Posts Tagged REHABILITATION

[Abstract] An interactive and innovative application for hand rehabilitation through virtual reality

Physiotherapy has been very monotonous for patients and they tend to lose interest and motivation in exercising. Introducing games with short term goals in the field of rehabilitation is the best alternative, to maintain patients’ motivation. Our research focuses on gamification of hand rehabilitation exercises to engage patients’ wholly in rehab and to maintain their compliance to repeated exercising, for a speedy recovery from hand injuries (wrist, elbow and fingers). This is achieved by integrating leap motion sensor with unity game development engine. Exercises (as gestures) are recognised and validated by leap motion sensor. Game application for exercises is developed using unity. Gamification alternative has been implemented by very few in the globe and it has been taken as a challenge in our research. We could successfully design and build an engine which would be interactive and real-time, providing platform for rehabilitation. We have tested the same with patients and received positive feedbacks. We have enabled the user to know the score through GUI.

 

via An interactive and innovative application for hand rehabilitation through virtual reality: International Journal of Advanced Intelligence Paradigms: Vol 15, No 3

, , , , , , , , , , , , ,

Leave a comment

[ARTICLE] An interactive and low-cost full body rehabilitation framework based on 3D immersive serious games – Full Text

Highlights

  • Generation of customizable 3D immersive serious games.
  • An interactive and low-cost full body rehabilitation framework.
  • Integration of a Head Mounted Display, a Time-of-Flight and an infrared camera.
  • A Gated Recurrent Unit Recurrent Neural Network (GRU-RNN) reference model.

Abstract

Strokes, surgeries, or degenerative diseases can impair motor abilities and balance. Long-term rehabilitation is often the only way to recover, as completely as possible, these lost skills. To be effective, this type of rehabilitation should follow three main rules. First, rehabilitation exercises should be able to keep patient’s motivation high. Second, each exercise should be customizable depending on patient’s needs. Third, patient’s performance should be evaluated objectively, i.e., by measuring patient’s movements with respect to an optimal reference model. To meet the just reported requirements, in this paper, an interactive and low-cost full body rehabilitation framework for the generation of 3D immersive serious games is proposed. The framework combines two Natural User Interfaces (NUIs), for hand and body modeling, respectively, and a Head Mounted Display (HMD) to provide the patient with an interactive and highly defined Virtual Environment (VE) for playing with stimulating rehabilitation exercises. The paper presents the overall architecture of the framework, including the environment for the generation of the pilot serious games and the main features of the used hand and body models. The effectiveness of the proposed system is shown on a group of ninety-two patients. In a first stage, a pool of seven rehabilitation therapists has evaluated the results of the patients on the basis of three reference rehabilitation exercises, confirming a significant gradual recovery of the patients’ skills. Moreover, the feedbacks received by the therapists and patients, who have used the system, have pointed out remarkable results in terms of motivation, usability, and customization. In a second stage, by comparing the current state-of-the-art in rehabilitation area with the proposed system, we have observed that the latter can be considered a concrete contribution in terms of versatility, immersivity, and novelty. In a final stage, by training a Gated Recurrent Unit Recurrent Neural Network (GRU-RNN) with healthy subjects (i.e., baseline), we have also provided a reference model to objectively evaluate the degree of the patients’ performance. To estimate the effectiveness of this last aspect of the proposed approach, we have used the NTU RGB + D Action Recognition dataset obtaining comparable results with the current literature in action recognition.[…]

 

Continue —-> An interactive and low-cost full body rehabilitation framework based on 3D immersive serious games – ScienceDirect

, , , , ,

Leave a comment

[ARTICLE] Reversing Hemianopia by Multisensory Training Under Anesthesia – Full Text

Hemianopia is characterized by blindness in one half of the visual field and is a common consequence of stroke and unilateral injury to the visual cortex. There are few effective rehabilitative strategies that can relieve it. Using the cat as an animal model of hemianopia, we found that blindness induced by lesions targeting all contiguous areas of the visual cortex could be rapidly reversed by a non-invasive, multisensory (auditory-visual) exposure procedure even while animals were anesthetized. Surprisingly few trials were required to reinstate vision in the previously blind hemisphere. That rehabilitation was possible under anesthesia indicates that the visuomotor behaviors commonly believed to be essential are not required for this recovery, nor are factors such as attention, motivation, reward, or the various other cognitive features that are generally thought to facilitate neuro-rehabilitative therapies.

Introduction

Extensive damage to the visual cortex on one side of the brain produces blindness in the opposite hemifield (hemianopia) despite the sparing of other visual centers far from the site of the physical insult (Sand et al., 2013Goodwin, 2014). Of special note is the superior colliculus (SC), a midbrain structure that plays a major role in detecting, localizing, and orienting to visual targets. Its multisensory neurons allow it to use non-visual cues to facilitate this process (Stein and Meredith, 1993), and its location in the midbrain ensures that it is not directly damaged by a hemianopia-inducing cortical insult. Yet, as shown in the cat model of hemianopia, the loss of visual responses in the multisensory layers of the SC and the total absence of visual detection and orientation responses to contralateral visual stimuli following lesions of visual cortex reveal that it too is compromised, presumably via secondary excitotoxic injuries that may alter other input structures such as the basal ganglia (Jiang et al., 20092015). Interestingly, the dysfunction of SC appeared to be limited to its visual role. Its other sensory representations and sensorimotor roles remained intact: SC-mediated auditory and tactile detection and orientation responses were readily elicited (see also Sprague and Meikle, 1965).

Previously it was shown that hemianopia could be reversed using a non-invasive multisensory training paradigm (Jiang et al., 2015). The procedure consisted of presenting cross-modal combinations of spatiotemporally congruent auditory-visual cues in the blind hemifield of alert animals engaged in a sensory localization task. Because the animals were not deafened by the cortical lesion, they readily responded to the auditory-visual stimulus complex. After only a few weeks of daily multisensory training sessions, a striking change occurred: not only could the animals now detect and localize a visual stimulus throughout the previously blind hemifield, but they could also discriminate elementary visual patterns there. Visual responses that had been lost in the multisensory layers of the ipsilesional SC also returned, and cortico-SC circuits normally engaged in multisensory integration (i.e., projections from the anterior ectosylvian sulcus, AES) were found to be crucial for the recovery. The recovery could not be induced by training with visual or auditory cues alone. In an important series of studies in human patients, Làdavas and colleagues (Bolognini et al., 2005Leo et al., 2008Passamonti et al., 2009Dundon et al., 2015a,b) used a similar training paradigm and also met with success in evoking contralesional visual responses.

It is commonly believed that the success of this rehabilitative paradigm is a retraining of the visuomotor targeting behavior itself (see, review in Dundon et al., 2015a). In this case, the key factor would be the orienting action (initially elicited by the auditory stimulus) in the presence of the visual stimulus. Also, if true, it is reasonable to hypothesize that the effectiveness of this paradigm would be facilitated by other factors such as motivation, attention, arousal, and reinforcement, as these are commonly believed to enhance most neuro-rehabilitative therapies. An alternative explanation, however, is that the paradigm operates via the brain’s inherent mechanisms for multisensory plasticity, which operate independent of these factors and can be engaged under anesthesia (Yu et al., 2013). In this case, the requirement would only be repeated, reliable exposure to the visual-auditory stimulus complex in the blinded hemifield. The present study examined this possibility directly.

Materials and Methods

Adult mongrel cats (four male, three female) were obtained from a USDA-licensed commercial animal breeding facility (Liberty Labs, Waverly, NY, USA). The experimental procedures used were in compliance with the National Institutes of Health “Guide for the Care and Use of Laboratory Animals” (8th edition, NRC 2011) and approved by the Institutional Animal Care and Use Committee at Wake Forest School of Medicine. Each animal was first screened to ensure that it was tractable and responded to visual and auditory stimuli in both hemifields. All efforts were made to minimize the number of animals used.

Visual Detection and Orientation Testing

Visual orientation capabilities were quantitatively evaluated in a semicircular perimetry arena using previously described methods (see Jiang et al., 2015, see also Figure 1A). Animals were maintained at 80%–85% of body weight and obtained most of their daily food intake during, or immediately after, each behavioral session. Each animal was first trained to fixate directly ahead at a food reward held in forceps by one experimenter and protruded through a hole in the front wall of the apparatus 58 cm ahead at the 0° fixation point. Trial initiation was always contingent upon the animal establishing fixation. Once released by the animal handler (a second experimenter), the animal was required to move directly ahead to obtain the food reward. It was then trained to respond to the test stimulus (a white ping-pong ball at the end of a stick) presented at any 15° interval from 105° left to 105° right. This required little training as animals responded to the stimulus almost reflexively. Stimuli were presented manually and introduced suddenly from behind a black curtain while the animal was fixating. Additionally, on some trials, the ball remained hidden behind the opaque curtain and was tapped on the side of the apparatus to produce an auditory stimulus. If the animal oriented to and approached any test stimulus it was rewarded there, but could also move directly ahead to obtain a similar reward at the fixation point. The animal handler did not know the location of the upcoming test stimulus. This was determined by the experimenter holding the food reward, who also ensured that the trial did not begin if the animal had broken fixation. The verbal command “Go” triggered the release of the animal. “Catch trials” in which no stimulus was presented were interleaved with test trials at different locations to encourage the animal to minimize breaks in fixation, scanning movements, and “false” responses. Generally, in a given session, each of the 15° locations was tested at least 4–5 times. With few exceptions, the total number of trials/location was at least 100. The training criterion was an average of 95% correct responses. All animals reached criterion readily, had normal visual fields, and their weekly weight records revealed stable weight profiles.

Figure 1. The testing, training, and multisensory exposure paradigms. (A) Visual and auditory detection/localization capabilities were first assessed on both sides of space using a simple behavioral task. Cats were trained to fixate forward at 0° then orient to, and directly approach, a visual or auditory stimulus at any location in space. Visual stimuli were produced by lowering a ping pong ball below an obscuring curtain, and auditory stimuli were produced by tapping the ball against the apparatus wall while still obscured by the curtain. (B) Following surgery, a rehabilitation paradigm consisted of weekly sessions in which animals were exposed to cross-modal cues while anesthetized. As shown by the schematic at the lower left, the central LED (at 0°) of the display was briefly illuminated to signal the onset of the trial. It was followed by the combined LED-broadband noise burst at 45° in the contralesional hemifield. Traces illustrate the onset and duration of the stimuli. Panel (A) adapted from Jiang et al. (2015).

Continue —->  Frontiers | Reversing Hemianopia by Multisensory Training Under Anesthesia | Frontiers in Systems Neuroscience

, , , , , ,

Leave a comment

[ARTICLE] Adaptive conjunctive cognitive training (ACCT) in virtual reality for chronic stroke patients: a randomized controlled pilot trial – Full Text

Abstract

Background

Current evidence for the effectiveness of post-stroke cognitive rehabilitation is weak, possibly due to two reasons. First, patients typically express cognitive deficits in several domains. Therapies focusing on specific cognitive deficits might not address their interrelated neurological nature. Second, co-occurring psychological problems are often neglected or not diagnosed, although post-stroke depression is common and related to cognitive deficits. This pilot trial aims to test a rehabilitation program in virtual reality that trains various cognitive domains in conjunction, by adapting to the patient’s disability and while investigating the influence of comorbidities.

Methods

Thirty community-dwelling stroke patients at the chronic stage and suffering from cognitive impairment performed 30 min of daily training for 6 weeks. The experimental group followed, so called, adaptive conjunctive cognitive training (ACCT) using RGS, whereas the control group solved standard cognitive tasks at home for an equivalent amount of time. A comprehensive test battery covering executive function, spatial awareness, attention, and memory as well as independence, depression, and motor impairment was applied at baseline, at 6 weeks and 18-weeks follow-up.

Results

At baseline, 75% of our sample had an impairment in more than one cognitive domain. The experimental group showed improvements in attention (χ2FχF2 (2) = 9.57, p < .01), spatial awareness (χ2FχF2 (2) = 11.23, p < .01) and generalized cognitive functioning (χ2FχF2 (2) = 15.5, p < .001). No significant change was seen in the executive function and memory domain. For the control group, no significant change over time was found. Further, they worsened in their depression level after treatment (T = 45, r = .72, p < .01) but returned to baseline at follow-up. The experimental group displayed a lower level of depression than the control group after treatment (Ws = 81.5, z = − 2.76, r = − .60, p < .01) and (Ws = 92, z = − 2.03, r = − .44, p < .05).

Conclusions

ACCT positively influences attention and spatial awareness, as well as depressive mood in chronic stroke patients.

Trial registration

The trial was registered prospectively at ClinicalTrials.gov (NCT02816008) on June 21, 2016.

Background

Cognitive impairments are common after stroke, with incident rates up to 78% [1]. Patients with mild cognitive impairment are at risk for developing dementia [2]. Cognitive deficits correlate with poor functional outcomes and increased risk of dependence [3], have negative effects on the patient’s quality of life [4], and alter the patient’s ability to socialize [5]. However, the current clinical practice seems to lack methods that specifically address cognitive sequelae. According to a meta-analysis that aimed at proposing recommendations for new clinical standards, currently available treatments that are used as control conditions are conventional therapies like physical therapy or occupational therapy, pseudo treatments like mental or social stimulation without therapeutic intent, as well as psychosocial interventions like psychotherapy or emotional support for individuals or groups [6]. Besides, it has been shown that cognitively impaired patients participate less in rehabilitation activities, which potentially contributes to the poorer functional outcome they display [7]. Finding effective cognitive rehabilitation methods that can be incorporated in clinical practice is therefore crucial. Numerous methods to improve cognitive deficits, for instance, specifically attention [8], memory [9], executive function [10], or spatial abilities [11], have been proposed. However, the results show mixed efficacies. A meta-analysis on the impact of attentional treatments showed an effect on divided attention in the short-term, but found no evidence for persisting effects on other attentional domains, global attention, or functional outcomes [12]. Similarly, a meta-review that investigated the effect of memory rehabilitation found that training might benefit subjective reports of memory in the short term, but shows no effect in the long term, on objective memory measures, mood, functional abilities or quality of life [13]. Ultimately, a meta-analysis over 6 Cochrane reviews shows insufficient research evidence or evidence of insufficient quality to support any recommendation for cognitive stroke rehabilitation [14]. Besides methodological issues, one limitation of existing methods could be that they focus on one deficit only, ignoring that patients typically express deficits in multiple cognitive domains [12]. A study on a large sample of heterogeneous stroke patients which aimed at linking lesions to cognitive deficits found that a given lesion location leads to cognitive impairments in several domains [15]. This emphasizes that cognitive functions rely on a network of brain regions. A lesion in one of those regions might cause a disturbance to the network, which leads to a multitude of symptoms. This is further supported by studies that revealed that pathological changes in brain structures are related to the occurrence of various cognitive deficits and symptoms for instance, in Alzheimer’s disease [16] or spatial neglect [17]. Moreover, the presence of multiple cognitive deficits seems to be a marker in patients that are at risk of developing Alzheimer’s disease later in life [18]. To what extent rehabilitation could potentially drive structural or functional changes to alleviate the symptoms of stroke is still under debate [1920]. Nevertheless, rehabilitation methods have to aid the patient in obtaining enough functionality to independently perform instrumental activities of daily living, be it through restoration of function or compensation. With this in mind, focusing on training a single cognitive skill might not be efficient because many daily tasks or jobs require several cognitive abilities for their execution [21]. For instance, most patients would like to be mobile and drive a car again after their stroke. Driving requires the individual to use selective attention to deal with the traffic, traffic signs and distractions, to be cognitively flexible to react to changing situations on the road, to visually scan the mirrors at the front, at the side, and in the back, to have a visual field that includes the sidewalks and to perform all of this while steering the car effectively in real-time [22]. Consequently, rehabilitation methods that address one specific cognitive ability only do not address the requirements of performing the activities of daily living and might not stimulate and train the underlying brain processes adequately. If a stroke leads to impairments in various cognitive domains, then these domains should be treated together to benefit a patient’s performance in everyday life.[…]

 

Continue —-> Adaptive conjunctive cognitive training (ACCT) in virtual reality for chronic stroke patients: a randomized controlled pilot trial | SpringerLink

 

Fig. 1

Fig. 1 Experimental protocol and set-up. a The protocol lasted 18 weeks in total, 6 weeks of training, and 3-months follow-up period. b The set-up of the EG in the hospital consisted of a desktop computer, a Microsoft Kinect and two wristbands with reflective markers that are worn by the patient. A Tobii EyeTracker T120 tracked the eye movement of the patient during the training. The Kinect detects the reflective markers and transposes the movement of the patient’s real arms onto the virtual arms of the avatar in the training scenarios. The patients are seated at a table, and the three training scenarios (c Complex Spheroids, d Star Constellations, and e Quality Controller) are shown on the screen always in the same order. Besides the automated adaptive difficulty mechanism and the embodied training, the system incorporates further principles of neurorehabilitation including the provision of multisensory feedback, feedback of results, variable and structured practice as well as promoting the use of the paretic limb. C Star Constellations, CG control group, D day, EG experimental group, Eval VR evaluation, Q Quality Controller, RGS Rehabilitation Gaming System, S Complex Spheroids

 

, , , , , , ,

Leave a comment

[Abstract] Enriched, Task-Specific Therapy in the Chronic Phase After Stroke: An Exploratory Study

Abstract

Background and purpose: There is a need to translate promising basic research about environmental enrichment to clinical stroke settings. The aim of this study was to assess the effectiveness of enriched, task-specific therapy in individuals with chronic stroke.

Methods: This is an exploratory study with a within-subject, repeated-measures design. The intervention was preceded by a baseline period to determine the stability of the outcome measures. Forty-one participants were enrolled at a mean of 36 months poststroke. The 3-week intervention combined physical therapy with social and cognitive stimulation inherent to environmental enrichment. The primary outcome was motor recovery measured by Modified Motor Assessment Scale (M-MAS). Secondary outcomes included balance, walking, distance walked in 6 minutes, grip strength, dexterity, and multiple dimensions of health. Assessments were made at baseline, immediately before and after the intervention, and at 3 and 6 months.

Results: The baseline measures were stable. The 39 participants (95%) who completed the intervention had increases of 2.3 points in the M-MAS UAS and 5 points on the Berg Balance Scale (both P < 0.001; SRM >0.90), an improvement of comfortable and fast gait speed of 0.13 and 0.23 m/s, respectively. (P < 0.001; SRM = 0.88), an increased distance walked over 6 minutes (24.2 m; P < 0.001; SRM = 0.64), and significant improvements in multiple dimensions of health. The improvements were sustained at 6 months.

Discussion and conclusions: Enriched, task-specific therapy may provide durable benefits across a wide spectrum of motor deficits and impairments after stroke. Although the results must be interpreted cautiously, the findings have implications for enriching strategies in stroke rehabilitation.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A304

Similar articles

via Enriched, Task-Specific Therapy in the Chronic Phase After Stroke: An Exploratory Study – PubMed

, , , , , , ,

Leave a comment

[ARTICLE] Comparing Home Upper Extremity Activity with Clinical Evaluations of Arm Function in Chronic Stroke – Full Text PDF

Abstract

Objective

To determine if clinical evaluations of post-stroke arm function correspond to everyday motor performance indexed by arm accelerometers.

Design

Cross-sectional study analyzing baseline data from a larger trial (NCT02665052). Setting: Outpatient research center.

Participants

Twenty community-dwelling adults with chronic arm motor deficits (stroke≥6mo). Intervention: 72-hours of home wrist-worn accelerometry during normal routine.

Main Outcome Measures

Clinical evaluations included the Fugl-Meyer (FM), Action Research Arm Test (ARAT), Wolf Motor Function Test (WMFT), and two self-assessments: the Motor Activity Log (MAL) and hand motor subscale of the Stroke Impact Scale (SIS). Accelerometer-derived variables included quantifications of movement intensity (magnitude) and duration of arm use.

Results

Participants had moderate arm impairment (FM 36.1 ± 9.4). The accelerometer-derived mean magnitude ratio correlated significantly with the FM (ρ = 0.60, p < 0.01), WMFT functional score (ρ = 0.59, p < 0.01), and ARAT (ρ = 0.50, p < 0.05). The hours of use ratio correlated with the MAL amount of use (ρ = 0.58, p < 0.01) and quality of movement (ρ = 0.61, p < 0.01). Total paretic hours did not correlate with the FM, WMFT or ARAT, and intensity variables did not correlate with the MAL or SIS.

Conclusions

Participants with higher baseline function had greater intensity of paretic arm movement at home; similarly, those who perceived they had less disability used their paretic arm more relative to their non-paretic arm. However, some participants with higher clinical scores did not exhibit greater arm use in everyday life, possibly due to neglect and learned non-use. Therefore, individualized home accelerometry profiles could provide valuable insight to better tailor post-stroke rehabilitation.

via Comparing Home Upper Extremity Activity with Clinical Evaluations of Arm Function in Chronic Stroke – ScienceDirect

, , , , , , , , ,

Leave a comment

[ARTICLE] Hand Extension Robot Orthosis (HERO) Grip Glove: enabling independence amongst persons with severe hand impairments after stroke – Full Text

Abstract

Background

The Hand Extension Robot Orthosis (HERO) Grip Glove was iteratively designed to meet requests from therapists and persons after a stroke who have severe hand impairment to create a device that extends all five fingers, enhances grip strength and is portable, lightweight, easy to put on, comfortable and affordable.

Methods

Eleven persons who have minimal or no active finger extension (Chedoke McMaster Stage of Hand 1–4) post-stroke were recruited to evaluate how well they could perform activities of daily living and finger function assessments with and without wearing the HERO Grip Glove.

Results

The 11 participants showed statistically significant improvements (p < 0.01), while wearing the HERO Grip Glove, in the water bottle grasp and manipulation task (increase of 2.3 points, SD 1.2, scored using the Chedoke Hand and Arm Inventory scale from 1 to 7) and in index finger extension (increase of 147o, SD 44) and range of motion (increase of 145o, SD 36). The HERO Grip Glove provided 12.7 N (SD 8.9 N) of grip force and 11.0 N (SD 4.8) of pinch force to their affected hands, which enabled those without grip strength to grasp and manipulate blocks, a fork and a water bottle, as well as write with a pen. The participants were ‘more or less satisfied’ with the HERO Grip Glove as an assistive device (average of 3.3 out of 5 on the Quebec User Evaluation of Satisfaction with Assistive Technology 2.0 Scale). The highest satisfaction scores were given for safety and security (4.6) and ease of use (3.8) and the lowest satisfaction scores were given for ease of donning (2.3), which required under 5 min with assistance. The most common requests were for greater grip strength and a smaller glove size for small hands.

Conclusions

The HERO Grip Glove is a safe and effective tool for enabling persons with a stroke that have severe hand impairment to incorporate their affected hand into activities of daily living, which may motivate greater use of the affected upper extremity in daily life to stimulate neuromuscular recovery.

Background

Fifteen million individuals worldwide experience a stroke each year with 50,000 of these cases occurring in Canada [1]. Approximately two-thirds of these individuals will experience neurological deficit [2] and half will never fully recover the hand function required to perform activities of daily living independently [3]. Stroke survivors with severe hand impairment have difficulty producing hand motion and grip force and their increased muscle tone, spasticity and contractures keep their hand clenched in a fist. These stroke survivors have the potential to attain functional improvements years after their stroke by constantly incorporating the affected hand into activities of daily living (ADLs) and additional goal-directed tasks during their therapy exercises and daily routines [4,5,6].

There are many barriers to incorporating the affected hand into exercises and daily routines including time, discomfort, safety risks and mental and physical effort. Personalized, high-intensity, coaching and motion assistance is required to overcome these barriers but is often inaccessible to stroke survivors. The time and resource commitments are too substantial for many clinics to supply at a sufficient intensity and additional rehabilitation technologies and services can be inaccessible due to high cost, location and availability [78]. As a result, stroke survivors often do not regain the hand range of motion (ROM), strength and coordination required to perform ADLs independently. Affordable and accessible rehabilitation technologies and services that enable stroke survivors with severe hand impairment to incorporate their affected hand into ADLs are needed to maximize neuromuscular recovery and daily independence.

Design targets for wearable hand robots

A main goal for wearable hand robots is to provide the hand function assistance and rehabilitation required to enable people after stroke to perform ADLs independently. Able-bodied individuals move their fingers through a ROM of 164o during activities of daily living, as calculated by summing the differences between the extension and flexion joint angles of the distal interphalangeal (DIP), proximal interphalangeal (PIP) and metacarpophalangeal (MCP) joints [9]. The thumb moves through a ROM of 40o, as calculated by summing the differences between the extension and flexion joint angles of the thumb’s interphalangeal (IP) and MCP joints [9]. Grip forces averaging 67 N are exerted [10] and a combination of hand postures are used (i.e. a tripod pinch was used during 38% of the activities of daily living evaluated, extended hand (13%), cylindrical grasp (12%), lumbrical grasp (10%), lateral pinch (9%)) [11].

Capabilities of wearable hand robots

Wearable hand robots have manipulated able-bodied participants’ relaxed hands to provide 129o of index finger ROM, 83 N of grip strength as measured using a hand dynamometer, and 7 hand postures in Rose et al. [10]. However, when these robots are evaluated with impaired hands the assistive capabilities have been much lower. For studies by Cappello et al. and Soekadar et al. with six and nine persons with impaired hands following a spinal cord injury, wearable hand robots have increased grip strength to 4 N [12] and ADL performance to 5.5 out of 7 on the Toronto Rehabilitation Institute – Hand Function Test by assisting pinch and palmar grasp postures [1213]. For a study by Yurkewich et al. with five persons with severely impaired hands following stroke (no voluntary index finger extension), a previous version of the HERO Grip Glove named the HERO Glove increased ROM to 79o and improved water bottle and block grasping performance [14]. Refer to [14] for a supplementary table detailing recently developed wearable hand robots, their capabilities and their evaluation results. Hand robots need to be improved to generate strong extension and grip forces that overcome muscle tone and securely stabilize various object geometries, such as a water bottle and a fork. These robots should also be easy to put on clenched hands, comfortable during multiple hours of use, lightweight so as not to affect the motion of weak arms and affordable so they are accessible to people with limited income even though these considerations create design tradeoffs that sacrifice assistive capabilities [1415].

A number of sensor types (i.e. button [121416], electromyography [1718], motion [1014], force [19], voice [20], vision [2122] and electroencephalography [13] have been selected to control robot assistance based on varied motivations such as robust operation or motivating neuromuscular activation. However, other than button control, these control strategies are still in an experimental stage that requires experts to manually tune each user’s orthosis [17].

A single study evaluating two stroke survivors’ satisfaction with a wearable hand robot was completed by Yap et al. [16] to understand their needs and preferences in wearable hand robot design. More rigorous studies would further inform designers on how to adapt their wearable hand robots to maximize the intended users’ satisfaction and arm and hand use.

This article presents the portable Hand Extension Robot Orthosis (HERO) Grip Glove, including its novel design features and the evaluation of its assistive capabilities and usability with 11 stroke survivors with severe hand impairments. The HERO Grip Glove, shown in Fig. 1, assists five-finger extension, thumb abduction and tripod pinch grasping using particular cable materials and routing patterns and only two linear actuators. A fold-over wrist brace is used to mount the electronic components, support the wrist, and ease donning. The robot is controlled by hand motion or a button. The robot is open source for broad access, untethered and lightweight for unencumbered use throughout daily routines, and soft to conform to hands and objects of varying geometries. The HERO Grip Glove increases range of motion and ADL performance with large and small objects and increases grip strength for those without grip strength. The participants’ quantitative and qualitative feedback from their user satisfaction questionnaires provides guidance for assistive technology developers and motivation for deploying the HERO Grip Glove to stroke survivors for use throughout their daily routines.

 

figure1

The HERO Grip Glove assists finger and thumb extension and flexion to enable users to grasp large and small objects. The HERO Grip Glove consists of (a) cable tie guides, (b) an open-palm glove, (c) cable tie tendons for extension, (d) a 9 V battery case with the battery inside and the microcontroller with an inertial measurement unit mounted between the case and the glove, (e) buttons to control the manual mode and select between the manual and automatic modes used in [14], (f) a linear actuator, (g) a foldable wrist brace, (h) cable tie pawls for pre-tensioning, (i) fishing wire tendons for flexion, (j) tendon anchor points on the wrist brace and (k) Velcro straps to secure the glove. The glove folds open to ease donning. The dorsal and palmar tendons’ routing paths are highlighted in yellow

[…]

Continue —->  Hand Extension Robot Orthosis (HERO) Grip Glove: enabling independence amongst persons with severe hand impairments after stroke | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , , , , , , , ,

Leave a comment

[Dissertation] Advancing Rehabilitation Research Through Characterization of Conventional Occupational Therapy for Adult Stroke Survivors with Upper Extremity Hemiparesis

Abstract

Stroke remains a leading cause of long-term disability in the United States. While significant medical advances have led to decreased stroke mortality rates, incidence of stroke has remained roughly the same. This has resulted in an increased number of stroke survivors living with upper extremity (UE) hemiparesis requiring occupational therapy (OT). Despite a significant increase in the number of stroke rehabilitation trials over the past decade, a recent systematic review and meta-analysis found insufficient evidence that any experimental interventions were superior to conventional rehabilitation for improving UE motor function post-stroke. While it may be true that novel interventions are no more effective than conventional rehabilitation, an equally probable reason is the large disparities in dosage, frequency, and interventions used across control groups in clinical trials.
In the stroke rehabilitation literature, control interventions are often referred to as standard care or conventional rehabilitation. Concerningly, the majority of stroke rehabilitation trials lack an empirically based rationale for how control interventions are comparable to standard care rehabilitation. Inadequate descriptions of, and rationales for, control interventions across stroke rehabilitation trials are significant barriers to the advancement of evidence-based practice. Without a true understanding of `standard care’ in real-world practice, there is no way to know if the control intervention is truly comparable. There is an urgent need to characterize `standard care’ rehabilitation to inform control intervention development and improve interpretability of clinical trial results. The purpose of this study was to investigate current practices of occupational therapy practitioners in outpatient rehabilitation settings to address upper extremity hemiparesis in adult stroke survivors.
In Chapter 2, a cross-sectional e-mail survey was sent to OT practitioners across the United States to determine current practice patterns of therapists working in outpatient stroke rehabilitation nationwide. The results of this study (n=269) revealed that stretching, bilateral upper extremity training, strength training, weightbearing, manual therapy and task-oriented training were used by more than 85% of OT practitioners in our sample. Poor patient compliance (84%), medical complexity (64%), and spasticity (63%) were the most commonly reported barriers to patients meeting their OT goals in outpatient rehabilitation.
Chapters 3 and 4 present the results of a video-based observational study of outpatient OT sessions at an academic medical center. The Rehabilitation Treatment Specification System (RTSS) was used to analyze 30 OT treatment sessions. The average total session time was 52 ± 4.7 minutes with 36.2 ± 7.4 minutes of active time and 15.8 ± 7.1 minutes of inactive time per session. Interventions in the RTSS categories of `Skills and Habits’ (e.g., task-oriented activities) and `Organ Function’ (e.g., stretching, weightbearing) were used in the majority of OT sessions with `Skills and Habits’ activities accounting for 59% of active time and `Organ Function’ activities accounting for 35% of active time. After removing outliers, an average of 150.2 ± 85.2 UE repetitions occurred per session. Functional electrical stimulation (FES) was commonly used as an adjuvant to task-oriented activities and knowledge of performance was provided often during treatment.
Taken together, these results suggest that task-oriented training is commonly used by OT practitioners to address UE hemiparesis and musculoskeletal interventions are often used to mitigate spasticity in preparation for task-oriented activities. Future research will include video observation and analysis of OT practice sessions across multiple practice settings, as well as analyzing our remaining survey data across multiple practice settings (e.g., inpatient rehabilitation, skilled nursing facilities) to describe similarities and differences with the current findings.
Full Text: Wengerd_Dissertation_11.26.19.pdf (3.16 MB) View|Download

via OhioLINK ETD: Wengerd, Lauren Rachel

, , , , , , , , , , , , , , ,

Leave a comment

[ARTICLE] Efficacy and predictors of recovery of function after eye movement training in 296 hemianopic patients – Full Text

Abstract

Compensatory approaches to rehabilitation of vision loss as a result of brain injury are aimed at improving the efficacy of eye movements, enabling patients to bring the otherwise unseen stimuli into their sighted field. Eye movement training has shown promise in a large number of studies in small clinical populations. Nevertheless, there remain two problems; standardisation and wide accessibility. NeuroEyeCoach™ (NEC) has been developed to address both. The therapy is based on the visual search approach and is adaptive to the patient’s level of disability and the task difficulty is varied systematically through a combination of set-size and target/distractor similarity. Importantly, the therapy can be accessed online or in clinical settings, to enhance accessibility. Here we have reported on the findings from the first 296 consecutive cases who have accessed and completed NEC online, the largest cohort of patients studied to date. Patients’ performance on two objective (visual search times and errors) and one subjective (self-reported disability) measures of performance were assessed before and after therapy. The findings showed that patients improved in search time, had less errors and improved disability scores in 87% (255/294), 80% (236/294) and 66% (167/254) of all cases respectively. We examined factors age, sex, side of blindness, age at the onset of brain injury, and time elapsed between the brain injury and start of therapy as predictors of both objective and subjective measures of improvements. Age was a significant predictor of improved search errors with older patients showing larger improvements. Time between brain injury and intervention negatively influenced search reaction time, however, none of the factors could predict improved subjective reports of disability.

1. Introduction

Areas of blindness in the visual field could arise as a result of lesions along the visual pathways. Stroke is the main cause of brain injury, although trauma and elective surgery may also affect the visual pathways. There is a high incidence (60%) of visual impairments in stroke survivors (Rowe, Hepworth, Hanna, & Howard, 2016), with as many as half of those have been reported to have visual field loss (Fujino et al., 1986Zhang et al., 2006a). In post chiasmatic lesions, the resultant blindness is similar in extent within the same hemifield in both eyes, hence referred to as homonymous. Homonymous hemianopia is therefore blindness covering the entire one hemifield in both eyes.

The leading causes of sight loss such as age-related macular degeneration, cataracts, diabetic retinopathy and glaucoma, characteristically affect an individual over an extended period of time typically ranging from weeks to years (Groeneveld et al., 2019Rudnicka et al., 2015). Although the blindness is debilitating, there is scope for a period of adjustments to the gradual visual impairment. Sight loss due to brain injury on the other hand is sudden and often occurs over few hours and without prior warning. Some spontaneous recovery may take place in the acute stage of injury, but the probability of recovery diminishes rapidly with time and very little recovery of sight is expected 3–6 months post injury (de Haan et al., 2014Zhang et al., 2006b).

There are three main approaches to rehabilitation of hemianopic patients, namely substitution, restitution or compensatory approaches. Substitution refers to methods where the damaged field is imaged onto a portion of the sighted field using spectacle prisms to enable patients to see the otherwise undetected objects (Bowers, Keeney, & Peli, 2008). The method can expand the field of vision, nevertheless a number of studies have shown low compliance (Bowers et al., 2008Bowers et al., 2014). This may in parts be due to the reported difficulties that patients experience with the required shifts in attention and the distraction caused by rival information in the two eyes (Raz & Levin, 2017). Also, the benefits are of course contingent upon the use of optical devices. Hence the substitution techniques have not been widely adopted in clinical practice.

Restitution techniques are aimed at improving the visual sensitivity within the field defect. Post-geniculate lesions along the optic radiation and early cortical processing may lead to lack of conscious visual experience. However, there are numerous projections of visual information to subcortical and cortical sites that by-pass the usual retino-geniculo-striate route (Cowey, 2004Sahraie and Trevethan, 2014). The premise of restitution techniques relies on the residual capabilities of the remaining pathways enhanced through perceptual learning. That is, with repeated simulation over an extended period of time, learning can take place. Thus, associating visual stimulation with residual neuronal activity (Huxlin, 2008Sahraie, 2007). The fact that neuronal activity associated with visual stimuli, confined to the blind visual fields, can influence behaviour in forced-choice paradigms and in the absence of conscious perception is well established and is termed blindsight (Weiskrantz, 1986). Whilst there is an absence of any conscious experience in type I blindsight, some rudimentary awareness may be experienced in type II blindsight, often reported as a feeling that a visual event had taken place (Weiskrantz, 1998). Conscious visual experience lies on a continuous spectrum and systematic and repeated stimulation can lead behavioural performance from no detection ability to blindsight type I, type II, and eventually conscious vision (Sahraie, Trevethan, Macleod, Weiskrantz, & Hunt, 2013). Over the past two decades, a number of restitution techniques based on systematic stimulation have been developed. These include utilising repeated stimulation of the light flux channel in Vision Restoration Therapy (Kasten and Sabel, 1995Poggel et al., 2008Romano et al., 2008). Active stimulation of motion sensitivity (Huxlin et al., 2009), spatial vision (Sahraie et al., 2006) and flicker sensitivity (Raninen, Vanni, Hyvärinen, & Näsänen, 2007) have also been used in restoration approaches. The time commitment for patients using restitution techniques is significant, often requiring adherence to the daily use of an intervention over a number of months.

Compensatory techniques rely on the patient’s intact visual field for processing the otherwise unseen stimuli, by using eye movements to bring their image onto the intact field. Although such compensatory approach is intuitive, spontaneous adaptation and development of an effective eye movement pattern is seen in only 40% of hemianopic patients (Zihl, 1995) and the majority of cases shows inefficient eye movements years after the injury. The pattern of eye movements in affected cases can be characterised as having smaller amplitude saccades, leading to requiring a larger number of eye movements to explore a given portion of the field, hence slowing down in time to explore and identify targets within the field defect (Zihl, 2011). There is also a more disorganised search strategy in that patients make more frequent between hemifield saccades. Disturbances of eye movement patterns extend to both sighted and blind hemifields (Chokron et al., 2016Zihl, 1995Zihl and Hebel, 1997). In a pioneering study (Zihl, 1988), demonstrated that hemianopic patients that undertook a visual search training (involving detection of a target item amongst distractors) had improved search times. These studies were extended by the use of computerised visual search paradigms in the same lab (Zihl, 1995Zihl, 2011) as well as others (Kerkhoff et al., 1992Mannan et al., 2010Nelles et al., 2009Nelles et al., 2001Pambakian et al., 2004Roth et al., 2009); showing an overall improvement in detection time, a reduced scanpath and a smaller number of fixations prior to target detection (for a review see Sahraie, Smania, & Zihl, 2016). It is important to note that the improvements following compensatory therapies are domain specific. For example, reading disorders are also common following stroke and online therapies such as Read-Right (Ong et al., 2012Woodhead et al., 2015) can lead to improvements in reading abilities. However, performance improvements following specific training for eye movement scanning behaviour and those for reading do not transfer (Schuett, Heywood, Kentridge, Dauner, & Zihl, 2012).

As eye movements play a crucial role in visual perception and in the interaction of an individual with their environment, it is assumed that improved eye movement efficiency could lead to a reduction in self-reported level of disability. Indeed, assessment of improvements in self-reported ratings of perceived disability, introduced by (Nelles et al., 2001) has been implemented and extended in a number of studies (Aimola et al., 2014Lane et al., 2010Mannan et al., 2010Pambakian et al., 2004). Evaluation of the functional improvement in quality of life and interaction with the environment after visual rehabilitation interventions has not been carried out in any large scale studies to date, and the reported subjective ratings in Activities of Daily Living (ADL) questionnaires remain the most widespread method for such assessments.

Recent systematic reviews of the evidence for the effects of visual rehabilitation interventions (Pollock et al., 2011Pollock et al., 2019) have suggested eye movement training to be the most promising approach to vision rehabilitation in stroke patients. There are however, two major issues that needs to be addressed if any eye movement-based intervention is to become the standard care. These include standardisation of approach and ease of access (Pollock et al., 2019). In a collaborative approach Sahraie et al. (2016) reported on development of NeuroEyeCoach™ (NEC), an eye movement intervention that was based on the original visual search task that had shown to be effective in improving search performance in hemianopia (Zihl, 1995) (also described below). NEC is a Class I CE marked medical device in the EU and is registered as an FDA 510(K) exempt medical device in the US. For the patient sample described in this paper, the cost of accessing NEC was approximately $400US. The intervention was self-administered with in-built algorithms to adapt to the patient’s level of disability and systematically train the affected individual to make effective eye movements. In addition, the intervention was deliverable over the internet, thus it could be accessed at home or in clinical settings. To further illustrate the stages involved in NEC, a demo version can be accessed here (https://novavision.com/download-neuroeyecoach-demo/).

Here, we report for the first time, on changes in performance of a large group of hemianopic patients who undertook NEC outside a clinic environment. We have obtained pre- and post-intervention self-reported assessment of ADL (referred to as disability score DS) as well as reaction time (RT) and errors (ER) on a specific search task. Improvements in RT, ER and DS have been analysed in relation to age, sex, side of blindness, age at the onset of brain injury, and time elapsed between the brain injury and start of therapy.

[…]

 

Continue —-> Efficacy and predictors of recovery of function after eye movement training in 296 hemianopic patients – ScienceDirect

Fig. 1

Fig. 1. Post- and pre-therapy average reaction times for each patient is plotted in panel (A). The dashed line denotes equal performance at both sessions and 87% of cases fall below this line, indicating faster reaction times at post-therapy. Panel (B) plots the reaction time for targets appearing on the sighted and blind field separately, again indicating that improvements take place at both sides. Error bars denote ±SEM.

, , , , ,

Leave a comment

[ARTICLE] Sexuality: A Neglected Discussion in Chronic Traumatic Brain Injury – issuu

By Kathryn Farris, OTR/L • Marisa King, PT, DPT • Monique R. Pappadis, MEd, PhD • Angelle M. Sander, PhD

Sexual dysfunction is a problem for 25% to 50% of persons with
traumatic brain injury (TBI) at one or more years post-injury
(Downing, Stolwyk, and Ponsford, 2013; Sander et al., 2012).
Dysfunction can occur at the stages of desire (Downing et al., 2013;
Sander et al., 2012; Strizzi et al., 2015), arousal (Sander et al., 2012;
Strizzi et al., 2015), and orgasm (Downing et al., 2013; Sander et
al., 2012; Strizzi et al., 2015). Sexual dysfunction after TBI can result
from damage to parts of the brain involved in regulating sexual
function, including the frontal lobe, temporal lobe, and subcortical
structures (Sandel, Delmonico, and Kotch, 2007). TBI-related
disruption of neurotransmitters and the neuroendocrine system also
impact sexual function (Behan et al., 2008).
TBI-related changes in physical, cognitive, emotional, behavioral,
and social functioning can impact sexuality. Physical changes
include spasticity, hemiparesis, balance/vestibular dysfunction, and
impaired sensation (Gervasio and Griffith, 1999). Cognitive deficits
can also negatively impact sexual function (Aloni and Katz, 2003).
For example, impaired attention and concentration can affect a
person’s ability to stay focused during a sexual encounter or become
aroused. Impaired initiation and planning can affect relationship
building and frequency of sexual activity. Reduced abstract thinking
and cognitive flexibility can limit ability to fantasize, impacting sexual
arousal. Memory impairments can result in an excessive demand for
sexual activity that can be distressing to partners. Impaired social
communication can result in decreased empathy, reduced ability to
read and respond to non-verbal behavior in others, and problems
perceiving emotions (Zupan et al., 2014).
Depression and anxiety, which occur frequently post-TBI (Osborn,
Mathias, and Fairweather-Schmidt, 2014, 2016), can inhibit
sexual desire and arousal. While hypersexuality is not as common
as hyposexuality after TBI (Simpson, Sabaz, and Daher, 2013),
disinhibition and impulsivity contribute to decreased self-monitoring
of sexual behavior in some people (Bezeau, Bogod, and Mateer,
2004). TBI can negatively impact social relationships, leading
to marital dissatisfaction and/or reduced relationship quality
(Hammond et al., Davis et al., 2011; Kreutzer et al., 2007). Reduced
social participation or social isolation is common following TBI and
contributes to sexual dysfunction (Sander et al., 2013).
Medication side effects also contribute to sexual problems. Many
drugs used to facilitate sleep and reduce cognitive and emotional
changes after TBI can have negative side effects on sexual
function (Aloni and Katz, 2003; Moreno et al., 2015) Examples
include anticonvulsants, selective serotonin reuptake inhibitors,
serotonin antagonist and reuptake inhibitors, dopamine agonists,
acetylcholinesterase inhibitors, stimulants, and baclofen.

[…]

Continue —> https://issuu.com/braininjuryprofessional/docs/bip_december_2019/26

 

, , , , ,

Leave a comment

%d bloggers like this: