Posts Tagged Hand

[ARTICLE] The effect of the Bobath therapy programme on upper limb and hand function in chronic stroke individuals with moderate to severe deficits – Full Text



The Bobath concept has long been used to improve postural control and limb function post-stroke, yet its effect in patients with deficits have not been clearly demonstrated. This study aimed to investigate the effect of the latest Bobath therapy programme on upper limb functions, muscle tone and sensation in chronic stroke individuals with moderate to severe deficits.


A pre–post test design was implemented. The participants were chronic stroke individuals (n=26). Home-based intervention based on the Bobath concept was administered 3 days per week for 6 weeks (20 repetitions × 3 sets per task each session). Outcome measures consisted of the Wolf Motor Function Test, Fugl-Meyer Assessment for the upper extremity, Modified Ashworth Scale, and the Revised Nottingham Sensory Assessment. Data were analysed using the Wilcoxon Signed rank test.


Almost all items of the Wolf Motor Function Test and the Fugl-Meyer Assessment for the upper extremity demonstrated statistically significant differences post-intervention. Finger flexor muscle tone and stereognosis were also significantly improved.


The 6-week Bobath therapy programme could improve upper limb function and impairments in chronic stroke individuals with moderate to severe deficits. Its effects were also demonstrated in improving muscle tone and cortical sensation.


Stroke is a global public health problem that leads to significant disabilities (World Health Organization, 2014). After discharge from a hospital, patients who have experienced stroke return to the community and many do not have access to physical therapy. Around 65% of patients who had experienced a stroke were unable to use their hemiparetic upper limb (Bruce and Dobkin, 2005). Those with moderate to severe arm deficits have difficulty in reaching to grasp, delay in time to maximal grip aperture, prolonged movement time, and a lack of accuracy (Michaelsen et al, 2009). A number of interventions have been proven to be effective in improving upper limb function post-stroke. However, there is little evidence of the effectiveness of these interventions for those with severe deficits.

The therapy programme based on the Bobath concept has been shown to improve upper limb function in individuals who have experienced chronic stroke (Huseyinsinoglu et al, 2012Carvalho et al, 2018). The Bobath concept has been in evolution and the present clinical framework incorporates the integration of postural control and quality of task performance, selective movement, and the role of sensory information to promote normal movement pattern. Therapeutic activities involved movement facilitation together with patient’s active participation in practice to improve motor learning; nevertheless, implementation time varied across studies (Vaughan-Graham et al, 2009Vaughan-Graham and Cott, 2016).

Among the few studies of patients with chronic stroke, none focused on the rehabilitation of patients with different degrees of deficit severity in the community. Moreover, previous studies using the Bobath concept were all conducted in clinical settings (Platz et al, 2005Huseyinsinoglu et al, 2012).[…]


Continue —->  The effect of the Bobath therapy programme on upper limb and hand function in chronic stroke individuals with moderate to severe deficits | International Journal of Therapy and Rehabilitation

, , , , , , , , , ,

Leave a comment

[Abstract] Variable impedance control of finger exoskeleton for hand rehabilitation following stroke



The purpose of this paper is to propose a variable impedance control method of finger exoskeleton for hand rehabilitation using the contact forces between the finger and the exoskeleton, making the output trajectory of finger exoskeleton comply with the natural flexion-extension (NFE) trajectory accurately and adaptively.


This paper presents a variable impedance control method based on fuzzy neural network (FNN). The impedance control system sets the contact forces and joint angles collected by sensors as input. Then it uses the offline-trained FNN system to acquire the impedance parameters in real time, thus realizing tracking the NFE trajectory. K-means clustering method is applied to construct FNN, which can obtain the number of fuzzy rules automatically.


The results of simulations and experiments both show that the finger exoskeleton has an accurate output trajectory and an adaptive performance on three subjects with different physiological parameters. The variable impedance control system can drive the finger exoskeleton to comply with the NFE trajectory accurately and adaptively using the continuously changing contact forces.


The finger is regarded as a part of the control system to get the contact forces between finger and exoskeleton, and the impedance parameters can be updated in real time to make the output trajectory comply with the NFE trajectory accurately and adaptively during the rehabilitation.


via Variable impedance control of finger exoskeleton for hand rehabilitation following stroke | Emerald Insight

, , , , , , , , , ,

Leave a comment

[Abstract + References] A Feasibility Study on Wrist Rehabilitation Using the Leap Motion – Conference paper


Wrist and hand rehabilitation are common as people suffer injuries during work and exercise. Typically, the rehabilitation involves the patient and the therapist, which is both time consuming and cost burdening. It is desirable to use advanced telemedicine technologies such that the patient is able to enjoy the freedom of performing the required exercise at their own time and pace, while the healthcare system can operate more efficiently. The Leap Motion Controller (LMC), an inexpensive motion detection device, seems to be a good candidate for remote wrist rehabilitation. In this paper, the functionality and capability of the LMC are examined. Experiments are carried out with a total of twelve people performing twelve different movements. From the experimental results, the feasibility of using the LMC as a rehabilitation device is discussed.


  1. 1.
    Golomb, M.R., McDonald, B.C., Warden, S.J., Yonkman, J., Saykin, A.J., Shirley, B., Huber, M., Rabin, B., AbdelBaky, M., Nwosu, M.E., Barkat-Masih, M.: In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Arch. Phys. Med. Rehabil. 91(1), 1–8 (2010)CrossRefGoogle Scholar
  2. 2.
    Zhang, L., Li, K.F., Lin, J., Ren, J.: Leap motion for telerehabilitation: a feasibility study. In: Advances on Broadband and Wireless Computing, Communication and Applications, 13th International Conference on BWCCA, pp. 213–223 (2018)Google Scholar
  3. 3.
  4. 4.
  5. 5.
    Golgan, A.: Changing How People Look at Physical Therapy [Blog] Leap Motion (2018). Accessed 20 Aug 2018
  6. 6.
    Sathiyanarayanan, M., Rajan, S.: Understanding the Use of Leap Motion Touchless Device in Physiotherapy and Improving the Healthcare System in India (2018). Accessed 20 Aug 2018
  7. 7.
  8. 8.
  9. 9.
    Salvador, S., Chan, P.: FastDTW: toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)CrossRefGoogle Scholar

via A Feasibility Study on Wrist Rehabilitation Using the Leap Motion | SpringerLink

, , , , , , , ,

Leave a comment

[BLOG POST] Home After a Stroke: What I Learned About Splints as a Stroke Survivor

What I Learned About Splints as a Stroke Survivor

When spasticity from a stroke holds muscles in one position, muscle fibers become short which restricts motion.  Lannin (1) concluded “splinting has little or no effect on the loss of range of motion” (p. 113).  Unfortunately, Lannin told therapists to stop all passive stretching and restrict active hand exercises to 10 minutes a day.  So the data does not tell us if a resting night splint is a useful addition to standard therapy.

I wondered what would happen if I continued to do passive stretching and active hand exercises, but stopped wearing my resting splint at night.  After a month of not wearing this splint I could feel my thumb getting tighter.  I resumed wearing my splint and the next morning I woke up with a wicked ache in my thumb.  My thumb is tight by bedtime so my splint has not eliminated spasticity.  Placing the hand in one static position does not retrain the brain to produce active range of motion (AROM).  Yet I believe my splint has prevented a painful permanent contracture.

I love my new SaeboStretch resting splint I wear at night.  The new soft straps do not cut into my skin the way the old plastic straps did.  This version also uses a new kind of “Velcro” that does not have spiky hooks that scratch my bare thigh.  Notice that there are now two finger straps and two thumb straps.  The cover zips off so it can be washed.

1.  Lannin N, Cusick A, McCluskey A, Herbert R. Effects of splinting on wrist contracture after stroke. Stroke. 2009;38:111-116.


via Home After a Stroke: What I Learned About Splints as a Stroke Survivor

, , , , , , ,

Leave a comment

[Abstract] Effects of kinesio taping on hemiplegic hand in patients with upper limb post-stroke spasticity: a randomized controlled pilot study


BACKGROUND: Post-stroke spasticity is a common complication in patients with stroke and a key contributor to impaired hand function after stroke.
AIM: The purpose of this study was to investigate the effects of kinesio taping on managing spasticity of upper extremity and motor performance in patients with subacute stroke.
DESIGN: A randomized controlled pilot study.
SETTING: A hospital center.
POPULATION: Participants with stroke within six months.
METHODS: Thirty-one participants were enrolled. Patients were randomly allocated into kinesio taping (KT) group or control group. In KT group, Kinesio Tape was applied as an add-on treatment over the dorsal side of the affected hand during the intervention. Both groups received regular rehabilitation 5 days a week for 3 weeks. The primary outcome was muscle spasticity measured by modified Ashworth Scale (MAS). Secondary outcomes were functional performances of affected limb measured by using Fugl-Meyer assessment for upper extremity (FMA-UE), Brunnstrom stage, and the Simple Test for Evaluating Hand Function (STEF). Measures were taken before intervention, right after intervention (the third week) and two weeks later (the fifth week).
RESULTS: Within-group comparisons yielded significant differences in FMA-UE and Brunnstrom stages at the third and fifth week in the control group (P=0.003-0.019). In the KT group, significant differences were noted in FMA-UE, Brunnstrom stage, and MAS at the third and fifth week (P=0.001-0.035), and in the proximal part of FMA-UE between the third and fifth week (P=0.005). Between-group comparisons showed a significant difference in the distal part of FMA-UE at the fifth week (P=0.037).
CONCLUSIONS: Kinesio taping could provide some benefits in reducing spasticity and in improving motor performance on the affected hand in patients with subacute stroke.
CLINICAL REHABILITATION IMPACT: Kinesio taping could be a choice for clinical practitioners to use for effectively managing post-stroke spasticity.


via Effects of kinesio taping on hemiplegic hand in patients with upper limb post-stroke spasticity: a randomized controlled pilot study – European Journal of Physical and Rehabilitation Medicine 2019 October;55(5):551-7 – Minerva Medica – Journals

, , , , , , , , , , ,

Leave a comment

[Abstract] Exoskeleton design and adaptive compliance control for hand rehabilitation

An adaptive robotic system has been developed to be used for hand rehabilitation. Previously developed exoskeletons are either very complex in terms of mechanism, hardware and software, or simple but have limited functionality only for a specific rehabilitation task. Some of these studies use simple position controllers considering only to improve the trajectory tracking performance of the exoskeleton which is inadequate in terms of safety and health of the patient. Some of them focus only on either passive or active rehabilitation, but not both together. Some others use EMG signals to assist the patient, but this time active rehabilitation is impossible unless different designs and control strategies are not developed. The proposed mechanical structure is extremely simple. The middle and the proximal phalanxes are used as a link of consecutively connected two 4-bar mechanisms, respectively. The PIP and MCP joints are actuated by a single electro mechanical cylinder to produce complex flexion and extension movements. It is simpler than similar ones from aspect with the mechanical structure and the biodynamic fit of the hand, making it practicable in terms of production and personal usage. Simple design lets to implement adaptive compliance controller for all active and passive rehabilitation tasks, instead of developing complex and different strategies for different rehabilitation tasks. Furthermore, using the Luenberger observer for unmeasured velocity state variable, an on-line estimation method is used to estimate the dynamic parameters of the system. This makes possible to estimate the force exerted by the patient as well, without a force sensor.


via Exoskeleton design and adaptive compliance control for hand rehabilitation – Gazi Akgun, Ahmet Emre Cetin, Erkan Kaplanoglu,

, , , , , , , , , , ,

Leave a comment

[Abstract] Modeling and analysis of hydraulic piston actuation of McKibben fluidic artificial muscles for hand rehabilitation

Soft robotic actuators are well-suited for interactions with the human body, particularly in rehabilitation applications. The fluidic artificial muscle (FAM), specifically the McKibben FAM, is a type of soft robotic actuator that can be driven either pneumatically or hydraulically, and has potential for use in rehabilitation devices. The force applied by a FAM is well-described by a variety of models, the most common of which is based on the virtual work principle. However, the use of a piston assembly as a hydraulic power source for activation of FAMs has not previously been modeled in detail. This article presents a FAM designed to address the specific needs of a hand rehabilitation device. A syringe pump test bed is used to find and validate a novel volume–strain relationship. The volume–strain relationship remains constant with the coupled piston–FAM system, regardless of load. This confirms a bivariate approach to FAM control which is particularly beneficial in the exoskeleton application as the load varies throughout use. A novel, fixed-end cylindrical model is found to predict the strain of the FAM, given a volume input, regardless of load. For the FAMs tested in this work, the fixed-end cylindrical model improves strain prediction seven-fold when compared with traditional models.

via Modeling and analysis of hydraulic piston actuation of McKibben fluidic artificial muscles for hand rehabilitation – Anderson S Camp, Edward M Chapman, Paola Jaramillo Cienfuegos,

, , , , , , , , , ,

Leave a comment

[WEB SITE] When it Comes to Stroke Recovery, Who You See Matters

(a) Top view of the experiment. A tablet monitor was placed over the participant’s right forearms on the desk in front of them. (b) Diagrammatic view of the experiment from the left. There is a space to open the hand, which made it easier to imagine the opening-clench hand movement. (Photo courtesy of Toshihisa Tanaka, TUAT)

For stroke patients, observing their own hand movements in a video-assisted therapy – as opposed to someone else’s hand – could enhance brain activity and speed up rehabilitation, according to researchers.

The scientists, from Tokyo University of Agriculture and Technology (TUAT), published their findings in IEEE Transactions on Neural Systems and Rehabilitation Engineering.

Brain plasticity, where a healthy region of the brain fulfills the function of a damaged region of the brain, is a key factor in the recovery of motor functions caused by stroke. Studies have shown that sensory stimulation of the neural pathways that control the sense of touch can promote brain plasticity, essentially rewiring the brain to regain movement and senses.

To promote brain plasticity, stroke patients may incorporate a technique called motor imagery in their therapy. Motor imagery allows a participant to mentally simulate a given action by imagining themselves going through the motions of performing that activity. This therapy may be enhanced by a brain-computer interface technology, which detects and records the patients’ motor intention while they observe the action of their own hand or the hand of another person, a media release from Tokyo University of Agriculture and Technology explains.

“We set out to determine whether it makes a difference if the participant is observing their own hand or that of another person while they’re imagining themselves performing the task,” says co-author Toshihisa Tanaka, a professor in the Department of Electrical and Electrical Engineering at TUAT in Japan and a researcher at the RIKEN Center for Brain Science and the RIKEN Center for Advanced Intelligent Project.

The researchers monitored brain activity of 15 healthy right-handed male participants under three different scenarios. In the first scenario, participants were asked to imagine their hand moving in synchrony with hand movements being displayed in a video clip showing their own hand performing the task, together with corresponding voice cues.

In the second scenario, they were asked to imagine their hand moving in synchrony with hand movements being displayed on a video clip showing another person’s hand performing the task, together with voice cues. In the third scenario, the participants were asked to open and close their hands in response to voice cues only.

Using electroencephalography (EEG), brain activity of the participants was observed as they performed each task.

The team found meaningful differences in EEG measurements when participants were observing their own hand movement and that of another person. The findings suggest that, in order for motor imagery-based therapy to be most effective, video footage of a patient’s own hand should be used.

“Visual tasks where a patient observes their own hand movement can be incorporated into brain-computer interface technology used for stroke rehabilitation that estimates a patient’s motor intention from variations in brain activity, as it can give the patient both visual and sense of movement feedback,” Tanaka explains.

[Source(s): Tokyo University of Agriculture and Technology, EurekAlert]

via When it Comes to Stroke Recovery, Who You See Matters – Rehab Managment

, , , , , , , , ,

Leave a comment

[VIDEO] Stroke Rehabilitation: Use of electrical stimulation to help arm and hand recovery

This video demonstrates how to use FES, Functional Electrical Stimulation, to engage the muscles of the arm to extend the fingers.

, , , , , ,

Leave a comment

[Abstract + References] Design and Kinematics Analysis of a Bionic Finger Hand Rehabilitation Robot Mechanism


The rehabilitation process of human fingers is a coupling movement of wearable hand rehabilitation equipment and human fingers, and its design must be based on the kinematics of human fingers. In this paper, the forward kinematics and inverse kinematics models are established for the index finger. Kinematics analysis is carried out. Then a bionic finger rehabilitation robot is designed according to the movement characteristics of the finger, A parallelogram linkage mechanism is proposed to make the joint independent drive, realize the flexion/extension movement, and perform positive kinematics and inverse kinematics analysis on the mechanism. The results show that it conforms to the kinematics of the index finger and can be used as the mechanism model of the finger rehabilitation robot.
1. Ibrahim Yildiz, “A Low-Cost and Lightweight Alternative to Rehabilitation Robots: Omnidirectional Interactive Mobile Robot for Arm Rehabilitation” in Arabian Journal for Science & Engineering, Springer Science & Business Media B.V., vol. 43, no. 3, pp. 1053-1059, 2018.

2. Bai Shaoping, Gurvinder S. Virk, Thomas G. Sugar, Wearable Exoskeleton Systems: Design control and applications[M], Institution of Engineering and Technology Control, pp. 1-406, 2018.

3. Kai Zhang, Xiaofeng Chen et al., “System Framework of Robotics in Upper Limb Rehabilitation on Poststroke Motor Recovery”, Behavioural Neurology, vol. 12, pp. 1-14, 2018.

4. Yang Haile, Zhu Huiying, Lin Xingyu, “Review of Exoskeleton Wearable Rehabilitation System[J]”, Metrology and testing technology, vol. 46, no. 03, pp. 40-44, 2019.

5. Xiang Shichuan, Meng Qiaoling, Yu Hongliu, Meng Qingyun, “Research status of compliant exoskeleton rehabilitation manipulator [J]”, Chinese Journal of Rehabilitation Medicine, vol. 33, no. 04, pp. 461-465+474, 2018.

6. Wu Hongjian, Li Lina, Li Long, Liu Tian, Jue Wang, “Review of comprehensive intervention by hand rehabilitation robot after stroke [J]”, Journal of biomedical engineering, vol. 36, no. 01, pp. 151-156, 2019.

7. Yu Junwei, Xu Hongbin, Xu Taojin, Zhang Chengjie, Lu Shiqing, “Structure Design and Finite Element Analysis of a Rope Traction Upper Limb Rehabilitation Robot [J]”, Mechanical transmission, vol. 42, no. 12, pp. 93-97, 2018.

8. Chang Ying, Meng Qingyun, Yu Hongliu, “Research progress on the development of hand rehabilitation robot [J]”, Beijing Biomedical Engineering, vol. 37, no. 06, pp. 650-656, 2018.

9. N A I M Rosli, M A A Rahman, S A Mazlan et al., “Electrocardiographic (ECG) and Electromyographic (EMG) signals fusion for physiological device in rehab application[C]”, IEEE Student Conference on Research and Development, pp. 1-5, 2015.

10. K O Thielbar, K M Triandafilou, H C Fischer et al., “Benefits of using a voice and EMG- Driven actuated glove to support occupational therapy for stroke survivors”, IEEE Trans Neural Syst Rehabil Eng, vol. 25, no. 3, pp. 297-305, 2017.


via Design and Kinematics Analysis of a Bionic Finger Hand Rehabilitation Robot Mechanism – IEEE Conference Publication

, , , , , , , , , , , , , ,

Leave a comment

%d bloggers like this: