Posts Tagged gait

[Abstract] How effective is physical therapy for gait muscle activity in hemiparetic patients who receive botulinum toxin injections?

BACKGROUND: Administration of botulinum neurotoxin A (BoNT-A) to the ankle plantar flexors in patients with hemiplegia reduces the strength of knee extension, which may decrease their walking ability. Studies have reported improvements in walking ability with physical therapy following BoNT-A administration. However, no previous studies have evaluated from an exercise physiology perspective the efficacy of physical therapy after BoNT-A administration for adult patients with hemiplegia.

AIM: To investigate the effects of physical therapy following BoNT-A administration on gait electromyography for patients with hemiparesis secondary to stroke.

DESIGN: Non-randomized controlled trial.

SETTING: Single center.

POPULATION: Thirty-five patients with chronic stroke with spasticity were assigned to BoNT-A monotherapy (n=18) or BoNT-A plus physical therapy (PT) (n=17).
METHODS: On the paralyzed side of the body, 300 single doses of BoNT-A were administered intramuscularly to the ankle plantar flexors. Physical therapy was performed for 2 weeks, starting from the day after administration. Gait electromyography was performed and gait parameters were measured immediately before and 2 weeks after BoNT- A administration. Relative muscle activity, co-activation indices, and walking time/distance were calculated for each phase.

RESULTS: For patients who received BoNT-A monotherapy, soleus activity during the loading response decreased 2 weeks after the intervention (p<0.01). For those who received BoNT-A+PT, biceps femoris activity and knee co-activation index during the loading response and tibialis anterior activity during the pre-swing phases increased, whereas soleus and rectus femoris activities during the swing phase decreased 2 weeks after the intervention (p<0.05). These rates of change were significantly greater than those for patients who received BoNT-A monotherapy (p<0.05).

CONCLUSIONS: Following BoNT-A monotherapy, soleus activity during the stance phase decreased and walking ability either remained unchanged or deteriorated. Following BoNT-A+PT, muscle activity and knee joint stability increased during the stance phase, and abnormal muscle activity during the swing phase was suppressed.

CLINICAL REHABILITATION IMPACT: If botulinum treatment of the ankle plantar flexors in stroke patients is targeted to those with low knee extension strength, or if it aims to improve leg swing on the paralyzed side of the body, then physical therapy following BoNT-A administration could be an essential part of the treatment strategy.

PDF

via How effective is physical therapy for gait muscle activity in hemiparetic patients who receive botulinum toxin injections? – European Journal of Physical and Rehabilitation Medicine 2018 Jun 11 – Minerva Medica – Journals

Advertisements

, , , , , ,

Leave a comment

[WEB SITE] Kessler Foundation partners with Motek to develop new rehabilitation treatments

Researchers will investigate virtual reality-based interventions to improve cognitive and motor deficits in individuals with disabilities

KESSLER FOUNDATION

IMAGE

IMAGE: PARTICIPANT WALKING ON C-MILL WITH RESEARCH SCIENTIST AT KESSLER FOUNDATION.

Kessler Foundation, a major nonprofit organization in the field of disability, has partnered with Motek, a leader in virtual reality (VR) rehabilitation technologies, to develop new treatments to improve cognitive and motor impairments in individuals with disabilities.

Mobility deficits due to disease, trauma, or aging, adversely affect a person’s quality of life. Specifically, the inability to adjust one’s gait to one’s environment – such as to maneuver a doorstep, puddle of water or other obstacles – leads to increased risk of falling. Using a VR-based device called C-Mill, investigators at Kessler Foundation are exploring interventions to improve disabling deficits in individuals with multiple sclerosis, spinal cord injury, and stroke. The C-Mill is a state-of-the-art treadmill that trains the user in obstacle avoidance and influences gait pattern by projecting virtual cues on a safe walking surface.

“The flexibility of the C-Mill allows researchers to program for specific environments, enabling better training and evaluation of gait pattern and gait adaptability,” said Guang Yue, PhD, director of Human Performance and Engineering Research at Kessler Foundation. “New technologies such as C-Mill enable researchers to develop universal standards for measuring and improving mobility. This exciting collaboration advances our mission to improve mobility, independence and quality of life for individuals with disabilities caused by a range of neurological conditions.”

Investigators will use advanced brain imaging technology at the Rocco Ortenzio Neuroimaging Center at Kessler Foundation to examine the neurofunctional changes underlying cognitive and motor improvements in individuals in studies testing the C-Mill. The findings of these studies may help reduce loss of independence and improve daily functioning in people with disabilities by providing critical biomarkers for post-intervention changes in learning and memory, fatigue, gait and balance.

“Motek gives clinicians and researchers the tools they need to provide dynamic, high-quality technology solutions that can be customized to meet the patient’s needs,” said Frans Steenbrink, PhD, Head of Clinical Applications & Research at Motek. “With this strategic partnership, Motek and Kessler Foundation aim to facilitate both the integration of our technology in clinical settings and the accommodation of different patient populations. Together, we will create a strong scientific network that will push evidence-based clinical research into the underlying mechanisms of impaired gait and balance control. Furthermore, we hope to extend this strategic partnership with Kessler Foundation to the entire DIH Group, laying the groundwork for numerous future innovations.”

###

For more information, or to enroll in a Kessler Foundation study, contact our Research Recruitment Specialist: researchstudies@kesslerfoundation.org.

About Motek

Motek is the global leader in virtual reality and robotics research and rehabilitation, combining almost 20 years of experience in high-level technologies. We excel in building the most versatile devices, integrating latest VR, motion capture and multiple sensory technologies and ensuring real-time feedback, data quality and synchronization. Our treadmill- and balance platform-based systems, arm movement tools or body weight supports are easily interconnected through our in-house software platform. From global knowledge exchange to unique research set-ups: with our all-round support package, we are the perfect partner for every stage of your research on human movement. Motek is a proud partner of DIH International and Hocoma and is part of the DIH Rehabilitation Division.

About Human Performance & Engineering Research at Kessler Foundation

Under the leadership of Guang Yue, PhD, six areas of specialized research are headed by experts in biomechanics, bioengineering, movement analysis, robotics, neurophysiology and neuroimaging. All areas of specialized research contribute to the common goal to improve mobility and motor function so individuals with disabilities can participate fully in school, work, and community activities. Their efforts fuel innovative approaches to address disabling conditions, including brain injury, spinal cord injury, multiple sclerosis, cerebral palsy, arthritis and cancer.

Research is funded by the National Institute on Disability, Independent Living & Rehabilitation Research, National Institutes of Health, Department of Defense, Reeve Foundation, New Jersey Commission on Spinal Cord Injury Research, Craig H. Neilsen Foundation, and Children’s Specialized Hospital.

About Kessler Foundation

Kessler Foundation, a major nonprofit organization in the field of disability, is a global leader in rehabilitation research that seeks to improve cognition, mobility and long-term outcomes, including employment, for people with neurological disabilities caused by diseases and injuries of the brain and spinal cord. Kessler Foundation leads the nation in funding innovative programs that expand opportunities for employment for people with disabilities.

Learn more by visiting http://www.KesslerFoundation.org.Stay Connected

Twitter | http://www.twitter.com/KesslerFdn
Facebook | http://www.facebook.com/KesslerFoundation
YouTube | http://www.youtube.com/user/KesslerFoundation
Instagram | http://www.instagram.com/kesslerfdn
iTunes & SoundCloud | http://www.soundcloud.com/kesslerfoundation

 

via Kessler Foundation partners with Motek to develop new rehabilitation treatments | EurekAlert! Science News

, , , , , ,

Leave a comment

[WEB SITE] FootFlexor for Patients with Foot Drop

 

Core Products International introduces the FootFlexor, described as a functional and comfortable AFO that allows the foot to perform naturally while walking. Designed to work with most lace-up shoes and boots, the FootFlexor works by incorporating the FootFlexor Wrap, eyelet clips, and a tension cord to help lift the toe during gait. This comfortable product allows for the use of one’s own muscles, increasing mobility and regular movement, unlike a rigid AFO. Using a product that is comfortable to wear helps increase compliance for those who require dorsal flexion support and/or assistance. When properly maintained and used, the FootFlexor helps improve gait, increases confidence in walking ability, and helps reduce the incidence of falls.

Core Products International, Inc.

via FootFlexor for Patients with Foot Drop | Lower Extremity Review Magazine

, , , ,

Leave a comment

[ARTICLE] Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial – Full Text

Abstract

Background

The use of neurorobotic devices may improve gait recovery by entraining specific brain plasticity mechanisms, which may be a key issue for successful rehabilitation using such approach. We assessed whether the wearable exoskeleton, Ekso™, could get higher gait performance than conventional overground gait training (OGT) in patients with hemiparesis due to stroke in a chronic phase, and foster the recovery of specific brain plasticity mechanisms.

Methods

We enrolled forty patients in a prospective, pre-post, randomized clinical study. Twenty patients underwent Ekso™ gait training (EGT) (45-min/session, five times/week), in addition to overground gait therapy, whilst 20 patients practiced an OGT of the same duration. All individuals were evaluated about gait performance (10 m walking test), gait cycle, muscle activation pattern (by recording surface electromyography from lower limb muscles), frontoparietal effective connectivity (FPEC) by using EEG, cortico-spinal excitability (CSE), and sensory-motor integration (SMI) from both primary motor areas by using Transcranial Magnetic Stimulation paradigm before and after the gait training.

Results

A significant effect size was found in the EGT-induced improvement in the 10 m walking test (d = 0.9, p < 0.001), CSE in the affected side (d = 0.7, p = 0.001), SMI in the affected side (d = 0.5, p = 0.03), overall gait quality (d = 0.8, p = 0.001), hip and knee muscle activation (d = 0.8, p = 0.001), and FPEC (d = 0.8, p = 0.001). The strengthening of FPEC (r = 0.601, p < 0.001), the increase of SMI in the affected side (r = 0.554, p < 0.001), and the decrease of SMI in the unaffected side (r = − 0.540, p < 0.001) were the most important factors correlated with the clinical improvement.

Conclusions

Ekso™ gait training seems promising in gait rehabilitation for post-stroke patients, besides OGT. Our study proposes a putative neurophysiological basis supporting Ekso™ after-effects. This knowledge may be useful to plan highly patient-tailored gait rehabilitation protocols.

Background

Most of the patients with stroke experience a restriction of their mobility. Gait impairment after stroke mainly depends on deficits in functional ambulation capacity, balance, walking velocity, cadence, stride length, and muscle activation pattern, resulting in a longer gait cycle duration and lower than normal stance/swing ratio in the affected side, paralleled by a shorter gait cycle duration and a higher than normal stance/swing ratio in the unaffected side [1].

Conventional gait training often offers non-completely satisfactory results. Specifically, patients with stroke receiving intensive gait training with or without body weight support (BWS) may not improve in walking ability more than those who are not receiving the same treatment (with the exception of walking speed and endurance) [2345]. Moreover, only patients with stroke who are able to walk benefit most from such an intervention [2345]. Therefore, there is growing effort to increase the efficacy of gait rehabilitation for stroke patients by using advanced technical devices. Neurorobotic devices, including robotic-assisted gait training (RAGT) with BWS, result in a more likely achievement of independent walking when coupled with overground gait training (OGT) in patients with stroke. Specifically, RAGT combined with OGT has an additional beneficial effect on functional ambulation outcomes, although depending on the duration and intensity of RAGT [67]. Further, RAGT requires a more active subject participation in gait training as compared to the traditional OGT, which is a vital feature of gait rehabilitation [78].

Even though no substantial differences have been reported among the different types of RAGT devices [9], a main problem with neurorobotic devices is the provision for the patient of a real-world setting ambulation [1011]. To this end, wearable powered exoskeletons, e.g., the Ekso™ (Ekso™ Bionics, Richmond, CA, USA), have been designed to improve OGT in neurologic patients.

Notwithstanding, the efficacy of wearable powered exoskeletons in improving functional ambulation capacity (including gait pattern, step length, walking speed and endurance, balance and coordination) has not been definitively proven, and any further benefit in terms of gait performance remains to be confirmed. However, a recent study showed that Ekso™ could improve functional ambulation capacity in patients with sub-acute and chronic stroke [12]. Therefore, a first aim of our study was to assess whether Ekso™ is useful in improving functional ambulation capacity and gait performance in chronic post-stroke patients compared to conventional OGT.

The neurophysiologic mechanisms harnessed by powered exoskeletons to favor the recovery of functional ambulation capacity are still unclear. It is argued that the efficacy of neurorobotics in improving functional ambulation capacity depends on the high frequency and intensity of repetition of task-oriented movements [13]. This could guarantee a potentially stronger entrainment of the neuroplasticity mechanisms related to motor learning and function recovery following brain injury, including sensorimotor plasticity, frontoparietal effective connectivity (FPEC), and transcallosal inhibition, as compared to conventional therapy [141516]. Moreover, the generation and strengthening of new connections supporting the learned behaviors, and the steady recruitment of these neural connections as preferential to the learned behaviors occur through these mechanisms, thus making the re-learned abilities long lasting [131417181920212223].

Such neurophysiologic mechanisms have been tested in neurorobotic rehabilitation using stationary exoskeletons (e.g. Lokomat™) [1314]. Therefore, the second aim of our study was to assess whether there are specific neurophysiological mechanisms (among those related to sensorimotor plasticity, FPEC, and transcallosal inhibition) by which Ekso™ improves functional ambulation capacity in the chronic post-stroke phase. The importance of knowing these mechanisms is remarkable in order to implement patient-tailored rehabilitative training, given that any further advance in motor function recovery mainly relies on motor rehabilitation training, whereas spontaneous motor recovery occurs within 6 months of a stroke [24]. This is also the reason why we focused our study on patients with chronic stroke.[…}

 

Continue —> Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 2 Ekso™ device

, , , , , ,

Leave a comment

[ARTICLE] The impact of ankle–foot orthoses on toe clearance strategy in hemiparetic gait: a cross-sectional study – Full Text

Abstract

Background

Ankle–foot orthoses (AFOs) are frequently used to improve gait stability, toe clearance, and gait efficiency in individuals with hemiparesis. During the swing phase, AFOs enhance lower limb advancement by facilitating the improvement of toe clearance and the reduction of compensatory movements. Clinical monitoring via kinematic analysis would further clarify the changes in biomechanical factors that lead to the beneficial effects of AFOs. The purpose of this study was to investigate the actual impact of AFOs on toe clearance, and determine the best strategy to achieve toe clearance (including compensatory movements) during the swing phase.

Methods

This study included 24 patients with hemiparesis due to stroke. The gait performance of these patients with and without AFOs was compared using three-dimensional treadmill gait analysis. A kinematic analysis of the paretic limb was performed to quantify the contribution of the extent of lower limb shortening and compensatory movements (such as hip elevation and circumduction) to toe clearance. The impact of each movement related to toe clearance was assessed by analyzing the change in the vertical direction.

Results

Using AFOs significantly increased toe clearance (p = 0.038). The quantified limb shortening and pelvic obliquity significantly differed between gaits performed with versus without AFOs. Among the movement indices related to toe clearance, limb shortening was increased by the use of AFOs (p < 0.0001), while hip elevation due to pelvic obliquity (representing compensatory strategies) was diminished by the use of AFOs (p = 0.003). The toe clearance strategy was not significantly affected by the stage of the hemiparetic condition (acute versus chronic) or the type of AFO (thermoplastic AFOs versus adjustable posterior strut AFOs).

Conclusions

Simplified three-dimensional gait analysis was successfully used to quantify and visualize the impact of AFOs on the toe clearance strategy of hemiparetic patients. AFO use increased the extent of toe clearance and limb shortening during the swing phase, while reducing compensatory movements. This approach to visualization of the gait strategy possibly contributes to clinical decision-making in the real clinical settings.

Background

Impaired paretic limb advancement is a clearly observable manifestation of gait pathology in individuals with hemiparesis due to stroke [123]. Previous studies have reported specific gait changes following hemiparesis, such as decreased knee flexion, hip flexion, and ankle dorsiflexion during the swing phase, which can negatively influence the achievement of toe clearance [123456]. Reduction in toe clearance of the affected limb leads to tripping while walking, which is a major cause of falls [78]. In healthy individuals, toe clearance is mainly achieved by limb shortening, which is affected by hip flexion, knee flexion, and ankle dorsiflexion. On the other hand, to obtain sufficient toe clearance during the swing phase, individuals with hemiparesis often require compensatory strategies that modify the kinematic pattern, including hip hiking and circumduction, which are common gait deviations [39]. These changes during the swing phase have a reciprocal relationship. When the limb shortening is reduced due to paresis, the compensatory movements will be increased to contribute to toe clearance; hence, they are in a trade-off relationship [10].

Ankle–foot orthoses (AFOs) are frequently prescribed to improve walking ability in hemiparetic patients, as they provide passive or dynamic support of ankle movement. AFOs provide support not only during the stance phase of gait by encouraging lateral stability or improving early stance knee moments, but also in the swing phase to maintain ankle dorsiflexion and facilitate toe clearance [11121314151617]. The effect of AFOs on the swing phase is additionally reflected in the compensatory movements. Cruz et al. [18] demonstrated that the compensatory pelvic obliquity observed in response to impaired ankle dorsiflexion in hemiplegic patients was minimized when the patients wore an AFO. Improved joint motions and decreased compensatory movement when using AFOs could potentially contribute to an efficient gait and promote walking activity in hemiparetic patients.

Clarification of the mechanical effect of AFOs on these gait parameters, and quantifications of compensatory movements would be helpful for clinical decision-making in rehabilitation clinics. For example, understanding the influence of rehabilitative training and the use of AFOs on gait indices (i.e., ankle angle, knee angle, hip elevation, or toe clearance) would help to determine the best rehabilitative strategy and to identify the need for AFO use in individual patients.

The aim of this study was to clarify the mechanical effect of AFOs and to quantify the impact of AFO use on hemiparetic gait pattern during the swing phase, as this information would be helpful for clinical decision-making in rehabilitation clinics. For example, understanding the influence of rehabilitative training and the AFO and its types on gait indices (i.e., ankle angle, knee angle, hip elevation, or toe clearance) would help to determine the best rehabilitative strategy and to investigate the need for AFO use in individual patients. Based on a prior study showing the relationship between limb shortening and compensatory movements [10], we hypothesized that the AFOs would positively affect functional limb shortening in a way that would consequently impact on toe clearance and compensatory maneuvers, particularly represented by hip elevation. Previous studies have shown the effects of AFOs and a relationship between limb shortening and compensatory movements. In the normal gait pattern, functional limb shortening (representing lower limb joint movement) is a main strategy for toe clearance. However, patients with hemiparesis have impaired lower limb function, and thus require compensatory strategies (e.g., hip hiking, circumduction of the paretic limb) to promote swing phase propulsion [1920]. Additionally, the extent of toe clearance is mainly determined by the extent of functional limb shortening and hip elevation as compensatory movements, which are in a trade-off relationship [10]. AFO usage reduces the gait pattern deviation and increases the walking ability, thereby reducing energy costs [2122]. In this study, we hypothesized that the AFOs would positively affect functional limb shortening in a way that would consequently impact on toe clearance and compensatory maneuvers, particularly represented by hip elevation. To determine the actual impact of limb shortening and compensatory movements on toe clearance, the vertical component of the movements that comprised toe clearance was calculated using three-dimensional kinematic motion analysis. The changes in joint angles were also investigated.[…]

Continue —> The impact of ankle–foot orthoses on toe clearance strategy in hemiparetic gait: a cross-sectional study | Journal of NeuroEngineering and Rehabilitation | Full Text

Figure 1

Fig. 1 Marker placement. The positions of 12 measurement markers (bilateral acromion, iliac crest, hip, knee, ankle and toe)

, , , , ,

Leave a comment

[WEB SITE] Stroke survivors may benefit from magnetic brain stimulation

A new meta-analysis of existing studies shows that a technique called repetitive transcranial magnetic stimulation might be a useful tool to help stroke survivors regain the ability to walk independently.

senior woman learning to walk again after stroke

A brain stimulation technique may help stroke survivors walk faster and more easily.

Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique; magnetic coils are placed on a person’s scalp, and short electromagnetic pulses are delivered to specific brain areas through the coil.

Although these pulses only cause an almost imperceptible “knocking or tapping” sensation for the patient undergoing the procedure, they reach into the brain, triggering electric currents that stimulate neurons.

rTMS has mainly been used to treat psychosisdepressionanxiety, and other mood disorders with a fair degree of success. In a recent study, more than one third of people living with auditory verbal hallucinations — a marker of schizophrenia — reported a reduction in their symptoms following the procedure.

But researchers have also been delving into the potential that the technique has for improving life after stroke. Four years ago, for instance, a team of researchers at The Ohio State University Wexner Medical Center in Columbus used rTMS to improve arm movement in people who had experienced a stroke, and more studies have explored this therapeutic potential since.

Now, a team of researchers — jointly led by Dr. Chengqi He, of Sichuan University in the People’s Republic of China, and Shasha Li, of Massachusetts General Hospital and Harvard Medical School, both in Boston, MA — set out to review these studies.

Dr. He and colleagues wanted to see if the technique improved motor skills for people who had stroke; to do so, the researchers examined the impact rTMS has on walking speed, balance, and other key factors for post-stroke rehabilitation.

The findings were published in the American Journal of Physical Medicine & Rehabilitation, the official journal of the Association of Academic Physiatrists.

rTMS ‘significantly improves walking speed’

Dr. He and team reviewed nine studies of rTMS — including five randomized controlled trials — which were published between 2012 and 2017.

The people who participated in these studies had either had an ischemic stroke — that is, a stroke caused by a blood clot in one of the brain’s arteries — or a hemorrhagic stroke — that is, one caused by bleeding within the brain.

Of the nine studies, six included data on the walking speed of 139 stroke survivors. The researchers carried out a pooled analysis of these studies, and the results revealed that rTMS “significantly improves walking speed.”

This improvement was greater among people who received stimulation on the same side of the brain that the stroke occurred. By contrast, those who received rTMS on the opposite side did not see any improvement.

Other key health outcomes for stroke survivors such as balance, motor function, or brain responsiveness did not show any improvement as a result of rTMS.

In the United States, it is estimated that almost 800,000 people annually have a stroke, which makes the condition a leading cause of long-term disability in the country. More than half of the seniors who survived a stroke have reduced mobility as a result.

Although the review shows that rTMS is a promising strategy for restoring independent walking, the authors say that more research is needed. Dr. He and colleagues conclude:

Future studies with larger sample sizes and an adequate follow-up period are required to further investigate the effects of rTMS on lower limb function and its relationship with changes in cortical excitability with the help of functional neuroimaging techniques.”

via Stroke survivors may benefit from magnetic brain stimulation

, , , , ,

Leave a comment

[ARTICLE] Advanced Robotic Therapy Integrated Centers (ARTIC): an international collaboration facilitating the application of rehabilitation technologies – Full Text

Abstract

Background

The application of rehabilitation robots has grown during the last decade. While meta-analyses have shown beneficial effects of robotic interventions for some patient groups, the evidence is less in others. We established the Advanced Robotic Therapy Integrated Centers (ARTIC) network with the goal of advancing the science and clinical practice of rehabilitation robotics. The investigators hope to exploit variations in practice to learn about current clinical application and outcomes. The aim of this paper is to introduce the ARTIC network to the clinical and research community, present the initial data set and its characteristics and compare the outcome data collected so far with data from prior studies.

Methods

ARTIC is a pragmatic observational study of clinical care. The database includes patients with various neurological and gait deficits who used the driven gait orthosis Lokomat® as part of their treatment. Patient characteristics, diagnosis-specific information, and indicators of impairment severity are collected. Core clinical assessments include the 10-Meter Walk Test and the Goal Attainment Scaling. Data from each Lokomat® training session are automatically collected.

Results

At time of analysis, the database contained data collected from 595 patients (cerebral palsy: n = 208; stroke: n = 129; spinal cord injury: n = 93; traumatic brain injury: n = 39; and various other diagnoses: n = 126). At onset, average walking speeds were slow. The training intensity increased from the first to the final therapy session and most patients achieved their goals.

Conclusions

The characteristics of the patients matched epidemiological data for the target populations. When patient characteristics differed from epidemiological data, this was mainly due to the selection criteria used to assess eligibility for Lokomat® training. While patients included in randomized controlled interventional trials have to fulfill many inclusion and exclusion criteria, the only selection criteria applying to patients in the ARTIC database are those required for use of the Lokomat®. We suggest that the ARTIC network offers an opportunity to investigate the clinical application and effectiveness of rehabilitation technologies for various diagnoses. Due to the standardization of assessments and the use of a common technology, this network could serve as a basis for researchers interested in specific interventional studies expanding beyond the Lokomat®.

Background

The number of technological devices that therapists can utilize to treat people with neurological impairments has grown substantially during the last decade. Alongside this growth in clinical use, research involving robotic therapy has grown rapidly. A search in Pubmed with the terms “robot” OR “robotic*” AND “rehabilitation” revealed 2225 hits (March 2017) with research markedly increasing after 2010. Despite this increase in research activity and clinical use, the effectiveness of robot-assisted interventions in neurorehabilitation is still in debate. While in some patient populations, for example adults with stroke, meta-analyses have shown that robotic interventions for the lower and upper extremity can be beneficial [12], current evidence is much less convincing in other patient groups, such as spinal cord injury (SCI), traumatic brain injury (TBI), multiple sclerosis (MS) and cerebral palsy (CP).

When comparing the effectiveness of robot-assisted gait training (RAGT) to conventional interventions of similar dosage in adult patients after SCI, it appears that neither intervention is superior [34]. In other populations, such as MS, a small number of pilot studies have been conducted, and a review [5] concluded that the evidence for the effectiveness remained inconclusive. In adult patients with TBI, to our knowledge, there is only one randomized controlled trial that investigated the effectiveness of RAGT [6]. While RAGT improved gait symmetry compared to manually assisted body-weight supported treadmill training, improvements in other gait parameters were not different between the interventions. In children with CP, the body of evidence is similarly small, as only two randomized trials were found [78]. To the authors’ knowledge, there are no randomized controlled trials in children with other diagnoses. Studies comparing effectiveness between different patient groups are lacking.

One important factor leading to the lack of conclusive research is the relatively small number of available centers and participating patients and consequently the small statistical power of attempted studies. Multicenter collaborations are needed to achieve adequate number of participants. Several of the limitations in the evidence of the application of RAGT arise from patient selection criteria and use of different, poorly described and/or low-dosed training protocols. For example, when systematically reviewing the literature in children, we found no paper describing a training protocol on how to apply a robot for rehabilitation of gait [9]. Most of the systematic reviews mentioned that it is extremely difficult to pool results from studies due to the large variability in treatment duration and frequency, contents of the training and inclusion criteria of the patients. For children with CP, an expert team was created to formulate goals, inclusion criteria, training parameters and recommendations on including RAGT in the clinical setting, to assist therapists who train children with CP with the Lokomat® (Hocoma AG, Volketswil, Switzerland) [9]. Such information could be used as a first step in defining training protocols, but this information is missing for most other patient groups.

While randomized controlled trials are usually considered the “gold standard” in building solid evidence in the field of medicine, it is often difficult for rehabilitation specialists working in the clinical environment to interpret the findings with respect to the population of patients they treat on a daily basis. Randomized controlled trials require a specialized team, a controlled setting and a strict selection of patients according to well defined inclusion and exclusion criteria. These criteria often select individuals most likely to benefit based on specific parameters and lack of co-morbidities. These narrow criteria may impact the ecological validity, as results only apply to a minority of patients. This was recently investigated by Dörenkamp et al. [10] who reported that the majority of patients in primary care (40% at the age of 50 years and at least two-thirds of the octogenarian population [11]) simultaneously suffered from multiple medical problems. Further, improvements in function might be less comparable to results described in randomized controlled trials and the treatment regimens used may not be applicable to patients with multiple comorbidities.

To overcome these issues, we established the Advanced Robotic Therapy Integrated Centers (ARTIC) network to collect data from patients using RAGT in a wide variety of clinical settings. ARTIC hopes to develop guidelines for usage as well as to answer scientific questions concerning the use of RAGT. While the ARTIC network includes a general patient population, other research networks focus on a specific disorder or diagnostic group (see, for example [1213]). ARTIC focuses on a common technological intervention – currently the driven gait orthosis Lokomat® – and aims to gather evidence for the efficient and effective use of robotic therapy. Variation in practice among ARTIC members together with collection of common data and outcome measurements will enable the group to draw strong, generalizable conclusions. Further goals include establishing standardized treatment protocols and increasing medical and governmental acceptance of robotic therapy. The aims of this paper are to introduce the ARTIC network to the clinical and research community, present initial data on the characteristics of included patients and compare these to those known from existing epidemiological data and interventional studies.[…]

 

Continue —> Advanced Robotic Therapy Integrated Centers (ARTIC): an international collaboration facilitating the application of rehabilitation technologies | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 1 Lokomat® system (of different generations) with (a) adult leg orthoses and (b) pediatric leg orthoses. Patients walk on a treadmill belt, are weight supported, and the exoskeleton device guides the legs through a physiological walking pattern

, , , , , , , , ,

Leave a comment

[WEB SITE] Bioness Receives FDA Clearance for myBioness™ iOS app for mobile control of the L300 Go™ System

VALENCIA, Calif.March 26, 2018 /PRNewswire/ — Bioness, Inc., the leading provider of cutting-edge, clinically supported rehabilitation therapies, today announced that it received clearance from the U.S. Food and Drug Administration (FDA) for the myBionessTM mobile app for use with the L300 Go System.

The new myBioness™ mobile iOS application allows home users to control their L300 Go system including ability to change stimulation modes between gait and training along with adjusting personal pre-set intensities to meet their daily activity demands. The app has been designed to keep users engaged in the rehabilitation process and motivated to meet their recovery goals with ability to track activity, set personal goals and review their progress over time using dynamic reporting capabilities.

Gait movement disorders, such as foot drop and knee instability, are often associated with an upper motor neuron disease such as stroke and multiple sclerosis as well as injuries to the brain and spinal cord. Individuals with an impaired gait have less control over their lower extremity muscles and are at an increased risk for falls. The L300 Go is the first functional electrical stimulation (FES) system to offer 3D motion detection of gait events and muscle activation using data from a 3-axis gyroscope and accelerometer.  Patient movement is monitored in all three kinematic planes and stimulation is deployed precisely when needed during the gait cycle.  An adaptive, learning algorithm accommodates changes in gait dynamics, and a high speed processor that deploys stimulation within 10 milliseconds of detecting a valid gait event.  This rapid, reliable response is critical and supports user confidence.

“Technological innovations including 3D motion detection and multi-channel stimulation work together to improve treatment efficiency and promote patient mobility,” said Todd Cushman, President and CEO of Bioness. “At Bioness, we are focused on improving the lives of patients through technology and are proud to add the myBioness mobile application to the L300 Go portfolio of products.”

The L300 Go System was cleared by the U.S. Food and Drug Administration on January 27, 2017 with formal approval of the upgraded mobile application clearance dated March 9, 2018.  The system is indicated to provide ankle dorsiflexion in adult and pediatric individuals with foot drop and/or assist knee flexion or extension in adult individuals with muscle weakness related to upper motor neuron disease/injury (e.g., stroke, damage to pathways to the spinal cord). The L300 Go System electrically stimulates muscles in the affected leg to provide ankle dorsiflexion of the foot and/or knee flexion or extension; thus, it also may improve the individual’s gait.

Bioness will begin commercial release of the myBionessTM mobile app in the spring of 2018.   The L300 Go Systems are commercially available since the summer of 2017.

About Bioness, Inc.
Bioness is the leading provider of innovative technologies helping people regain mobility and independence. Bioness solutions include implantable and external neuromodulation systems, robotic systems and software based therapy programs providing functional and therapeutic benefits for individuals affected by pain, central nervous system disorders and orthopedic injuries. Currently, Bioness offers six medical devices within its commercial portfolio which are distributed and sold on five continents and in over 25 countries worldwide. Our technologies have been implemented in the most prestigious and well-respected institutions around the globe with approximately 90% of the top rehabilitation hospitals in the United States currently using one or more Bioness solution.  Bioness has a singular focus on aiding large, underserved customer groups with innovative, evidence-based solutions and we will continue to develop and make commercially available new products that address the growing and changing needs of our customers. Individual results vary. Consult with a qualified physician to determine if this product is right for you. Contraindications, adverse reactions and precautions are available online at www.bioness.com.

Media Relations Contact Information
Next Step Communications
bioness@nextstepcomms.com
781.326.1741

All trademarks and copyrights here within are © Bioness. | http://www.bioness.comRx Only for applicable products.

SOURCE Bioness, Inc.

Related Links

https://www.bioness.com

 

via Bioness Receives FDA Clearance for myBioness™ iOS app for mobile control of the L300 Go™ System

, , , , , , , ,

Leave a comment

[ARTICLE] Intensity- and Duration-Adaptive Functional Electrical Stimulation Using Fuzzy Logic Control and a Linear Model for Dropfoot Correction – Full Text

Functional electrical stimulation (FES) is important in gait rehabilitation for patients with dropfoot. Since there are time-varying velocities during FES-assisted walking, it is difficult to achieve a good movement performance during walking. To account for the time-varying walking velocities, seven poststroke subjects were recruited and fuzzy logic control and a linear model were applied in FES-assisted walking to enable intensity- and duration-adaptive stimulation (IDAS) for poststroke subjects with dropfoot. In this study, the performance of IDAS was evaluated using kinematic data, and was compared with the performance under no stimulation (NS), FES-assisted walking triggered by heel-off stimulation (HOS), and speed-adaptive stimulation. A larger maximum ankle dorsiflexion angle in the IDAS condition than those in other conditions was observed. The ankle plantar flexion angle in the IDAS condition was similar to that of normal walking. Improvement in the maximum ankle dorsiflexion and plantar flexion angles in the IDAS condition could be attributed to having the appropriate stimulation intensity and duration. In summary, the intensity- and duration-adaptive controller can attain better movement performance and may have great potential in future clinical applications.

Introduction

Stroke is a leading cause of disability in the lower limb, such as dropfoot (1). A typical cause of dropfoot is muscle weakness, which results in a limited ability to lift the foot voluntarily and an increased risk of falls (24). Great effort is made toward the recovery of walking ability for poststroke patients with dropfoot, such as ankle–foot orthoses (5), physical therapy (6), and rehabilitation robot (7).

Functional electrical stimulation (FES) is a representative intervention to correct dropfoot and to generate foot lift during walking (89). The electrical pulses were implemented via a pair of electrodes to activate the tibialis anterior (TA) muscle and to increase the ankle dorsiflexion angle. The footswitch or manual switch was used to time the FES-assisted hemiplegic walking in previous studies, while they were only based on open-loop architectures. The output parameters of the FES required repeated manual re-setting and could not achieve an adaptive adjustment during walking (1011). Some researchers have found that the maximum ankle dorsiflexion angle by using FES with a certain stimulation intensity had individual differences due to the varying muscle tone and residual voluntary muscle activity and varied during gait cycles (1213). If the stimulation intensity was set to a constant value during the whole gait cycle, the result could be that the muscle fatigues rapidly (14). Another important problem was that the FES using fixed stimulation duration from the heel-off event to the heel-strike event would affect the ankle plantar flexion angle (1516).

Closed-loop control was an effective way to adjust the stimulation parameters automatically, and several control techniques have been proposed (1718). Negård et al. applied a PI controller to regulate the stimulation intensity and obtain the optimal ankle dorsiflexion angle during the swing phase (19). A similar controller was also used in Benedict et al.’s study, and the controller was tested in simulation experiments (20). Cho et al. used a brain–computer interface to detect a patient’s motion imagery in real time and used this information to control the output of the FES (21). Laursen et al. used the electromechanical gait trainer Lokomat combined with FES to correct the foot drop problems for patients, and there were significant improvements in the maximum ankle dorsiflexion angles compared to the pre-training evaluations (22). There were also several studies that used trajectory tracking control to regulate the output and regulate the pulse width and pulse amplitude of the stimulation (23). The module was based on an adaptive fuzzy terminal sliding mode control and fuzzy logic control (FLC) to determine the stimulation output and force the ankle joint to track the reference trajectories. In their study, FES applied to TA was triggered before the heel-off event. Because the TA activation has been proven to occur after the heel-off event and the duration of the TA activation changed with the walking speed (2425), a time interval should be implemented after the heel-off event (26). In Thomas et al.’s study, the ankle angle trajectory of the paretic foot was modulated by an iterative learning control method to achieve the desired foot pitch angles (27). The non-linear relationship between the FES settings and the ankle angle influenced the responses of the ankle motion (28). FLC represents a promising technology to handle the non-linearity and uncertainty without the need for a mathematical model of the plant, which has been widely used in robotic control (29). Ibrahim et al. used FLC to regulate the stimulation intensity of the FES (30), and the same control was used on the regulation of the stimulation duration to obtain a maximum knee extension angle in Watanabe et al.’s study (31). However, most closed-loop controls adjust only one stimulation parameter, and few FES controls considered both varying the stimulation intensity and duration while accounting for the changing walking velocities.

In the present study, an intensity- and duration-adaptive FES was established, the FLC and a linear model were used to regulate the stimulation intensity and duration, respectively. The performance of the intensity- and duration-adaptive stimulation (IDAS) was compared with those of stimulation triggered by no stimulation (NS), heel-off stimulation (HOS), and speed-adaptive stimulation (SAS) for poststroke patients walking on a treadmill. The objective of this study is to find an appropriate FES control strategy to realize a more adaptive ankle joint motion for poststroke subjects.[…]

 

Continue —> Frontiers | Intensity- and Duration-Adaptive Functional Electrical Stimulation Using Fuzzy Logic Control and a Linear Model for Dropfoot Correction | Neurology

Figure 4(A) Ankle angles during the gait cycle for one poststroke subject at free speed; (B) knee angles during the gait cycle for the same poststroke subject at free speed.

, , , , , , , ,

Leave a comment

[WEB SITE] Controlling Foot Drop – Physical Therapy Products

Published on 

Uzo Igwegbe, PT, MPT, fitting a stroke survivor with the thigh component of the Bioness L300 Go, targeted at stimulating the L hamstrings to minimize L knee hyperextension in stance during ambulation.

Uzo Igwegbe, PT, MPT, fitting a stroke survivor with the thigh component of the Bioness L300 Go, targeted at stimulating the L hamstrings to minimize L knee hyperextension in stance during ambulation.

By Uzo Igwegbe, PT, MPT

Foot drop, a gait abnormality, is an insufficient ability to dorsiflex or clear the foot/feet during the swing phase of gait, causing an increased risk for stumbling, falls, or injury. In a normal gait cycle, initial foot contact occurs with the heel; however, an individual with foot drop may drag the foot and/or make initial contact with the forefoot or foot flat. To compensate they may excessively flex the hip and knee, or circumduct the affected limb, or increase time spent in swing phase of the affected extremity.

The cause of drop foot is due to damage to the common fibular (peroneal) nerve (inclusive of the sciatic nerve), weakness or paralysis of the tibialis anterior, extensor halluces longus and extensor digitorum longus. Foot drop is associated with cerebrovascular accident/stroke, brain injury, multiple sclerosis, cerebral palsy, spinal cord injury, spinal stenosis, disc herniation, poliomyelitis, diabetes mellitus, Charcot-Marie-Foot Disease, muscular dystrophy, Amyotrophic Lateral Sclerosis, or direct injury to the peroneal nerve.

Ankle foot orthotics (AFOs) and Functional Electric Stimulation (FES) technologies are used in the management and treatment of drop foot in physical therapy. These two approaches strive to facilitate a natural gait with increased speed, improved balance, confidence, safety, and independence with ambulation and functional mobility.


Product ResourcesThe following companies provide products to treat ankle injuries, foot drop and other aspects of stroke and neurological rehabilitation:

Active Ankle
www.activeankle.com

Allard USA Inc
www.allardusa.com

APDM
www.apdm.com

GAITRite/CIR Systems Inc
www.gaitrite.com

Gorbel Medical/SafeGait
www.safegait.com

Mobility Research
www.litegait.com

Motorika Medical Ltd
www.motorika.com

Ottobock
www.ottobockus.com

ProtoKinetics
www.protokinetics.com

Saebo Inc
www.saebo.com

Solo-Step
www.solostep.com

Tekscan
www.tekscan.com

Vista Medical
www.boditrak.com

Woodway USA
www.woodway.com


Orthotic Management

Ankle foot orthotics, the most common approach used, support neutral foot position to facilitate clearance during swing and provide ankle stability during loading response.1 AFOs are either off the shelf (for short-term use) or custom made from a cast (for complex cases or long-term use). These L-shaped braces are worn in footwear and, in most cases, a larger shoe size of one half to a full shoe size may be required due to the bulk of the orthosis. To obtain an AFO, a correct foot drop diagnosis by the therapist/physician and a physician’s AFO prescription is needed to proceed with a comprehensive assessment, with recommendations of treatment options from a licensed orthotist. A cast impression of the foot and leg is done for custom AFO. Follow-up appointments are done after reception of the AFO for re-evaluation of fit and function. The AFOs prescribed for drop foot include:

1) Posterior Leaf Spring AFO:This prefabricated, semi-rigid, polypropylene AFO supports individuals with mild foot drop and knee instability. It provides dorsiflexion during swing and controls plantarflexion at heel strike. Resistance to plantarflexion can be controlled by modifying the ankle and footplate trim lines. This AFO is the initial “go-to” brace for physical therapists because they are readily available, lightweight, inexpensive, and can provide initial ankle stability early in rehabilitation; however, there are newer, lighter, more comfortable, user-friendly and functional models available. Sources for these types of AFOs include Orthotic & Prosthetic Lab Inc, Webster Groves, Mo, which makes the Dynamic ROM AFO, and Orange County, Calif-headquartered, Össur Americas, which offers a prefabricated, polypropylene AFO Leaf Spring.

2) Solid AFO: This custom-fabricated plastic AFO prevents plantarflexion and prevents/limits dorsiflexion. It supports the ankle-foot complex in the coronal and sagittal planes in individuals with complete or nearly complete loss of dorsiflexion and mild to moderate knee hyperextension. Although bulky, it provides significant ankle support. It is contraindicated in individuals with fluctuating edema due to its rigid structure. Its bulk, difficulty obtaining properly fitted footwear, and general discomfort due to heat generated from continuous use can be barriers to utilization. One source for these devices is Kiser’s Orthotic and Prosthetic Services Inc, Keene, NH, which manufactures its solid ankle AFO to help combat spasticity, help the toe to clear, and prevent the Achilles tendon from tightening.

Table1

Table2

3) Free Motion Articulating AFO: The ankle joint here is activated, so the individual must have active ankle motion. It is commonly prescribed for individuals with some dorsiflexion, but who still need frontal plane stability. It is not recommended for patients with significant quadriceps weakness. Among the products available in this category is the Exos Free Motion Ankle from DJO Global Inc, Vista, Calif; a prefabricated AFO made to be moldable, adjustable, and can be custom fit. Becker Orthopedic, Troy, Mich, also offers a plastic AFO with articulating ankle, which can be used with a variety of the company’s thermoplastic ankle joints and posterior stops.

4) Short Leg AFO with Fixed Hinge: A good option for people who have flatfoot and drop foot, this AFO holds the foot at 90 degrees to the lower leg and controls unwanted inward rotation of the foot, which is common in stroke and Charcot-Marie Tooth patients. It is relatively light and easily fits footwear. A disadvantage of this brace, and the solid AFO, is its failure to provide a natural gait. Among the sources that offer this type of orthoses is New Linox, Ill-headquartered Rinella Orthotics & Prosthetics Inc.

5) Dorsiflexion Assist AFO: This has a spring-like hinge which assists the ankle with dorsiflexion as the foot comes off the ground for those with mild to moderate drop foot, and a flat or unstable foot as it offers a more natural gait pattern. The short lower leg length of this brace and the Short Leg AFO fails to provide adequate support in people over 6 feet or 225 pounds.

6) Plantarflexion Stop AFO: This brace prevents plantarflexion and has a hinge that facilitates normal dorsiflexion. Due to its cumbersome size, it is not utilized often but can be effective in people with more severe or spastic drop foot. Orthotic & Prosthetic Lab Inc provides plantarflexion stop AFOs that are designed to prevent unwanted plantarflexion while permitting free dorsiflexion. These AFOs are also available from Yakima, Wash-headquartered Yakima Orthotics & Prosthetics, and are designed to provide medial/lateral stability and plantarflexion/dorsiflexion control.

7) Energy Return AFO: This prefabricated, lightweight AFO is made of carbon graphite material. It provides assistance in dorsiflexion and energy return at push-off to propel the individual forward with plantarflexors. It provides stability only in the sagittal plane; however, a foot orthotic can be placed on the flat foot for frontal plane stability. In stroke and spina bifida patients, carbon-fiber AFOs increased walking speed and decreased energy cost when compared to unbraced walking.2 Research suggests that Energy Return AFOs facilitate plantar flexor muscle regeneration and prevents atrophy.3,4

Therapists have a number of choices in this category, including the ToeOff carbon composite dynamic response floor reaction AFO from Allard USA Inc, Rockaway, NJ; designed to keep the foot up during swing phase as well as provide soft heel strike and stability in stance. In addition to providing good toe-off to the wearer, the company recommends this AFO for foot drop in combination with no spasticity to moderate spasticity. The Ypsilon, also from Allard, is made to provide toe-off assistance to stable ankles while also allowing natural ankle movement, while the company’s BlueROCKER provides more rigid orthopedic control and was developed for bilateral foot drop. It can be used for foot drop in combination with no spasticity to severe spasticity, as well as partial foot amputations, impaired balance, and weakness or impairment in multiple leg muscle groups. The Peromax carbon fiber AFO and Trulife Matrix Max carbon fiber AFO are two other options available to the PT market in this category.

Users with big toe plantar ulcerations who are unable to cope with the plastic AFO due to skin breakdown from continuous pushing off the foot plate can have the addition of a custom foot orthotic, which can help offload those areas. Items like a heel lift can be placed under the foot plate to control for knee hyperextension. Despite their advantages, this AFO is not ideal for individuals with large calves or very tall individuals, as their long stride repeatedly overextend and weaken the AFO, or individuals with spastic drop foot or tight Achilles tendon, as the overactivity of the muscle pushes down on the foot plate, excessively hyperextending the knee.

Therapist is shown fitting a stroke survivor with the lower leg cuff of the Bioness L300 Go to stimulate the tibialis anterior muscle to improve L foot clearance during ambulation.

Therapist is shown fitting a stroke survivor with the lower leg cuff of the Bioness L300 Go to stimulate the tibialis anterior muscle to improve L foot clearance during ambulation. 

Performing the initial stimulation testing to determine whether the desired muscle activation is elicited prior to ambulation.

Performing the initial stimulation testing to determine whether the desired muscle activation is elicited prior to ambulation.

Functional Electrical Stimulation Management

The L300 Foot Drop System and WalkAide are approved medical devices for foot drop by the US Food and Drug Administration and are used in rehabilitation hospitals. The Bioness Legacy L300, L300 Go, and WalkAide consist of a lower leg cuff which holds electrode(s), providing low-level electrical stimulation to an intact peroneal nerve. The L300 Go and WalkAide use advance tilt sensor technology to monitor movement in all three kinematic planes, providing stimulation to lift the foot at the appropriate time. This makes foot clearance at various cadence and terrains feasible. They do not require a foot sensor like the Legacy L300, decreasing setup time and allowing users to ambulate with or without footwear. They can be used if knee instability and foot drop are present, promoting clinical application as majority of individuals present with both. Patients work alongside a clinician to obtain training for home use or utilize these technologies in the clinical setting.

Conclusion

The options available in the treatment and management of foot drop are numerous. The path to obtaining the right product involves a joint partnership between the patient, physical therapist, physician, and orthotist. The clinician must draw from the patient’s needs, abilities, facets of gait needing improvement, and special conditions specific to the patient to recommend the optimal product. In the choice between an AFO and FES device, the ultimate goal is to provide a product that will yield compliance, a normalized gait, and contribute to independent function. PTP

Uzo Igwegbe, PT, MPT, is outpatient physical therapist, senior, at HealthSouth Rehabilitation Hospital of Cypress, located in Houston, Texas. She earned her master’s degree in physical therapy at The Robert Gordon University in Aberdeen, Scotland, in February 2010. She joined HealthSouth Rehabilitation Hospital in January 2012, starting at the City View location in Fort Worth, Texas, working in both inpatient and outpatient settings, developing treatment plans for pulmonary, brain injury and orthopedics patients. Igwegbe joined the HealthSouth Cypress team in September 2013, where she primarily worked with outpatients with a wide range of neuromuscular and musculoskeletal conditions, as well as post-orthopedic surgery patients. For more information, contact PTPEditor@medqor.com.

References

  1. Farley J. Controlling drop foot: Beyond standard AFOs. Lower Extremity Review. 2009.
  2. Danielsson A, Sunnerhagen K. Energy expenditure in stroke subjects looking with a carbon composite ankle foot orthosis. J Rehabil Med. 2004;36(4):165-168.

  3. Wolf SI, Alimusaj M, Rettig O, Doderlein L. Dynamic assist by carbon fiber spring AFOs for patients with myelomeningocele. Gait Posture. 2008;28(1):175-177.

  4. Meier RH, Ruthsatz DC, Cipriani D. Impact of AFO (ankle foot orthosis) design on calf circumference. Lower Extremity Review. 2014;6(10):29-35.

via Controlling Foot Drop – Physical Therapy Products

, , , , ,

Leave a comment

%d bloggers like this: