abnormal interhemispheric interaction. Although some studies have shown this approach to be beneficial, the causative role of interhemispheric interaction imbalance has been recently challenged and refuted.1 Thus, if cathodal stimulation approaches are beneficial, the behavioral effect cannot be explained by a presumed correction of abnormal interhemispheric connectivity. Finally, dual tDCS approach involves simultaneous application of the anode over the ipsilesional and the cathode over the contralesional side. Here again, the intended mechanism of action is to rebalance the presumably abnormal interhemispheric interaction.

Back to Top | Article Outline

CLINICAL QUESTIONS ADDRESSED

What is the best tDCS type and electrical configuration? What are the effects of tDCS with rehabilitation program for upper limb recovery after stroke?

Back to Top | Article Outline

RESEARCH FINDINGS OF tDCS

This short article discusses data obtained from a network meta-analysis of randomized controlled trials and a recent meta-analysis. The network meta-analysis included 12 randomized controlled trials including 284 participants examining the effect of tDCS on ADL function in the acute, subacute, and chronic phases after stroke.2 The meta-analysis included 9 studies with 371 participants in any stage after stroke.3

The network meta-analysis found evidence of a significant moderate effect in favor of cathodal tDCS without significant effects of dual tDCS, anodal tDCS, or sham tDCS. There was no difference in safety (as assessed by dropouts and adverse events) between sham tDCS, physical rehabilitation, cathodal tDCS, dual tDCS, and anodal tDCS. Elsner in a previous review of tDCS in 2016 found an effect on improving ADL, as well as function of the arm and lower limb, muscle strength, and cognition. Thus, the findings from the most recent meta-analysis indicating cathodal that tDCS improves ADL capacity are in line with previous meta-analyses. Of note, there was no evidence of an effect of either cathodal or other tDCS stimulation approaches on upper paretic limb impairment after stroke as measured by the Fugl-Meyer scale.

A meta-analysis that included participants in any stage after the stroke showed that tDCS in conjunction with multiple sessions of rehabilitation had no significant effect over delivering therapy alone for upper limb impairment and activity after stroke. This negative finding might be due to patient’s being in an acute, subacute, or chronic stage after stroke as well as variations in the type of therapy performed paired with tDCS (ie, conventional vs. constraint-induced movement therapy vs. robot protocol).

Back to Top | Article Outline

RECOMMENDATIONS FOR PHYSIATRIC PRACTICE

There seems to be a modest effect supporting the use of tDCS as a co-adjuvant of rehabilitation interventions to improve ADLs after stroke. Cathodal tDCS seems to be the most promising approach, especially when applied early after the stroke. However, the evidence remains preliminary and does not warrant a widespread change in clinical rehabilitation practice at this time.

There is no evidence supporting the use of tDCS to improve motor impairment (as measured by the FMS) at this point.

Importantly, tDCS remains as a very safe intervention, with no differences in safety when real vs. control tDCS is applied.

Back to Top | Article Outline

REFERENCES

1. Xu J, Branscheidt M, Schambra H, et al: Rethinking interhemispheric imbalance as a target for stroke neurorehabilitation. Ann Neurol 2019;85:502–13

2. Elsner B, Kwakkel G, Kugler J, et al: Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials. J Neuroeng Rehabil 2017;14:

3. Tedesco Triccas L, Burridge J, Hughes A, et al: Multiple sessions of transcranial direct current stimulation and upper extremity rehabilitation in stroke: a review and meta-analysis. Clin Neurophysiol2016;127:946–55

via The Use of Noninvasive Brain Stimulation, Specifically Trans… : American Journal of Physical Medicine & Rehabilitation

, , , , , , , , , ,

Leave a comment

[Abstract + References] Multimodal Head-Mounted Virtual-Reality Brain-Computer Interface for Stroke Rehabilitation – Conference paper

Abstract

Rehabilitation after stroke requires the exploitation of active movement by the patient in order to efficiently re-train the affected side. Individuals with severe stroke cannot benefit from many training solutions since they have paresis and/or spasticity, limiting volitional movement. Nonetheless, research has shown that individuals with severe stroke may have modest benefits from action observation, virtual reality, and neurofeedback from brain-computer interfaces (BCIs). In this study, we combined the principles of action observation in VR together with BCI neurofeedback for stroke rehabilitation to try to elicit optimal rehabilitation gains. Here, we illustrate the development of the REINVENT platform, which takes post-stroke brain signals indicating an attempt to move and drives a virtual avatar arm, providing patient-driven action observation in head-mounted VR. We also present a longitudinal case study with a single individual to demonstrate the feasibility and potentially efficacy of the REINVENT system.

References

  1. 1.
    Mozaffarian, D., et al.: American heart association statistics committee and stroke statistics subcommittee: heart disease and stroke statistics–2015 update: a report from the American heart association. Circulation 131, e29–e322 (2015)Google Scholar
  2. 2.
    Miller, E.L., et al.: American heart association council on cardiovascular nursing and the stroke council: comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient: a scientific statement from the American heart association. Stroke 41, 2402–2448 (2010)CrossRefGoogle Scholar
  3. 3.
    Celnik, P., Webster, B., Glasser, D., Cohen, L.: Effects of action observation on physical training after stroke. Stroke J. Cereb. Circ. 39, 1814–1820 (2008)CrossRefGoogle Scholar
  4. 4.
    Ertelt, D., et al.: Action observation has a positive impact on rehabilitation of motor deficits after stroke. NeuroImage 36(Suppl 2), T164–T173 (2007)CrossRefGoogle Scholar
  5. 5.
    Garrison, K.A., Aziz-Zadeh, L., Wong, S.W., Liew, S.-L., Winstein, C.J.: Modulating the motor system by action observation after stroke. Stroke 44, 2247–2253 (2013)CrossRefGoogle Scholar
  6. 6.
    Ballester, B.R., et al.: The visual amplification of goal-oriented movements counteracts acquired non-use in hemiparetic stroke patients. J. Neuroeng. Rehabil. 12, 50 (2015)CrossRefGoogle Scholar
  7. 7.
    Vourvopoulos, A., Bermúdez i Badia, S.: Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis. J. Neuroeng. Rehabil. 13, 69 (2016)CrossRefGoogle Scholar
  8. 8.
    Maclean, N., Pound, P., Wolfe, C., Rudd, A.: Qualitative analysis of stroke patients’ motivation for rehabilitation. BMJ 321, 1051–1054 (2000)CrossRefGoogle Scholar
  9. 9.
    Paraskevopoulos, I., Tsekleves, E., Warland, A., Kilbride, C.: Virtual reality-based holistic framework: a tool for participatory development of customised playful therapy sessions for motor rehabilitation. In: 2016 8th International Conference on Games and Virtual Worlds for Serious Applications (VS-Games), September (2016)Google Scholar
  10. 10.
    Wolpaw, J.R.: Brain-Computer Interfaces: Principles and Practice. Oxford University Press, Oxford (2012)CrossRefGoogle Scholar
  11. 11.
    Vourvopoulos, A., Bermudez i Badia, S.: Usability and cost-effectiveness in brain-computer interaction: is it user throughput or technology related? In: Proceedings of the 7th Augmented Human International Conference. ACM, Geneva, Switzerland (2016)Google Scholar
  12. 12.
    Schomer, D.L., Lopes da Silva, F.H.: Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, Philadelphia (2011)Google Scholar
  13. 13.
    Kropotov, J.D.: Chapter 2.2 – Alpha rhythms. In: Kropotov, J.D. (ed.) Functional Neuromarkers for Psychiatry, pp. 89–105. Academic Press, San Diego (2016)CrossRefGoogle Scholar
  14. 14.
    Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 110, 1842–1857 (1999)CrossRefGoogle Scholar
  15. 15.
    Wu, J., et al.: Connectivity measures are robust biomarkers of cortical function and plasticity after stroke. Brain 138, 2359–2369 (2015)CrossRefGoogle Scholar
  16. 16.
    Zhou, R.J., et al.: Predicting gains with visuospatial training after stroke using an EEG measure of frontoparietal circuit function. Front. Neurol. 9, 597 (2018)CrossRefGoogle Scholar
  17. 17.
    Soekadar, S.R., Birbaumer, N., Slutzky, M.W., Cohen, L.G.: Brain–machine interfaces in neurorehabilitation of stroke. Neurobiol. Dis. 83, 172–179 (2015)CrossRefGoogle Scholar
  18. 18.
    Friedman, D.: Brain-computer interfacing and virtual reality. In: Nakatsu, R., Rauterberg, M., Ciancarini, P. (eds.) Handbook of Digital Games and Entertainment Technologies, pp. 151–171. Springer, Singapore (2017).  https://doi.org/10.1007/978-981-4560-50-4_2CrossRefGoogle Scholar
  19. 19.
    Vourvopoulos, A., Ferreira, A., Bermúdez i Badia, S.: NeuRow: an immersive VR environment for motor-imagery training with the use of brain-computer interfaces and vibrotactile feedback. In: 3rd International Conference on Physiological Computing Systems, Lisbon (2016)Google Scholar
  20. 20.
    Slater, M.: Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B Biol. Sci. 364, 3549–3557 (2009)CrossRefGoogle Scholar
  21. 21.
    Spicer, R., Anglin, J., Krum, D.M., Liew, S.L.: REINVENT: a low-cost, virtual reality brain-computer interface for severe stroke upper limb motor recovery. In: 2017 IEEE Virtual Reality (VR), pp. 385–386 (2017)Google Scholar
  22. 22.
    Klem, G.H., Luders, H.O., Jasper, H.H., Elger, C.: The ten-twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 52, 3–6 (1999). The International Federation of Clinical NeurophysiologyGoogle Scholar
  23. 23.
    Kothe, C.: Lab streaming layer (LSL). https://github.com/sccn/labstreaminglayer. Accessed 26 Oct 2015 (2014)
  24. 24.
    Fugl-Meyer, A.R., Jääskö, L., Leyman, I., Olsson, S., Steglind, S.: The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 7, 13–31 (1975)Google Scholar
  25. 25.
    Duncan, P.W., Wallace, D., Lai, S.M., Johnson, D., Embretson, S., Laster, L.J.: The stroke impact scale version 2.0: evaluation of reliability, validity, and sensitivity to change. Stroke 30, 2131–2140 (1999)CrossRefGoogle Scholar
  26. 26.
    Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 203–220 (1993)CrossRefGoogle Scholar
  27. 27.
    Bailey, J.O., Bailenson, J.N., Casasanto, D.: When does virtual embodiment change our minds? Presence Teleoperators Virtual Environ. 25, 222–233 (2016)CrossRefGoogle Scholar
  28. 28.
    Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence Teleoperator Virtual Environ. 7, 225–240 (1998)CrossRefGoogle Scholar
  29. 29.
    Bouchard, S., Robillard, G., Renaud, P., Bernier, F.: Exploring new dimensions in the assessment of virtual reality induced side effects. J. Comput. Inf. Technol. 1, 20–32 (2011)Google Scholar
  30. 30.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004)CrossRefGoogle Scholar
  31. 31.
    Makeig, S.: Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr. Clin. Neurophysiol. 86, 283–293 (1993)CrossRefGoogle Scholar
  32. 32.
    Neuper, C., Wörtz, M., Pfurtscheller, G.: ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog. Brain Res. 159, 211–222 (2006)CrossRefGoogle Scholar
  33. 33.
    Pfurtscheller, G., Aranibar, A.: Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr. Clin. Neurophysiol. 46, 138–146 (1979)CrossRefGoogle Scholar
  34. 34.
    Pfurtscheller, G., Brunner, C., Schlögl, A., Lopes da Silva, F.H.: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31, 153–159 (2006)CrossRefGoogle Scholar
  35. 35.
    Liew, S.-L., et al.: Laterality of poststroke cortical motor activity during action observation is related to hemispheric dominance. Neural Plast. 2018, 14 (2018)CrossRefGoogle Scholar
  36. 36.
    Ritter, P., Moosmann, M., Villringer, A.: Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Hum. Brain Mapp. 30, 1168–1187 (2009)CrossRefGoogle Scholar
  37. 37.
    Westlake, K.P., et al.: Resting state alpha-band functional connectivity and recovery after stroke. Exp. Neurol. 237, 160–169 (2012)CrossRefGoogle Scholar
  38. 38.
    Dubovik, S., et al.: EEG alpha band synchrony predicts cognitive and motor performance in patients with ischemic stroke. https://www.hindawi.com/journals/bn/2013/109764/abs/

via Multimodal Head-Mounted Virtual-Reality Brain-Computer Interface for Stroke Rehabilitation | SpringerLink

, , , , , , , , , , , , ,

Leave a comment

[Abstract + References] Preliminary Design of Soft Exo-Suit for Arm Rehabilitation – Conference paper

Abstract

Every year, millions of people experience a stroke but only a few of them fully recover. Recovery requires a working staff, which is time consuming and inefficient. Therefore, over the past few years rehabilitation robots like Exoskeletons have been used in the recuperation process for patients. In this paper we have designed an Exosuit which takes into considerations of the rigid Exo-Skeleton and its limitations for patients suffering from loss of function of the arm. This paper concentrates on enabling a stroke affected person to perform flexion-extension at elbow joint. Validation of the developed model on general population is still needed.

References

  1. 1.
    Mathers, C., Fat, D.M., Boerma, J.T., World Health Organization: The global burden of disease: 2004 update. World Health Organization (2008)Google Scholar
  2. 2.
    McPhee, S.J., Hammer, G.D.: Nervous system disorders. Pathophysiol. Dis. Introd. Clin. Med. 59, 177–180 (2010)Google Scholar
  3. 3.
    Committee on Nervous System Disorders in Developing Countries the Board on Global Health and the Institute of Medicine. Neurological, Psychiatric, and Develop-Mental Disorders. National Academies Press, Washington, DC (2001)Google Scholar
  4. 4.
    Zhang, Y., Arakalian, V.: Design of a passive robotic ExoSuit for carrying heavy loads. In: Proceedings of the IEEE-RAS, 18th Annual International Conference on Humanoid Robots, Lyon, France (2018)Google Scholar
  5. 5.
    Gross, R., et al.: Modulation of lower limb muscle activity induced by curved walking in typically developing children. Gait Posture 50, 34–41 (2016)CrossRefGoogle Scholar
  6. 6.
    Viteckova, S., Kutilek, P., Jirina, M.: Wearable lower limb robotics: a review. Biocybern. Biomed. Eng. 33(2), 96–105 (2013)CrossRefGoogle Scholar
  7. 7.
    Rupala, B.S., Singla, A., Virk, G.S.: Lower limb exoskeletons: a brief review. In: Proceedings of the Conference on Mechanical Engineering and Technology COMET, Varanasi, Utter Pradesh, pp. 18–24 (2016)Google Scholar
  8. 8.
    Collo, A., Bonnet, V., Venture, G.: A quasi-passive lower limb exoskeleton for partial body weight support. In: Proceedings of the 6th IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), UTown, Singapore, pp. 643–648 (2016)Google Scholar
  9. 9.
    Stewart, A.M., Pretty, C.G., Adams, M., Chen, X.: Review of upper limb hybrid exoskeletons. IFAC 50(1), 15169–15178 (2017)Google Scholar
  10. 10.
    Serea, F., Poboroniuc, M., Hartopanu, S., Olaru, R.: Exoskeleton for upper arm rehabilitation for disabled patients. In: International Conference and Exposition on Electrical and Power Engineering, (EPE 2014), pp. 153–157 (2014)Google Scholar
  11. 11.
    Perry, J.C., Rosen, J., Burns, S.: Upper-limb powered exoskeleton design. IEEE/ASM Trans. Mechatron. 12(4), 408–417 (2007)CrossRefGoogle Scholar
  12. 12.
    Li, B., Yuan, B., Chen, J., Zuo, Y., Yang, Y.: Mechanical design and human-machine coupling dynamic analysis of a lower extremity exoskeleton. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10462, pp. 593–604. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65289-4_56CrossRefGoogle Scholar
  13. 13.
    Jarrasé, N.: Contributions à l’explotation d’exosquelettes actifs pour la rééducation neuromotrice. Ph.D. thesis of Pierre et Marie Curie University (UPMC) (2010)Google Scholar
  14. 14.
    Gunn, M., Shank, T.M., Epps, M., Hossain, J., Rahman, T.: User evaluation of a dynamic arm orthosis for people with neuromuscular disorders. IEEE Trans. Neural Syst. Rehabil. Eng. 24(12), 1277–1283 (2016)CrossRefGoogle Scholar
  15. 15.
    Seth, D., Chablat, D., Bennis, F., Sakka, S., Jubeau, M., Nordez, A.: New dynamic muscle fatigue model to limit musculo-skeletal disorder. In: Virtual Reality International Conference 2016, Article no. 26 (2016)Google Scholar
  16. 16.
    Seth, D., Chablat, D., Sakka, S., Bennis, F.: Experimental validation of a new dynamic muscle fatigue model. In: Duffy, V.G.G. (ed.) DHM 2016. LNCS, vol. 9745, pp. 54–65. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40247-5_6CrossRefGoogle Scholar
  17. 17.
    Seth, D., Chablat, D., Bennis, F., Sakka, S., Jubeau, M., Nordez, A.: Validation of a new dynamic muscle fatigue model and DMET analysis. Int. J. Virtual Real. 2016(16), 2016 (2016)Google Scholar
  18. 18.
    Talaty, M., Esquenazi, A., Briceno, J.E.: Differentiating ability in users of the ReWalk(TM) powered exoskeleton: an analysis of walking kinematics. In: Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), Seattle, USA, pp. 1–5 (2013).  https://doi.org/10.1109/icorr.2013.6650469
  19. 19.
    Aoustin, Y.: Walking gait of a biped with a wearable walking assist device. Int. J. of Humanoid Robotics 12(2), 1 550 018-1–11 550 018-20 (2015).  https://doi.org/10.1142/s0219843615500188CrossRefGoogle Scholar
  20. 20.
    Ktistakis, I.P., Bourbakis, N.G.: A survey on robotic wheelchairs mounted with robotic arms. In: National Aerospace and Electronics Conference (NAECON), pp. 258–262 (2015)Google Scholar
  21. 21.
    Aoustin, Y., Formalskii, A.: Walking of biped with passive exoskeleton: evaluation of energy consumption. Multibody Syst. Dyn. 43, 71–96 (2017).  https://doi.org/10.1007/s11044-017-9602-7MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Park, W., Jeong, W., Kwon, G., Kim, Y.H., Kim, L.: A rehabilitation device to improve the hand grasp function of stroke patients using a patient-driven approach. In: IEEE International Conference on Rehabilitation Robotics, Seattle Washington, USA (2013)Google Scholar
  23. 23.
    Akhmadeev, K., Rampone, E., Yu, T., Aoustin, Y., Le Carpentier, E.: A testing system for a real-time gesture classification using surface EMG. In: Proceedings of the 20th IFAC World Congress, Toulouse France (2017)Google Scholar
  24. 24.
    Schwartz, C., Lempereur, M., Burdin, V., Jacq, J.J., Rémy-Néris, O.: Shoulder motion analysis using simultaneous skin shape registration. In: Proceedings of the 29th Annual International Conference of the IEEE EMBS, Lyon, France (2007)Google Scholar
  25. 25.
    National Stroke Association Brochure (2017)Google Scholar
  26. 26.
    Nef, T., Guidali, M., Riener, R.: ARMin III – arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bionics Biomech. 6(2), 127–142 (2009)CrossRefGoogle Scholar
  27. 27.
    Krebs, H.I., Hogan, N., Volpe, B.T., Aisen, M.L., Edelstein, L., Diels, C.: Overview of clinical trials with MITMANUS: a robot-aided neuro-rehabilitation facility. Technol. Health Care 7(6), 419–423 (1999)Google Scholar
  28. 28.
    Ali, H.: Bionic exoskeleton: history, development and the future. IOSR J. Mechan. Civ. Eng. 58–62 (2014)Google Scholar
  29. 29.
    Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. In: IEEE 2007 Rehabilitation Robotics, pp. 401–407 (2007)Google Scholar
  30. 30.
    Fitle, K.D., Pehlivan, A.U., O’Malley, M.K.: A robotic exoskeleton for re-habilitation and assessment of the upper limb following incomplete spinal cord in-jury. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4960–4966 (2015)Google Scholar
  31. 31.
  32. 32.
  33. 33.
    Plagenhoef, S., et al.: Anatomical data for analyzing human motion (1983)Google Scholar

via Preliminary Design of Soft Exo-Suit for Arm Rehabilitation | SpringerLink

, , , , , , , , ,

Leave a comment

[ARTICLE] Efficacy and Brain Imaging Correlates of an Immersive Motor Imagery BCI-Driven VR System for Upper Limb Motor Rehabilitation: A Clinical Case Report – Full Text

To maximize brain plasticity after stroke, a plethora of rehabilitation strategies have been explored. These include the use of intensive motor training, motor-imagery (MI), and action-observation (AO). Growing evidence of the positive impact of virtual reality (VR) techniques on recovery following stroke has been shown. However, most VR tools are designed to exploit active movement, and hence patients with low level of motor control cannot fully benefit from them. Consequently, the idea of directly training the central nervous system has been promoted by utilizing MI with electroencephalography (EEG)-based brain-computer interfaces (BCIs). To date, detailed information on which VR strategies lead to successful functional recovery is still largely missing and very little is known on how to optimally integrate EEG-based BCIs and VR paradigms for stroke rehabilitation. The purpose of this study was to examine the efficacy of an EEG-based BCI-VR system using a MI paradigm for post-stroke upper limb rehabilitation on functional assessments, and related changes in MI ability and brain imaging. To achieve this, a 60 years old male chronic stroke patient was recruited. The patient underwent a 3-week intervention in a clinical environment, resulting in 10 BCI-VR training sessions. The patient was assessed before and after intervention, as well as on a one-month follow-up, in terms of clinical scales and brain imaging using functional MRI (fMRI). Consistent with prior research, we found important improvements in upper extremity scores (Fugl-Meyer) and identified increases in brain activation measured by fMRI that suggest neuroplastic changes in brain motor networks. This study expands on the current body of evidence, as more data are needed on the effect of this type of interventions not only on functional improvement but also on the effect of the intervention on plasticity through brain imaging.

Introduction

Worldwide, stroke is a leading cause of adult long-term disability (Mozaffarian et al., 2015). From those who survive, an increased number is suffering with severe cognitive and motor impairments, resulting in loss of independence in their daily life such as self-care tasks and participation in social activities (Miller et al., 2010). Rehabilitation following stroke is a multidisciplinary approach to disability which focuses on recovery of independence. There is increasing evidence that chronic stoke patients maintain brain plasticity, meaning that there is still potential for additional recovery (Page et al., 2004). Traditional motor rehabilitation is applied through physical therapy and/or occupational therapy. Current approaches of motor rehabilitation include functional training, strengthening exercises, and range of movement exercises. In addition, techniques based on postural control, stages of motor learning, and movement patterns have been proposed such as in the Bobath concept and Bunnstrom approach (amongst others) (Bobath, 1990). After patients complete subacute rehabilitation programs, many still show significant upper limb motor impairment. This has important functional implications that ultimately reduce their quality of life. Therefore, alternative methods to maximize brain plasticity after stroke need to be developed.

So far, there is growing evidence that action observation (AO) (Celnik et al., 2008) and motor imagery (MI) improve motor function (Mizuguchi and Kanosue, 2017) but techniques based on this paradigm are not widespread in clinical settings. As motor recovery is a learning process, the potential of MI as a training paradigm relies on the availability of an efficient feedback system. To date, a number of studies have demonstrated the positive impact of virtual-reality (VR) based on neuroscientific grounds on recovery, with proven effectiveness in the stroke population (Bermúdez i Badia et al., 2016). However, patients with no active movement cannot benefit from current VR tools due to low range of motion, pain, fatigue, etc. (Trompetto et al., 2014). Consequently, the idea of directly training the central nervous system was promoted by establishing an alternative pathway between the user’s brain and a computer system.

This is possible by using electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs), since they can provide an alternative non-muscular channel for communication and control to the external world (Wolpaw et al., 2002), while they could also provide a cost-effective solution for training (Vourvopoulos and Bermúdez, 2016b). In rehabilitation, BCIs could offer a unique tool for rehabilitation since they can stimulate neural networks through the activation of mirror neurons (Rizzolatti and Craighero, 2004) by means of action-observation (Kim et al., 2016), motor-intent and motor-imagery (Neuper et al., 2009), that could potentially lead to post-stroke motor recovery. Thus, BCIs could provide a backdoor to the activation of motor neural circuits that are not stimulated through traditional rehabilitation techniques.

In EEG-based BCI systems for motor rehabilitation, Alpha (8–12 Hz) and Beta (12–30 Hz) EEG rhythms are utilized since they are related to motor planning and execution (McFarland et al., 2000). During a motor attempt or motor imagery, the temporal pattern of the Alpha rhythms desynchronizes. This rhythm is also named Rolandic Mu-rhythm or the sensorimotor rhythm (SMR) because of its localization over the sensorimotor cortices. Mu-rhythms are considered indirect indications of functioning of the mirror neuron system and general sensorimotor activity (Kropotov, 2016). These are often detected together with Beta rhythm changes in the form of an event-related desynchronization (ERD) when a motor action is executed (Pfurtscheller and Lopes da Silva, 1999). These EEG patterns are primarily detected during task-based EEG (e.g., when the participant is actively moving or imagining movement) and they are of high importance in MI-BCIs for motor rehabilitation.

A meta-analysis of nine studies (combined N = 235, sample size variation 14 to 47) evaluated the clinical effectiveness of BCI-based rehabilitation of patients with post-stroke hemiparesis/hemiplegia and concluded that BCI technology could be effective compared to conventional treatment (Cervera et al., 2018). This included ischemic and hemorrhagic stroke in both subacute and chronic stages of stoke, between 2 to 8 weeks. Moreover, there is evidence that BCI-based rehabilitation promotes long-lasting improvements in motor function of chronic stroke patients with severe paresis (Ramos-Murguialday et al., 2019), while overall BCI’s are starting to prove their efficacy as rehabilitative technologies in patients with severe motor impairments (Chaudhary et al., 2016).

The feedback modalities used for BCI motor rehabilitation include: non-embodied simple two-dimensional tariffs on a screen (Prasad et al., 2010Mihara et al., 2013), embodied avatar representation of the patient on a screen or with augmented reality (Holper et al., 2010Pichiorri et al., 2015), neuromuscular electrical stimulation (NMES) (Kim et al., 2016Biasiucci et al., 2018). and robotic exoskeletal orthotic movement facilitation (Ramos-Murguialday et al., 2013Várkuti et al., 2013Ang et al., 2015). In addition, it has been shown that multimodal feedback lead to a significantly better performance in motor-imagery (Sollfrank et al., 2016) but also multimodal feedback combined with motor-priming, (Vourvopoulos and Bermúdez, 2016a). However, there is no evidence which modalities are more efficient in stroke rehabilitation are.

Taking into account all previous findings in the effects of multimodal feedback in MI training, the purpose of this case study is to examine the effect of the MI paradigm as a treatment for post-stroke upper limb motor dysfunction using the NeuRow BCI-VR system. This is achieved through the acquisition of clinical scales, dynamics of EEG during the BCI treatment, and brain activation as measured by functional MRI (fMRI). NeuRow is an immersive VR environment for MI-BCI training that uses an embodied avatar representation of the patient arms and haptic feedback. The combination of MI-BCIs with VR can reinforce activation of motor brain areas, by promoting the illusion of physical movement and the sense of embodiment in VR (Slater, 2017), and hence further engaging specific neural networks and mobilizing the desired neuroplastic changes. Virtual representation of body parts paves the way to include action observation during treatment. Moreover, haptic feedback is added since a combination of feedback modalities could prove to be more effective in terms of motor-learning (Sigrist et al., 2013). Therefore, the target of this system is to be used by patients with low or no levels of motor control. With this integrated BCI-VR approach, severe cases of stroke survivors may be admitted to a VR rehabilitation program, complementing traditional treatment.

Methodology

Patient Profile

In this pilot study we recruited a 60 years old male patient with left hemiparesis following cerebral infarct in the right temporoparietal region 10 months before. The participant had corrected vision through eyewear, he had 4 years of schooling and his experience with computers was reported as low. Moreover, the patient was on a low dose of diazepam (5 mg at night to help sleep), dual antiplatelet therapy, anti-hypertensive drug and metformin. Hemiparesis was associated with reduced dexterity and fine motor function; however, sensitivity was not affected. Other sequelae of the stroke included hemiparetic gait and dysarthria. Moreover, a mild cognitive impairment was identified which did not interfere with his ability to perform the BCI-VR training. The patient had no other relevant comorbidities. Finally, the patient was undergoing physiotherapy and occupational therapy at the time of recruitment and had been treated with botulinum toxin infiltration 2 months before due to focal spasticity of the biceps brachii.

Intervention Protocol

The patient underwent a 3-weeks intervention with NeuRow, resulting in 10 BCI sessions of a 15 min of exposure in VR training per session. Clinical scales, motor imagery capability assessment, and functional -together with structural- MRI data had been gathered in three time-periods: (1) before (serving as baseline), (2) shortly after the intervention and (3) one-month after the intervention (to assess the presence of long-term changes). Finally, electroencephalographic (EEG) data had been gathered during all sessions, resulting in more than 20 datasets of brain electrical activity.

The experimental protocol was designed in collaboration with the local healthcare system of Madeira, Portugal (SESARAM) and approved by the scientific and ethic committees of the Central Hospital of Funchal. Finally, written informed consent was obtained from the participant upon recruitment for participating to the study but also for the publication of the case report in accordance with the 1964 Declaration of Helsinki.

Assessment Tools

A set of clinical scales were acquired including the following:

1. Montreal Cognitive Assessment (MoCA). MoCA is a cognitive screening tool, with a score range between 0 and 30 (a score greater than 26 is considered to be normal) validated also for the Portuguese population, (Nasreddine et al., 2005).

2. Modified Ashworth scale (MAS). MAS is a 6-point rating scale for measuring spasticity. The score range is 0, 1, 1+, 2, 3, and 4 (Ansari et al., 2008).

3. Fugl-Meyer Assessment (FMA). FMA is a stroke specific scale that assesses motor function, sensation, balance, joint range of motion and joint pain. The motor domain for the upper limb has a maximum score of 66 (Fugl-Meyer et al., 1975).

4. Stroke Impact Scale (SIS). SIS is a subjective scale of the perceived stroke impact and recovery as reported by the patient, validated for the Portuguese population. The score of each domain of the questionnaire ranges from 0 to 100 (Duncan et al., 1999).

5. Vividness of Movement Imagery Questionnaire (VMIQ2). VMIQ2 is an instrument that assess the capability of the participant to perform imagined movements from external perspective (EVI), internal perspective imagined movements (IVI) and finally, kinesthetic imagery (KI) (Roberts et al., 2008).

NeuRow BCI-VR System

EEG Acquisition

For EEG data acquisition, the Enobio 8 (Neuroelectrics, Barcelona, Spain) system was used. Enobio is a wearable wireless EEG sensor with 8 EEG channels for the recording and visualization of 24-bit EEG data at 500 Hz and a triaxial accelerometer. The spatial distribution of the electrodes followed the 10–20 system configuration (Klem et al., 1999) with the following electrodes over the somatosensory and motor areas: Frontal-Central (FC5, FC6), Central (C1, C2, C3, C4), and Central-Parietal (CP5, CP6) (Figure 1A). The EEG system was connected via Bluetooth to a dedicated desktop computer, responsible for the EEG signal processing and classification, streaming the data via UDP through the Reh@Panel (RehabNet Control Panel) for controlling the virtual environment. The Reh@Panel is a free tool that acts as a middleware between multiple interfaces and virtual environments (Vourvopoulos et al., 2013).

FIGURE 1

Figure 1. Experimental setup, including: (A) the wireless EEG system; (B) the Oculus HMD, together with headphones reproducing the ambient sound from the virtual environment; (C) the vibrotactile modules supported by a custom-made table-tray, similar to the wheelchair trays used for support; (D) the visual feedback with NeuRow game. A written informed consent was obtained for the publication of this image.

[…]

Continue —->  Frontiers | Efficacy and Brain Imaging Correlates of an Immersive Motor Imagery BCI-Driven VR System for Upper Limb Motor Rehabilitation: A Clinical Case Report | Frontiers in Human Neuroscience

, , , , , , , , , , , , ,

Leave a comment

[Abstract + References] Arm Games for Virtual Reality Based Post-stroke Rehabilitation – Conference paper

Abstract

Stroke is a leading cause of serious long-term disability. World Health Organization (WHO) published that the second leading of death is stroke accident and every year, 15 million people worldwide suffer from stroke attack, two-thirds of them have a permanent disability. Muscle impairment can be treated by intensive movements involving repetitive task, task-oriented and task-variegated. Conventional stroke rehabilitation is expensive, less engaging and at the same time need more time for the rehabilitation process and need more energy and time for the therapist to guide the stroke-survivor. Modern stroke rehabilitation is more promising and more effective with modern rehabilitation aids allowing the rehabilitation process to be faster, however, this therapist method can be obtained in the big cities. To cover the lack of rehabilitation process in this research will develop and improve post-stroke rehabilitation using games. This research using electromyography (EMG) device to analyze the muscle contraction during the rehabilitation process and using Kinect XBOX to record trajectory hands movements. Five games from movements sequence have designed and will be examined in this research. This games obtained two results, the first is the EMG signal and the second is trajectory data. EMG signal can recognize muscle contractions during playing game and the trajectory data can save the pattern of movements and showed the pattern to the monitor. EMG signal processing using time or frequency feature extractions is a good idea to obtain more information from muscle contractions, also velocity, similarities and error movements can be obtained by study the possible approaches.

References

  1. 1.
    Leading Cause of Death Malaysia: Stroke.: Retrieved from http://www.worldlifeexpectancy.com/malaysia-stroke (2017)
  2. 2.
    Mayo ayo Clinic Staff.: Stroke rehabilitation: what to expect as you recover. Retrieved from http://www.mayoclinic.org/stroke-rehabilitation/art-20045172 (2017)
  3. 3.
    Dobkin, B.H.: Strategies for stroke rehabilitation. Lancet Neurol. 3(9), 528–536 (2004)CrossRefGoogle Scholar
  4. 4.
    Riener, R., Frey, M., Bernhardt, M., Nef, T., Colombo, G.: Human-centered rehabilitation robotics. In: 9th International Conference on Rehabilitation Robotics, pp. 319–322 (2005)Google Scholar
  5. 5.
    Yeh, S., Lee, S., Wang, J., Chen, S., Chen, Y., Yang, Y., Hung, Y.: Virtual reality for post-stroke shoulder-arm motor rehabilitation : training system & assessment method. In: Paper Presented at 14th International Conference on e-Health Networking, Applications and Services, pp. 190–195. Beijing, China: IEEE (2012)Google Scholar
  6. 6.
    Yeh, S., Stewart, J., McLaughlin, M., Parsons, T., Winstein, C. J., Rizzo, A.: VR aided motor training for post-stroke rehabilitation: system design, clinical test, methodology for evaluation. In: Proceedings of the IEEE Virtual Reality Conference, pp. 299–300. Charlotte, USA (2007)Google Scholar
  7. 7.
    Prashun, P., Hadley, G., Gatzidis, C., Swain, I.: Investigating the trend of virtual reality-based stroke rehabilitation systems. In: Proceedings of the 14th International Conference Information Visualisation, pp. 641–647. London, UK (2010)Google Scholar
  8. 8.
    Trombetta, M., Henrique, M., Rogofski, B.: Motion Rehab AVE 3D: VR-based exergame for post stroke rehabilitation. J. Comput. Methods Progr. Biomed. 151, 15–20 (2017).  https://doi.org/10.1016/j.cmpb.2017.08.008CrossRefGoogle Scholar
  9. 9.
    Esfahlani, S., Bogdan, M., Alireza, S., George, W.: Validity of the Kinect and Myo armband in serious game for assessing upper-limb movement. J. Entertain. Comput. 27, 150–156 (2018).  https://doi.org/10.1016/j.entcom.2018.05.003CrossRefGoogle Scholar
  10. 10.
    Kutlu M., Freeman C., Ann-Marie H.: A home based FES system for upper-limb stroke rehabilitation with iterative learning control. J. Int. Fed. Autom. Control. Papers on-line 50(1), 12089–12094 (2016)CrossRefGoogle Scholar
  11. 11.
    Khairunizam, W., K., Suhaimi, R., Aswad, A.R.: Design of arm movement sequence for upper limb management after stroke. In: Proceedings of the International workshop on Nonlinier Circuits, Communications and Signal Processing. George Town, Malaysia (2015)Google Scholar
  12. 12.
    Sevgi, A., Ilkin, M., Oya, Umit Y., Sacide, S.: Virtual reality in upper extremity rehabilitation of stroke patients: a randomized controlled trial. J. Stroke cerebrovasc. Dis. 27(2), 3473–3478 (2018).  https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.007CrossRefGoogle Scholar
  13. 13.
    Rash, G.S., EdD.: Electromyography fundamentals. https://www.researchgate.net/publication/265248133_Electromyography_Fundamentals (2002)
  14. 14.
    Kaewboon, W., Limsakul, C., Phukpattaranont, P.: Upper limbs rehabilitation system for stroke patient with biofeedback and force. In: Proceedings of the Biomedical Engineering International Conference. Amphur Muang, Thailand (2013)Google Scholar
  15. 15.
    Ritchie, H., Roser, M.: Causes of death. https://ourworldindata.org/causes-of-death (2017)
  16. 16.
  17. 17.
    Riener, R., Frey, M., Bernhardt, M., Nef, T., Colombo, G.: Human centered rehabilitation robotics. In: Proceedings of the 9th International Conference Rehabilitation Robotics, pp. 319–322. Chicago, USA (2005)Google Scholar
  18. 18.
    Ivey, F.M., Hafer-Macko, C.E., Macko, R.F.: Exercise rehabilitation after stroke. J. NeuroRx 3(4), 439–450 (2006).  https://doi.org/10.1016/j.nurx.2006.07.011CrossRefGoogle Scholar
  19. 19.
    Htoon, Z.L., Na’im, Sidek, S., Fatai, S.: Assessment of upper limb MUSCLE tone level based on estimated impedance parameters. In: Proceedings of the Conference on Biomedical Engineering and Sciences. Kuala Lumpur, Malaysia (2016)Google Scholar
  20. 20.
    Kleim, J.A., Jones, T.A.: Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J. Speech Lang Hear Res. 51(1), 225–239 (2008).  https://doi.org/10.1044/1092-4388(2008/018)CrossRefGoogle Scholar
  21. 21.
    Takeuchi, N., Izumi, S.I.: Rehabilitation with post-stroke motor recovery: a review with a focus on neural plasticity. J. Stroke Res. Treat. (2013).  https://doi.org/10.1155/2013/128641CrossRefGoogle Scholar
  22. 22.
    Sveistrup, H.: Motor rehabilitation using virtual reality. J. NeuroEng. Rehabil. (2004).  https://doi.org/10.1186/1743-0003-1-10CrossRefGoogle Scholar
  23. 23.
    Langhorne, P., Bernhardt, J., Kwakkel, G.: Stroke rehabilitation. Lancet. J. Stroke Care 377(9778), 1693–1702 (2011).  https://doi.org/10.1016/S0140-6736(11)60325-5CrossRefGoogle Scholar
  24. 24.
    Suhaimi, R., Khairunizam, W., Ariffin, M.A.: Design of movement sequence for arm rehabilitation of post-stroke. In: Proceedings of the International Conference on Control System, Computing and Engineering. George Town, Malaysia (2015)Google Scholar
  25. 25.
    Suhaimi, R., Aswad, A.R., Adnan, N.H., Asyraf, F., Khairunizam, W., Hazry, D., Shahriman, A.B., Bakar, A., Razlan, Z.M.: Analysis of EMG-based muscles activity for stroke rehabilitation. In: Proceedings of the 2nd International Conference on Electronic Design (ICED), pp. 167–170. Penang, Malaysia (2014)Google Scholar
  26. 26.
    Basri, N.C., Khairunizam, W., Zunaidi, I., Bakar, S.A., Razlan, Z.M.: Investigation of upper limb movements for VR based post-stroke rehabilitation device. In: Proceedings of the 14th International Colloquium on signal processing and It’s Aplications (CSPA). Batu Feringghi, Malaysia (2018)Google Scholar
  27. 27.
    Majid, M.S.H., Khairunizam, W., Shahriman, A.B., Zunaidi, I.: EMG feature extraction for upper-limb functional movement during rehabilitation. In: Proceedings of the International Conference on Intelegent Informatics and Biomedical Science (ICIIMBS). Bangkok, Thailand (2018)Google Scholar
  28. 28.
    Majid, M.S., Khairunizam, W., Shahriman, A.B., Bakar, A.S., Zunaidi, I.: Performance evaluation of a VR-based arm rehabilitation using movements sequence patttern. In: Proceedings of the 14th International Colloquium on Signal Processing and It’s Aplications (CSPA). Batu Feringghi, Malaysia (2018)Google Scholar
  29. 29.
    Recommendation for sesor locations on individual muscles. Retrieved from http://seniam.org/sensor_location.htm

via Arm Games for Virtual Reality Based Post-stroke Rehabilitation | SpringerLink

, , , , , , , , , ,

Leave a comment

[Abstract] Does hand robotic rehabilitation improve motor function by rebalancing interhemispheric connectivity after chronic stroke? Encouraging data from a randomised-clinical-trial.

Abstract

OBJECTIVE:

The objective of this study was the evaluation of the clinical and neurophysiological effects of intensive robot-assisted hand therapy compared to intensive occupational therapy in the chronic recovery phase after stroke.

METHODS:

50 patients with a first-ever stroke occurred at least six months before, were enrolled and randomised into two groups. The experimental group was provided with the Amadeo™ hand training (AHT), whereas the control group underwent occupational therapist-guided conventional hand training (CHT). Both of the groups received 40 hand training sessions (robotic and conventional, respectively) of 45 min each, 5 times a week, for 8 consecutive weeks. All of the participants underwent a clinical and electrophysiological assessment (task-related coherence, TRCoh, and short-latency afferent inhibition, SAI) at baseline and after the completion of the training.

RESULTS:

The AHT group presented improvements in both of the primary outcomes (Fugl-Meyer Assessment for of Upper Extremity and the Nine-Hole Peg Test) greater than CHT (both p < 0.001). These results were paralleled by a larger increase in the frontoparietal TRCoh in the AHT than in the CHT group (p < 0.001) and a greater rebalance between the SAI of both the hemispheres (p < 0.001).

CONCLUSIONS:

These data suggest a wider remodelling of sensorimotor plasticity and interhemispheric inhibition between sensorimotor cortices in the AHT compared to the CHT group.

SIGNIFICANCE:

These results provide neurophysiological support for the therapeutic impact of intensive robot-assisted treatment on hand function recovery in individuals with chronic stroke.

 

via Does hand robotic rehabilitation improve motor function by rebalancing interhemispheric connectivity after chronic stroke? Encouraging data from a … – PubMed – NCBI

, , , , , , , , , , ,

Leave a comment

[WEB SITE] Telerehab Program Works as Well as Clinic-Based Program for Improved Arm Function Poststroke – JAMA Neurology

It’s probably not news to physical therapists (PTs) when research backs up the idea that patients who experience arm impairments poststroke will tend to make greater functional improvements with larger and longer doses of rehabilitation. Unfortunately, PTs are also familiar with the fact that what’s optimal isn’t necessarily what’s typical, with challenges such as payment systems, logistics, and clinic access making it difficult to achieve the best possible results. That’s where telerehabilitation could make a big difference, say authors of a new study that found an entirely remotely delivered rehab program to be as effective as an equal amount of clinic-based sessions.

The findings lend further support to the ideas behind APTA’s efforts to increase telehealth opportunities for PTs and their patients—a significant component of the association’s current public policy priorities. In addition, APTA provides multiple telehealth resources on a webpage devoted to the topic, and has created the Frontiers in Research, Science, and Technology Council that provides interested members and other stakeholders with an online community to discuss technology’s role in physical therapy.

The study, published in JAMA Neurology (abstract only available for free), involved 124 participants who experienced arm motor deficits poststroke. All participants were enrolled in a rehabilitation therapy program that included 36 70-minute treatment sessions, half of which were supervised, over a 6- to 8-week period. The only major difference: one group’s supervised sessions were face-to-face with a physical therapist (PT) or occupational therapist (OT), while the other group received telerehab from a PT or OT via a computer with video capabilities, accompanied by the use of a gaming system.

Researchers were interested in finding out how patients fared in each approach, using scores from the Fugl Meyer (FM) assessment of motor recovery poststroke as their primary measure. Authors of the study also measured patient adherence with therapy as well as levels of patient motivation related to how well they liked the therapy they were receiving and their degree of dedication to treatment goals.

Using a treatment approach “based on an upper-extremity task-specific training manual and Accelerated Skill Acquisition Program,” researchers set up matched programs that included at least 15 minutes per session of arm exercises from a common set of 88 possible exercises, at least 15 minutes of functional training, and 5 minutes of stroke education. The clinic-based participants received in-person instruction on the exercises and used “standard exercise hardware”; the telerehab patients received instructions via video link and engaged in functional exercise via a videogame interface. Here’s what the researchers found:

  • Both groups improved at about the same rate, with the telerehab participants averaging a 7.86 FM gain, compared with an average gain of 8.36 points for the clinic-based group.
  • Improvements were also about the same for the subgroup of participants who entered rehabilitation more than 90 days poststroke, with these “late” participants averaging a 6.6-point gain for the telerehab group and a 7.4-point increase for the clinic-based group.
  • While both groups reported high levels of dedication to treatment goals, the clinic-based group tended to report better levels of motivation and satisfaction. Adherence was also high for both groups, with a 93.4% adherence rate for the clinic-based group and a rate of 98.3% for the telerehab group.
  • Both groups increased their knowledge of stroke at similar rates.

As for the technical details of the telerehab sessions, the system included a computer linked to the internet, a table, a chair, and 12 “gaming input devices.” Keyboards were not necessary. The supervised sessions began with a 30-minute videoconference between the patient and therapist, and the functional training games used were designed to match the functional task work being done with the clinic-based participants. Unsupervised sessions adhered to the same content but didn’t include contact with the therapist.

“In an era when prescribed doses of poststroke rehabilitation therapy are declining, adversely affecting patient outcomes, these and prior findings suggest that outcomes could be improved for many patients…if larger doses of rehabilitation therapy were prescribed,” authors write. “Our study found that a 6-week course of daily home-based [telerehab] is safe, is rated favorably by patients, is associated with excellent treatment adherence, and produces substantial gains in arm function that were not inferior to dose-matched interventions delivered in the clinic.”

Authors acknowledged that patient satisfaction with telerehab might be improved by increasing the amount of time spent with the therapist—providing that therapist is properly trained. “Current results underscore the importance of maintaining a licensed therapist’s involvement during [telerehab],” they write.

Ultimately, it’s still too early to determine just how generalizable the findings are to other populations and conditions, the researchers say, but all indicators seem to point to the need for increasing the availability of telerehab and its inclusion in health plans.

“The US Bipartisan Budget Act of 2018 expanded telehealth benefits,” authors write. “Eventually, home-based [telerehab] may plan an ascendant role for improving patient outcomes.”

Research-related stories featured in PT in Motion News are intended to highlight a topic of interest only and do not constitute an endorsement by APTA. For synthesized research and evidence-based practice information, visit the association’s PTNow website.

via JAMA Neurology: Telerehab Program Works as Well as Clinic-Based Program for Improved Arm Function Poststroke

, , , , , , ,

Leave a comment

[ARTICLE] A Systematic Review of International Clinical Guidelines for Rehabilitation of People With Neurological Conditions: What Recommendations Are Made for Upper Limb Assessment? – Full Text

Background: Upper limb impairment is a common problem for people with neurological disabilities, affecting activity, performance, quality of life, and independence. Accurate, timely assessments are required for effective rehabilitation, and development of novel interventions. International consensus on upper limb assessment is needed to make research findings more meaningful, provide a benchmark for quality in clinical practice, more cost-effective neurorehabilitation and improved outcomes for neurological patients undergoing rehabilitation.

Aim: To conduct a systematic review, as part of the output of a European COST Action, to identify what recommendations are made for upper limb assessment.

Methods: We systematically reviewed published guidance on measures and protocols for assessment of upper limb function in neurological rehabilitation via electronic databases from January 2007–December 2017. Additional records were then identified through other sources. Records were selected for inclusion based on scanning of titles, abstracts and full text by two authors working independently, and a third author if there was disagreement. Records were included if they referred to “rehabilitation” and “assessment” or “measurement”. Reasons for exclusion were documented.

Results: From the initial 552 records identified (after duplicates were removed), 34 satisfied our criteria for inclusion, and only six recommended specific outcome measures and /or protocols. Records were divided into National Guidelines and other practice guidelines published in peer reviewed Journals. There was agreement that assessment is critical, should be conducted early and at regular intervals and that there is a need for standardized measures. Assessments should be conducted by a healthcare professional trained in using the measure and should encompass body function and structure, activity and participation.

Conclusions: We present a comprehensive, critical, and original summary of current recommendations. Defining a core set of measures and agreed protocols requires international consensus between experts representing the diverse and multi-disciplinary field of neurorehabilitation including clinical researchers and practitioners, rehabilitation technology researchers, and commercial developers. Current lack of guidance may hold-back progress in understanding function and recovery. Together with a Delphi consensus study and an overview of systematic reviews of outcome measures it will contribute to the development of international guidelines for upper limb assessment in neurological conditions.

Introduction

Worldwide prevalence of stroke in 2010 was 33 million, with 16.9 million people having a first stroke, of which 795,000 were American and 1.1 million European (1). It has been estimated that approximately one third of people fail to regain upper limb capacity, despite receiving therapy (2). This has important implications for both individuals and the wider society as reduced upper limb function is associated with dependence and poor quality of life for both patients and carers (35) and impacts on national economies (6).

While stroke has the highest prevalence, other neurological conditions such as Multiple Sclerosis (MS), Spinal Cord Injury (SCI), and Traumatic Brian Injury, have a significant incidence and there are often similarities in presentation, and treatment and therefore assessment. The worldwide incidence of SCI is 40–80 cases per million population and the estimated European mean annual rate of MS incidence is 4.3 cases per 100,000 (7). Recently, Kister et al. (8) reported that 60% of people with MS have impaired hand function. The impact of upper limb dysfunction on ADL is higher than in stroke, as both sides are often affected (9). Although dysfunction after SCI depends on level of injury, upper limb function is consistently cited as a health priority. The incidence rate of TBI in Europe is about 235 per 100,000 population (10). Outcome data among European countries are very heterogeneous. From the US however, it is known that about 1.1% of the population suffer a TBI resulting in long term disability (11).

 

Continue —>  Frontiers | A Systematic Review of International Clinical Guidelines for Rehabilitation of People With Neurological Conditions: What Recommendations Are Made for Upper Limb Assessment? | Neurology

, , , , , , , , , ,

Leave a comment

[ARTICLE] Virtual rehabilitation of upper extremity function and independence for stoke: a meta-analysis – Full Text

Abstract

We aimed to conduct a systematic literature review with a meta-analysis to investigate whether virtual reality (VR) approaches have beneficial effects on the upper extremity function and independent activities of stroke survivors. Experimental studies published between 2007 and 2017 were searched from two databases (EBSCOhost and PubMed). This study reviewed abstracts and assessed full articles to obtain evidence on qualitative studies. For the meta-analysis, the studies that estimated the standardized mean between the two groups analyzed the statistical values necessary for calculating the effect size. The present study also evaluated the statistical heterogeneity. In total, 34 studies with 1,604 participants were included, and the number of participants in each study ranged from 10 to 376. Nine studies were assessed to evaluate the quantitative statistical analysis for 698 patients with hemiparetic stroke. The results of the meta-analysis were as follows: The overall effect size was moderate (0.41, P<0.001). The 95% confidence interval ranged from 0.25 to 0.57. However, no significant heterogeneity and publication bias were observed. The results of this study showed that VR approaches are effective in improving upper extremity function and independent activities in stroke survivors.

 

INTRODUCTION

Stroke has varying severity and subsequent functional impact, which depends on the recovery process of an individual and the extent of neurological damage (Chollet et al., 1991). Several stroke survivors experience physical, cognitive, perceptual, and mental impairments that require a period of intensive rehabilitation and may develop permanent disabilities (Teasell et al., 2005). Some stroke survivors can undergo a short period of inpatient rehabilitation program for recovery of function, and others continue to recover for a long period or throughout their lifetimes (Cramer, 2011). Therefore, in the intensive rehabilitation of individuals with neurological diseases, extremely important considerations must be made because of the reintegration of family and social roles and recreational activities (French et al., 2016West and Bernhardt, 2012).
In rehabilitation settings, functional and task-specific trainings are the key elements of therapy and designed to assist stroke survivors in restoring their motor control to attain more-normal functional movement patterns (Teasell et al., 2005). Stroke survivors must have significant changes in the motor control and strength of the trunk and limbs, with an emphasis on the more-affected side and bilateral symmetric movement; these may be achieved using specific reeducation strategies (Veerbeek et al., 2014West and Bernhardt, 2012). In terms of stroke rehabilitation settings, most previous studies were performed in laboratory or clinical settings that are less complex than the outdoor environment (Cho and Lee, 2013). Laboratory and clinical settings are not appropriate for establishing some complex personal space and community surroundings to meet the demands of multiple tasks for stroke survivors (Demain et al., 2013Fung et al., 2012).
Virtual reality (VR) is a computer-generated environment that simulates a realistic experience for practicing functional tasks at intensities higher than those in traditional rehabilitation programs for stroke survivors (Chen et al., 2016). VR may help engage stroke survivors in a repetitive, intensive, and goal-oriented therapy to improve their functional disabilities, activity limitations, and participation restrictions, without considering the cost and burden associated with increasing the number of therapeutic sessions (Merians et al., 2002). Furthermore, VR provides real-time visual feedback for movements, thereby increasing engagement in enjoyable rehabilitation tasks. VR provides rehabilitative clinicians with new and effective therapeutic tools that can help treat various disabilities and enables remote therapy. VR-based interventions lead to clinical improvement and cortical reorganization through repetitive, adaptive, task-oriented, meaningful, and challenging exercises for stroke survivors (Laver et al., 2012).
As mentioned earlier, several virtual realities in rehabilitation interventions have been applied in the stroke population. However, the efficacy of VR rehabilitation interventions remains to be fully elucidated. In particular, studies on the qualitative and quantitative beneficial effects of VR on upper extremity function and independence in performing activities of daily living among patients with stroke are limited. The objectives of the present study were as follows: (a) to investigate the effectiveness of VR-based interventions in rehabilitation programs for restoring the upper extremity function of stroke survivors through a systematic review and (b) to examine the efficacy of VR-based interventions as part of a therapeutic rehabilitation program to improve upper limb function and independence in performing activities of daily living in stroke survivors by conducting a meta-analysis. Then, the VR-based interventions that are effective for improving upper limb function and independence in performing activities of daily living in stroke survivors were identified.[…]

Continue —> Virtual rehabilitation of upper extremity function and independence for stoke: a meta-analysis

, , , , , , ,

Leave a comment

[ARTICLE] Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke – Full Text

Abstract

Upper limb motor deficits in severe stroke survivors often remain unresolved over extended time periods. Novel neurotechnologies have the potential to significantly support upper limb motor restoration in severely impaired stroke individuals. Here, we review recent controlled clinical studies and reviews focusing on the mechanisms of action and effectiveness of single and combined technology-aided interventions for upper limb motor rehabilitation after stroke, including robotics, muscular electrical stimulation, brain stimulation and brain computer/machine interfaces. We aim at identifying possible guidance for the optimal use of these new technologies to enhance upper limb motor recovery especially in severe chronic stroke patients. We found that the current literature does not provide enough evidence to support strict guidelines, because of the variability of the procedures for each intervention and of the heterogeneity of the stroke population. The present results confirm that neurotechnology-aided upper limb rehabilitation is promising for severe chronic stroke patients, but the combination of interventions often lacks understanding of single intervention mechanisms of action, which may not reflect the summation of single intervention’s effectiveness. Stroke rehabilitation is a long and complex process, and one single intervention administrated in a short time interval cannot have a large impact for motor recovery, especially in severely impaired patients. To design personalized interventions combining or proposing different interventions in sequence, it is necessary to have an excellent understanding of the mechanisms determining the effectiveness of a single treatment in this heterogeneous population of stroke patients. We encourage the identification of objective biomarkers for stroke recovery for patients’ stratification and to tailor treatments. Furthermore, the advantage of longitudinal personalized trial designs compared to classical double-blind placebo-controlled clinical trials as the basis for precise personalized stroke rehabilitation medicine is discussed. Finally, we also promote the necessary conceptual change from ‘one-suits-all’ treatments within in-patient clinical rehabilitation set-ups towards personalized home-based treatment strategies, by adopting novel technologies merging rehabilitation and motor assistance, including implantable ones.

Introduction

Stroke constitutes a major public health problem affecting millions of people worldwide with considerable impacts on socio-economics and health-related costs. It is the second cause of death (Langhorne et al., 2011), and the third cause of disability-adjusted life-years worldwide (Feigin et al., 2014): ∼8.2 million people were affected by stroke in Europe in 2010, with a total cost of ∼€64 billion per year (Olesen et al., 2012). Due to ageing societies, these numbers might still rise, estimated to increase 1.5–2-fold from 2010 to 2030 (Feigin et al., 2014).

Improving upper limb functioning is a major therapeutic target in stroke rehabilitation (Pollock et al., 2014Veerbeek et al., 2017) to maximize patients’ functional recovery and reduce long-term disability (Nichols-Larsen et al., 2005Veerbeek et al., 2011Pollock et al., 2014). Motor impairment of the upper limb occurs in 73–88% first time stroke survivors and in 55–75% of chronic stroke patients (Lawrence et al., 2001). Constraint-induced movement therapy (CIMT), but also standard occupational practice, virtual reality and brain stimulation-based interventions for sensory and motor impairments show positive rehabilitative effects in mildly and moderately impaired stroke victims (Pollock et al., 2014Raffin and Hummel, 2018). However, stroke survivors with severe motor deficits are often excluded from these therapeutic approaches as their deficit does not allow easily rehabilitative motor training (e.g. CIMT), treatment effects are negligible and recovery unpredictable (Byblow et al., 2015Wuwei et al., 2015Buch et al., 2016Guggisberg et al., 2017).

Recent neurotechnology-supported interventions offer the opportunity to deliver high-intensity motor training to stroke victims with severe motor impairments (Sivan et al., 2011). Robotics, muscular electrical stimulation, brain stimulation, brain computer/machine interfaces (BCI/BMI) can support upper limb motor restoration including hand and arm movements and induce neuro-plastic changes within the motor network (Mrachacz-Kersting et al., 2016Biasiucci et al., 2018).

The main hurdle for an improvement of the status quo of stroke rehabilitation is the fragmentary knowledge about the physiological, psychological and social mechanisms, their interplay and how they impact on functional brain reorganization and stroke recovery. Positive stimulating and negatively blocking adaptive brain reorganization factors are insufficiently characterized except from some more or less trivial determinants, such as number and time of treatment sessions, pointing towards the more the better (Kwakkel et al., 1997). Even the long accepted model of detrimental interhemispheric inhibition of the overactive contralesional brain hemisphere on the ipsilesional hemisphere is based on an oversimplification and lack of differential knowledge and is thus called into question (Hummel et al., 2008Krakauer and Carmichael, 2017Morishita and Hummel, 2017).

Here, we take a pragmatic approach of comparing effectiveness data, keeping this lack of knowledge of mechanisms in mind and providing novel ideas towards precision medicine-based approaches to individually tailor treatments to the characteristics and needs of the individual patient with severe chronic stroke to maximize rehabilitative outcome.[…]

Continue —>   Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke | Brain | Oxford Academic

Conceptualization of longitudinal personalized rehabilitation-treatment designs for patients with severe chronic stroke. Ideally, each patient with severe chronic stroke with a stable motor recovery could be stratified based on objective biomarkers of stroke recovery in order to select the most appropriate/promising neurotechnology-aided interventions and/or their combination for the specific case. Then, these interventions can be administered in the clinic and/or at home in sequence, moving from one to another only when patient’s motor recovery plateaus. In this way, comparisons of the efficacy of each intervention (grey arrows) are still possible, and if the selected interventions and/or their combination are suitable, motor recovery could increase.

Conceptualization of longitudinal personalized rehabilitation-treatment designs for patients with severe chronic stroke. Ideally, each patient with severe chronic stroke with a stable motor recovery could be stratified based on objective biomarkers of stroke recovery in order to select the most appropriate/promising neurotechnology-aided interventions and/or their combination for the specific case. Then, these interventions can be administered in the clinic and/or at home in sequence, moving from one to another only when patient’s motor recovery plateaus. In this way, comparisons of the efficacy of each intervention (grey arrows) are still possible, and if the selected interventions and/or their combination are suitable, motor recovery could increase.

, , , , , , , , , , , ,

Leave a comment

%d bloggers like this: