Posts Tagged motor rehabilitation

[WEB PAGE] Upper arm rehabilitation after severe stroke: where are we? – Physics World

10 Sep 2019 Andrea Rampin 
EEG cap

Stroke is the second leading cause of death worldwide and the third cause of induced disability, according to estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study. Treatments based on constraint-induced movement therapy, occupational practice, virtual reality and brain stimulation can work well for patients with mild impairment of upper limb movement, but they are not as effective for those burdened by severe disability. Therefore, novel individualized approaches are needed for this patient group.

Martina Coscia from the Wyss Center for Bio and Neuroengineering in Geneva, and colleagues from several other Swiss institutes, have published a review paper summarizing the most advanced techniques in use today for treatment of severe, chronic stroke patients. The researchers describe techniques being developed for upper limb motor rehabilitation: from robotics and muscular electrical stimulation, to brain stimulation and brain–computer/machine interfaces (Brain 10.1093/brain/awz181).

Robot-aided rehabilitation approaches include movement-assisting exoskeletons and end-effector devices, which enable upper arm movement by stimulating the peripheral nervous system. These techniques can also trigger reorganization of the impaired peripheral nervous system and encourage rehabilitation of the damaged somatosensory system. Several studies have reported the efficiency of robot-aided rehabilitation, alone or in combination with other techniques, in the treatment of upper limb motor impairment. One study that included severely impaired individuals also demonstrated encouraging results.

Muscular electrical stimulation can help improve the connection of motor neurons to the spinal cord and the motor cortex. Researchers have also demonstrated that application of electrical stimuli to the muscles provides positive effects on the neurons responsible for sensory signal transduction to the brain, thereby improving the motion control loop function. By modulating motor neurons’ sensitivity, muscular electrical stimulation inhibits the muscle spasms observed in other treatments.

More recently, therapies have moved on from the simple use of currents to harnessing coordinated stimuli to orchestrate more complex, task-related movements. Although this particular set of techniques didn’t show a particular advantage over physiotherapy in long-term studies of patients with mild upper limb impairment, it did seem to have a stronger effect for chronic severe patients.

Stimulating the brain

Brain stimulation, meanwhile, stimulates cortical neurons in order to improve their ability to form new connections within the affected neural network. Brain stimulation techniques can be divided into two branches – electrical and magnetic – both of which can activate or inhibit neural activity, depending on the polarity and intensity of the stimulus.

Transcranial magnetic stimulation

Researchers have achieved encouraging results using both techniques. In particular, magnetic field-triggered inhibition of the contralesional hemisphere (the hemisphere that was not affected by the stroke) activity yielded positive results. Magnetic, low-frequency stimulation of the contralesional hemisphere also proved encouraging – improving the reach to grasp ability of patients, although only for small objects. Excitingly, some studies suggest that coupling contralesional cortex inhibition with magnetic stimulation of the chronically affected area could achieve effective results.

Within these techniques, one promising approach is invasive brain stimulation, in which a device is surgically implanted in a superficial region of the brain. Such techniques allow for more sustained and spatially-oriented stimulation of the desired brain regions. The Everest trial used such methods and showed significant improvement for a larger percentage of patients after 24 weeks, compared with standard rehabilitation protocols.

Another promising recent development is non-invasive deep-brain stimulation, achieved by temporally interfering electric fields. The authors envision that a deeper understanding of the complex mechanisms involved in the brain’s reactions to magnetic and electrical stimulation will provide an important assistance in clinical application of these techniques.

The final category, brain–computer or brain–machine interfaces (BCIs or BMIs), exploit electroencephalogram (EEG) patterns to trigger feedback or an action output from an external device. Devices that produce feedback are used to train the patient to recruit the correct zone of the brain and help reorganize its interconnections. These techniques have only recently transitioned to the clinic; however, early results and observations are promising. For example, a BCI technique coupled with muscular electrical stimulation restored patients’ ability to extend their fingers.

In recent years, researchers have also tested combinations of the techniques described above. For example, combinations of robotics and muscular electrical stimulation have shown encouraging results, especially when more than one articulation was targeted by the treatment. Combining brain stimulation with muscular electrical stimulation and robotics has proved more effective in severe than in moderate cases. Also, coupling of muscular electrical stimulation with magnetic inhibitory brain stimulation provided better results than either individual technique. Interestingly, addition of electrical brain stimulation to a BCI system coupled with a robotic motor feedback enhanced the outcome, helping to achieve adaptive brain remodelling at the expense of inappropriate reorganization.

Coscia and co-authors highlight that all the techniques studied share a range of limitations that should be addressed, such as small sample size, limited understanding of the underlying mechanisms, lack of treatment personalization and minimal attention to the training task, which they note is often of limited importance for daily life. Addressing these limitations might be key to improving the clinical outcome for patients with severe stroke-induced upper limb paralysis treated with neurotechnology-aided interventions. Moreover, the authors plan to begin a clinical trial to test the use of a novel personalized therapy approach that will include a combination of the described techniques.

 

via Upper arm rehabilitation after severe stroke: where are we? – Physics World

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Searching for the optimal tDCS target for motor rehabilitation – Full Text

Abstract

Background

Transcranial direct current stimulation (tDCS) has been investigated over the years due to its short and also long-term effects on cortical excitability and neuroplasticity. Although its mechanisms to improve motor function are not fully understood, this technique has been suggested as an alternative therapeutic method for motor rehabilitation, especially those with motor function deficits. When applied to the primary motor cortex, tDCS has shown to improve motor function in healthy individuals, as well as in patients with neurological disorders. Based on its potential effects on motor recovery, identifying optimal targets for tDCS stimulation is essential to improve knowledge regarding neuromodulation as well as to advance the use of tDCS in clinical motor rehabilitation.

Methods and results

Therefore, this review discusses the existing evidence on the application of four different tDCS montages to promote and enhance motor rehabilitation: (1) anodal ipsilesional and cathodal contralesional primary motor cortex tDCS, (2) combination of central tDCS and peripheral electrical stimulation, (3) prefrontal tDCS montage and (4) cerebellar tDCS stimulation. Although there is a significant amount of data testing primary motor cortex tDCS for motor recovery, other targets and strategies have not been sufficiently tested. This review then presents the potential mechanisms and available evidence of these other tDCS strategies to promote motor recovery.

Conclusions

In spite of the large amount of data showing that tDCS is a promising adjuvant tool for motor rehabilitation, the diversity of parameters, associated with different characteristics of the clinical populations, has generated studies with heterogeneous methodologies and controversial results. The ideal montage for motor rehabilitation should be based on a patient-tailored approach that takes into account aspects related to the safety of the technique and the quality of the available evidence.

Introduction

Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation technique which delivers a constant electric current over the scalp to modulate cortical excitability [1,2,3]. Different montages of tDCS may induce diverse effects on brain networks, which are directly dependent on the electrodes positioning and polarity. While anodal tDCS is believed to enhance cortical excitability, cathodal tDCS diminishes the excitation of stimulated areas, and these electrodes montages define the polarity-specific effects of the stimulation [4,5,6]. Due to the effects of tDCS on modulating cortical excitability, especially when applied to the primary motor cortex [2], this method of brain stimulation has been intensively investigated for motor function improvement both in healthy subjects [78] and in various neurological pathologies [910]. Neurological conditions that may obtain benefits from the use of tDCS include Stroke [11,12,13,14], Parkinson’s disease [15], Multiple Sclerosis [1617], among others.

The mechanisms of action underlying the modulation of neuronal activity induced by tDCS are still not completely understood. However, studies have demonstrated that the electric current generated by tDCS interferes in the resting membrane potential of neuronal cells, which modulates spontaneous brain circuits activity [1,2,3]. Some studies have suggested that tDCS could have an effect on neuronal synapsis’ strength, altering the activity of NMDA and GABA receptors, thus triggering plasticity process, such as long-term potentiation (LTP) and long-term depression (LTD) [1819]. The long-term effects of tDCS are also thought to be associated to changes in protein synthesis and gene expression [2021]. Additionally, neuroimaging study showed blood flow changes following stimulation, which may be related to a direct effect of tDCS over blood flow, with an increase in oxygen supply on cortical areas and subsequent enhancement of neuronal excitability [22]. Given these mechanisms, tDCS seems to be a potential valuable tool to stimulate brain activity and plasticity following a brain damage.

The advantages of using tDCS include its low cost, ease of application, and safety. To date, there is no evidence of severe adverse events following tDCS in healthy individuals, as well as in patients with neurological conditions, such as stroke [2324]. Among the potential side effects presented after this type of stimulation, the most common ones consist of burn sensation, itching, transient skin irritation, tingling under the electrode, headache, and low intensity discomfort [25]. As serious and irreversible side effects have not been reported, tDCS is considered a relatively safe and tolerable strategy of non-invasive brain stimulation.

The modifications of physiological and clinical responses induced by tDCS are extremely variable, as this type of stimulation can induce both adaptive or maladaptive plastic changes, and a wide spectrum of tDCS parameters influence the effects of this technique. Electrodes combination, montage and shape can easily interfere in the enhancement or inhibition of cortical excitability [626]. Other parameters that may influence these outcomes include current intensity, current flow direction, skin preparation, and stimulation intervals [32728] . In addition, in clinical populations, the heterogeneity of the brain lesions can also influence the inconsistency in tDCS effects [29]. Despite the goal of tDCS of modulating cortical areas by using different parameters, some studies have showed that, by altering cortical excitability, the electrical field could reach subcortical structures, such as basal ganglia, due to brain connections between cortical and subcortical areas [30,31,32,33]. This potential effect on deeper brain structure has supported the broad investigation of tDCS in various disorders, even if the cortical region under stimulating electrode is not directly linked to the neurological condition being investigated. Indeed, the current variable and moderate effect sizes from clinical tDCS studies in stroke encourage researchers to test alternative targets to promote motor recovery in this condition.

In this review, we discuss evidence on the application of four different tDCS montages to promote and enhance motor rehabilitation: [1] anodal tDCS ipsilateral and cathodal tDCS bilateral, [2] combination of central and peripheral stimulation, [3] prefrontal montage and [4] cerebellar stimulation.[…]

 

Continue —> Searching for the optimal tDCS target for motor rehabilitation | Journal of NeuroEngineering and Rehabilitation | Full Text

figure1

Fig. 1 Motor cortex stimulation in a scenario where the left hemisphere was lesioned. Figure a Anodal stimulation of left primary motor cortex: anode over the left M1 and cathode over the right supraorbital region. Figure b Cathodal stimulation of right primary motor cortex: cathode over the right M1 and anode over the left supraorbital region. Figure c Bilateral stimulation: anode over the affected hemisphere (left) and cathode over the non-affected hemisphere (right)

 

, , , , , , ,

Leave a comment

[Editorial] Introducing the thematic series on transcranial direct current stimulation (tDCS) for motor rehabilitation: on the way to optimal clinical use

Introduction

Transcranial direct current stimulation (tDCS) is a method of noninvasive brain stimulation that directs a constant low amplitude electric current through scalp electrodes. tDCS has been shown to modulate excitability in both cortical and subcortical brain areas [], with anodal tDCS leading to increased neuronal excitability and cathodal tDCS inversely leading to reduced neuronal excitability. tDCS can also modulate blood flow (i.e. oxygen supply to cortical and subcortical areas []) and neuronal synapsis strength [], triggering plasticity processes (i.e. long-term potentiation and long-term depression). There is growing interest in using tDCS as a low-cost, non-invasive brain stimulation option for a wide range of potential clinical applications. Advantages of tDCS over other methods of non-invasive brain stimulation include favorable safety and tolerability profiles and its portability and applicability.

The use of tDCS in motor rehabilitation for neurological diseases as well as in healthy ageing is a growing area of therapeutic use. Although the results of tDCS interventions for motor rehabilitation are still preliminary, they encourage further research to better understand its therapeutic utility and to inform optimal clinical use. Therefore, The Journal of NeuroEngineering and Rehabilitation (JNER. https://jneuroengrehab.biomedcentral.com/) is pleased to present the thematic series entitled “tDCS application for motor rehabilitation”.

The goal of this thematic series is to increase the awareness of academic and clinical communities to different potential applications of tDCS for motor rehabilitation. Experts in the field were invited to submit experimental or review studies. A call for papers was also announced to reach those interested in contributing to this thematic series. This collection of articles was thought to present the most recent advances in tDCS for motor rehabilitation, addressing topics such as theoretical, methodological, and practical approaches to be considered when designing tDCS-based rehabilitation. The targeted disorders include but are not limited to: stroke, Parkinson’s disease, Cerebral Palsy, cerebellar ataxia, trauma, Multiple Sclerosis.

tDCS – A promising clinical tool for motor rehabilitation

tDCS has been used in experimental and clinical neuroscience for the study of brain functions and treatment in a range of disorders of the central nervous system. Of particular interest to this thematic series, a growing body of evidence suggest that tDCS has potential to become a clinical tool for motor rehabilitation.

The existing tDCS protocols using well-defined montages, stimulus durations and intensities are safe and well tolerated by both healthy individuals and clinical populations. There are no reported indications of any serious adverse effects, such as damage of brain tissue or seizure induction, with the use of 1–2 mA protocols []. The most commonly reported adverse effects included redness, tingling and itching sensations under the electrodes, as well as headache []. Moreover, the overall adverse effect rates are similar between active and sham tDCS [], which suggests that the mild adverse effects are related to electrode positioning on the skin and not the stimulation itself.

As tDCS is portable, devices can easily be transported, which circumvents accessibility barriers to health care (i.e. tDCS can easily be moved into clinics or wards). It can be implemented in combination with other kinds of interventions, such as cognitive or physical training or exercise, with this pairing possibly leading to synergistic benefit []. Although accumulating evidence highlights potential benefits offered by tDCS for motor rehabilitation, further research is required for tDCS to become an approved clinical tool. The majority of existing clinical trials has involved a limited number of participants, which may imply underpowered analysis. Thus, large-scale studies are needed to overcome this major flaw.

Due to the potential for self- or caregiver-application, remotely supervised protocols have been developed and recently found feasible for those with motor impairment []. However, these studies employ highly structured protocols and rigorous criteria with real time supervision via teleconference, and do not support a “do-it-yourself” tDCS practice. Instead, the remotely supervised protocols can be used to facilitate the clinical trial designs that are necessary in order to advance tDCS towards therapeutic use.

Data on optimal protocols and predictors of response to tDCS are currently lacking in the literature. Future studies in this field should focus on determining the optimal stimulation parameters and predictors of response to tDCS in different clinical populations. It seems that one size does not fit all in tDCS. However, previous studies may be limited, as standard clinical assessments may miss subtle motor improvements. Future outcomes for determining the effectiveness of tDCS for motor rehabilitation need to be robust. Therefore, combining tDCS protocols with other validated mobile technologies to monitor motor performance, such as wearable inertial sensors or innovative Internet of Things devices, may provide important insight into effectiveness within clinic and beyond.

Despite the positive progression of research to clinical practice, there are still questions to be answered before tDCS can be extensively recommended for motor rehabilitation.

• What is the ideal intensity and duration of the session?

• How many sessions are required?

• What is the ideal interval between sessions?

• What about patients’ characteristics?

• Who will benefit from tDCS?

• Do specific demographic characteristics lead to greater benefits?

Final considerations

We hope the accepted papers will contribute meaningfully to the body of knowledge in the field of tDCS for motor rehabilitation and that they will motivate the development of further research. Additionally, we hope this thematic series will assist both researchers and clinical professionals in making decisions for the achievement of optimal benefits throughout tDCS.

References

  1. 1.
    Bolzoni F, Pettersson L-G, Jankowska E. Evidence for long-lasting subcortical facilitation by transcranial direct current stimulation in the cat. J Physiol [Internet]. 2013 [cited 2018 Nov 10];591:3381–3399. Available from: http://doi.wiley.com/10.1113/jphysiol.2012.244764.
  2. 2.
    Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol [Internet]. 2000 [cited 2018 Nov 10];527 Pt 3:633–639. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10990547.
  3. 3.
    Zheng X, Alsop DC, Schlaug G. Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. Neuroimage [Internet]. 2011 [cited 2019 Feb 14];58:26–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21703350.
  4. 4.
    Polanía R, Paulus W, Antal A, Nitsche MA. Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study. Neuroimage [Internet]. 2011 [cited 2019 Feb 14];54:2287–2296. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1053811910012875.
  5. 5.
    Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol [Internet] 2016 [cited 2018 Nov 10];127:1031–1048. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26652115.
  6. 6.
    Moffa AH, Brunoni AR, Fregni F, Palm U, Padberg F, Blumberger DM, et al. Safety and acceptability of transcranial direct current stimulation for the acute treatment of major depressive episodes: Analysis of individual patient data. J Affect Disord [Internet]. 2017 [cited 2018 Nov 10];221:1–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28623732.
  7. 7.
    Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul [Internet] 2016 [cited 2018 Nov 10];9:641–661. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27372845.
  8. 8.
    Fertonani A, Ferrari C, Miniussi C. What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clin Neurophysiol [Internet]. 2015 [cited 2018 Nov 10];126:2181–2188. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25922128.
  9. 9.
    Kaski D, Dominguez R, Allum J, Islam A, Bronstein A. Combining physical training with transcranial direct current stimulation to improve gait in Parkinson’s disease: a pilot randomized controlled study. Clin Rehabil [Internet]. 2014 [cited 2018 Nov 10];28:1115–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24849794.
  10. 10.
    Agarwal S, Pawlak N, Cucca A, Sharma K, Dobbs B, Shaw M, et al. Remotely-supervised transcranial direct current stimulation paired with cognitive training in Parkinson’s disease: An open-label study. J Clin Neurosci [Internet]. 2018 [cited 2018 Nov 10];57:51–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30193898.

via Introducing the thematic series on transcranial direct current stimulation (tDCS) for motor rehabilitation: on the way to optimal clinical use | SpringerLink

, , ,

Leave a comment

[Abstract] Vision-Based Serious Games and Virtual Reality Systems for Motor Rehabilitation: A Review Geared Toward a Research Methodology

ABSTRACT

Background

Nowadays, information technologies are being widely adopted to promote healthcare and rehabilitation. Owing to their affordability and use of hand-free controllers, vision-based systems have gradually been integrated into motor rehabilitation programs and have greatly drawn the interest of healthcare practitioners and the research community. Many studies have illustrated the effectiveness of these systems in rehabilitation. However, the report and design aspects of the reported clinical trials were disregarded.

Objective

In this paper, we present a systematic literature review of the use of vision-based serious games and virtual reality systems in motor rehabilitation programs. We aim to propose a research methodology that engineers can use to improve the designing and reporting processes of their clinical trials.

Methods

We conducted a review of published studies that entail clinical experiments. Searches were performed using Web of Science and Medline (PubMed) electronic databases, and selected studies were assessed using the Downs and Black Checklist and then analyzed according to specific research questions.

Results

We identified 86 studies and our findings indicate that the number of studies in this field is increasing, with Korea and USA in the lead. We found that Kinect, EyeToy system, and GestureTek IREX are the most commonly used technologies in studying the effects of vision-based serious games and virtual reality systems on rehabilitation. Findings also suggest that cerebral palsy and stroke patients are the main target groups, with a particular interest on the elderly patients in this target population. The findings indicate that most of the studies focused on postural control and upper extremity exercises and used different measurements during assessment.

Conclusions

Although the research community’s interest in this area is growing, many clinical trials lack sufficient clarity in many aspects and are not standardized. Some recommendations have been made throughout the article.

via Vision-Based Serious Games and Virtual Reality Systems for Motor Rehabilitation: A Review Geared Toward a Research Methodology – ScienceDirect

, , , , , , , , ,

Leave a comment

[WEB SITE] tDCS application for motor rehabilitation

Neuer Inhalt

An increasing number of studies highlight the potential application of transcranial direct current stimulation (tDCS) for motor rehabilitation in neurological diseases as well as in healthy aging. tDCS is a technique where a constant weak electric current is passed through scalp electrodes and has been shown to modulate excitability in both cortical and subcortical brain areas. Although the results of tDCS interventions for motor rehabilitation are still preliminary, they encourage further research to better understand its therapeutic potential and to inform optimal clinical use.

This collection of articles aims to present the most recent advances in tDCS for motor rehabilitation, addressing topics such as theoretical, methodological, and practical approaches to be considered when designing tDCS-based rehabilitation. Submissions of both experimental and review studies is encouraged.

This collection of articles has not been sponsored and articles have undergone the journal’s standard peer-review process overseen by the Editor-in-Chief and Associate Editors. The Editor-in-Chief and Associate Editors declare no competing interests.

  1. Content Type:Review

    Transcranial direct current stimulation for the treatment of motor impairment following traumatic brain injury

    After traumatic brain injury (TBI), motor impairment is less common than neurocognitive or behavioral problems. However, about 30% of TBI survivors have reported motor deficits limiting the activities of daily…

    Authors:Won-Seok Kim, Kiwon Lee, Seonghoon Kim, Sungmin Cho and Nam-Jong Paik

    Citation:Journal of NeuroEngineering and Rehabilitation 2019 16:14

    Published on: 25 January 2019

  2. Content Type:Review

    Transcranial direct current stimulation for promoting motor function in cerebral palsy: a review

    Transcranial direct current stimulation (tDCS) has the potential to improve motor function in a range of neurological conditions, including Cerebral Palsy (CP). Although there have been many studies assessing …

    Authors:Melanie K. Fleming, Tim Theologis, Rachel Buckingham and Heidi Johansen-Berg

    Citation:Journal of NeuroEngineering and Rehabilitation 2018 15:121

    Published on: 20 December 2018

  3. Content Type:Commentary

    Transcranial direct current stimulation (tDCS) for upper limb rehabilitation after stroke: future directions.

    Transcranial Direct Current Stimulation (tDCS) is a potentially useful tool to improve upper limb rehabilitation outcomes after stroke, although its effects in this regard have shown to be limited so far. Addi…

    Authors:Bernhard Elsner, Joachim Kugler and Jan Mehrholz

    Citation:Journal of NeuroEngineering and Rehabilitation 2018 15:106

    Published on: 15 November 2018

  4. Content Type:Research

    Home-based transcranial direct current stimulation plus tracking training therapy in people with stroke: an open-label feasibility study

    Transcranial direct current stimulation (tDCS) is an effective neuromodulation adjunct to repetitive motor training in promoting motor recovery post-stroke. Finger tracking training is motor training whereby p…

    Authors:Ann Van de Winckel, James R. Carey, Teresa A. Bisson, Elsa C. Hauschildt, Christopher D. Streib and William K. Durfee

    Citation:Journal of NeuroEngineering and Rehabilitation 2018 15:83

    Published on: 18 September 2018

via tDCS application for motor rehabilitation

, , ,

Leave a comment

[Conference Proceedings] Rhythmic Entrainment for Hand Rehabilitation Using the Leap Motion Controller – Full Text PDF

Abstract

Millions of individuals around the world suffer from motor impairment or disability, yet effective, engaging, and cost-effective therapeutic solutions are still lacking. In this work, we propose a game for hand rehabilitation that leverages the therapeutic aspects of music for motor rehabilitation, incorporates the power of gamification to improve adherence to medical treatment, and uses the versatility of devices such as the Leap Motion Controller to track users’ movements. The main characteristics of the game as well as future research directions are outlined.

Full Text PDF

via Rhythmic Entrainment for Hand Rehabilitation Using the Leap Motion Controller | Kat Agres

, , , , , , , , , ,

Leave a comment

[ARTICLE] Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke – A Pilot Study – Full Text

Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients’ capability to live independently. Virtual Reality (VR) based methods for stroke rehabilitation have mainly focused on motor rehabilitation but there is increasing interest toward the integration of cognitive training for providing more effective solutions. Here we investigate the feasibility for stroke recovery of a virtual cognitive-motor task, the Reh@Task, which combines adapted arm reaching, and attention and memory training. 24 participants in the chronic stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control). Both groups were enrolled in conventional occupational therapy, which mostly involves motor training. Additionally, the VR group underwent training with the Reh@Task and the control group performed time-matched conventional occupational therapy. Motor and cognitive competences were assessed at baseline, end of treatment (1 month) and at a 1-month follow-up through the Montreal Cognitive Assessment, Single Letter Cancelation, Digit Cancelation, Bells Test, Fugl-Meyer Assessment Test, Chedoke Arm and Hand Activity Inventory, Modified Ashworth Scale, and Barthel Index. Our results show that both groups improved in motor function over time, but the Reh@Task group displayed significantly higher between-group outcomes in the arm subpart of the Fugl-Meyer Assessment Test. Improvements in cognitive function were significant and similar in both groups. Overall, these results are supportive of the viability of VR tools that combine motor and cognitive training, such as the Reh@Task. Trial Registration:This trial was not registered because it is a small clinical study that addresses the feasibility of a prototype device.

Introduction

Stroke is one of the most common causes of adult disability and its prevalence is likely to increase with an aging population (WHO, 2015). It is estimated that 33–42% of stroke survivors require assistance for daily living activities 3–6 months post-stroke and 36% continue to be disabled 5 years later (Teasell et al., 2012). Loss of motor control and muscle strength of the upper extremity are the most prevalent deficits and are those that have a greater impact on functional capacity (Saposnik, 2016). Hence, its recovery is fundamental for minimizing long-term disability and improving quality of life. In fact, most rehabilitation interventions focus on facilitating recovery through motor learning principles (Kleim and Jones, 2008). However, learning engages also cognitive processes such as attention, memory and executive functioning, all of which may be affected by stroke (Cumming et al., 2013). Still, conventional rehabilitation methodologies are mostly motor focused, although 70% of patients experience some degree of cognitive decline (Gottesman and Hillis, 2010), which also affects their capability to live independently (Langhorne et al., 2011).[…]

 

Continue —> Frontiers | Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke – A Pilot Study | Psychology

FIGURE 1. Experimental setup and VR task. (A) The user works on a tabletop and arm movements are captured by augmented reality pattern tracking. These movements are mapped onto the movements of a virtual arm on the screen for the execution of the cancelation task. (B) The target stimuli can be letters, numbers, and symbols in black or different colors. The target stimuli in this picture are ordered by increasing complexity.

, , , , , , ,

Leave a comment

[Abstract + References] Using Orientation Sensors to Control a FES System for Upper-Limb Motor Rehabilitation

Abstract

Contralaterally controlled functional electrical stimulation (CCFES) is a recent therapy aimed at improving the recovery of impaired limbs after stroke. For hemiplegic patients, CCFES uses a control signal from the non-impaired side of the body to regulate the intensity of electrical stimulation delivered to the affected muscles of the homologous limb on the opposite side of the body. CCFES permits an artificial muscular contraction synchronized with the patient’s intentionality to carry out functional tasks, which is a way to enhance neuroplasticity and to promote motor learning. This work presents an upper extremity motor rehabilitation system based on CCFES, using orientation sensors for control. Thus, the stimulation intensity (current amplitude) delivered to the paretic extremity is proportional to the degree of joint amplitude of the unaffected extremity. The implemented controller uses a control strategy that allows the delivered electrical stimulation intensity, to be comparable to the magnitude of movement. It was carried out a set of experiments to validate the overall system, for executing five bilateral mirror movements that include human wrist and elbow joints. Obtained results showed that movements voluntary signals acquired from right upper-limb were replicated successfully on left upper-limb using the FES system.

References

  1. 1.
    World Report on Disability, World Health Organization (WHO) (2011)Google Scholar
  2. 2.
    Moller, A.R.: Neural Plasticity and Disorders of the Nervous System. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  3. 3.
    Hara, Y., Obayashi, S., Tsujiuchi, K., Muraoka, Y.: The effects of electromyography controlled functional electrical stimulation on upper extremity function and cortical perfusion in stroke patients. Clin. Neurophysiol. 124, 2008–2015 (2013)CrossRefGoogle Scholar
  4. 4.
    Sheffler, L., Chae, J.: Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve 35, 562–590 (2007)CrossRefGoogle Scholar
  5. 5.
    Doucet, B.M., Lamb, A., Griffin, L.: Neuromuscular electrical stimulation for skeletal muscle function. Yale J. Biol. Med. 85, 201–215 (2012)Google Scholar
  6. 6.
    Popovic, D.B., Sinkjærc, T., Popovic, M.B.: Electrical stimulation as a means for achieving recovery of function in stroke patients. NeuroRehabilitation 25, 45–58 (2009)Google Scholar
  7. 7.
    Knutson, J.S., Harley, M.Y., Hisel, T.Z., Makowski, N.S., Fu, M.J., Chae, J.: Contralaterally controlled functional electrical stimulation for stroke rehabilitation. In: Proceedings of IEEE Engineering and Medicine and Biology Society, pp. 314–317 (2012)Google Scholar
  8. 8.
    Knutson, J.S., Harley, M.Y., Hisel, T.Z., Makowski, N.S., Chae, J.: Contralaterally controlled functional electrical stimulation for recovery of elbow extension and hand opening after stroke: a pilot case series study. Am. J. Phys. Med. Rehabil. 93(6), 528–539 (2014)CrossRefGoogle Scholar
  9. 9.
    Sabatini, A.M.: Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors 11, 1489–1525 (2011)CrossRefGoogle Scholar
  10. 10.
    Filippeschi, A., Schmitz, N., Miezal, M., Bleser, G., Ruffaldi, E., Stricker, D.: Survey of motion tracking methods based on inertial sensors: a focus on upper limb human motion. Sensors 17, 1257 (2017)CrossRefGoogle Scholar
  11. 11.
    Borbély, B.J., Szolgay, P.: Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations. Biomed. Eng. Online 2017(16), 21 (2017)CrossRefGoogle Scholar
  12. 12.
    Lynch, C., Popovic, M.: Functional electrical stimulation: closed-loop control of induced muscle contractions. IEEE Control Syst. Mag. 28, 40–49 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ferrarin, M., Palazzo, F., Riener, R., Quintern, J.: Model-based control of FES-induced single joint movements. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 245–257 (2001)CrossRefGoogle Scholar
  14. 14.
    Knutson, J.S., Gunzler, D.D., Wilson, R.D., Chae, J.: Contralaterally controlled functional electrical stimulation improves hand dexterity in chronic hemiparesis. Stroke. 47(12), 2596–2602 (2016)CrossRefGoogle Scholar

via Using Orientation Sensors to Control a FES System for Upper-Limb Motor Rehabilitation | SpringerLink

, , , , , , , , , ,

Leave a comment

[ARTICLE] Movement visualisation in virtual reality rehabilitation of the lower limb: a systematic review – Full Text

Background

Virtual reality (VR) based applications play an increasing role in motor rehabilitation. They provide an interactive and individualized environment in addition to increased motivation during motor tasks as well as facilitating motor learning through multimodal sensory information. Several previous studies have shown positive effect of VR-based treatments for lower extremity motor rehabilitation in neurological conditions, but the characteristics of these VR applications have not been systematically investigated. The visual information on the user’s movement in the virtual environment, also called movement visualisation (MV), is a key element of VR-based rehabilitation interventions. The present review proposes categorization of Movement Visualisations of VR-based rehabilitation therapy for neurological conditions and also summarises current research in lower limb application.

Methods

A systematic search of literature on VR-based intervention for gait and balance rehabilitation in neurological conditions was performed in the databases namely; MEDLINE (Ovid), AMED, EMBASE, CINAHL, and PsycInfo. Studies using non-virtual environments or applications to improve cognitive function, activities of daily living, or psychotherapy were excluded. The VR interventions of the included studies were analysed on their MV.

Results

In total 43 publications were selected based on the inclusion criteria. Seven distinct MV groups could be differentiated: indirect MV (N = 13), abstract MV (N = 11), augmented reality MV (N = 9), avatar MV (N = 5), tracking MV (N = 4), combined MV (N = 1), and no MV (N = 2). In two included articles the visualisation conditions included different MV groups within the same study. Additionally, differences in motor performance could not be analysed because of the differences in the study design. Three studies investigated different visualisations within the same MV group and hence limited information can be extracted from one study.

Conclusions

The review demonstrates that individuals’ movements during VR-based motor training can be displayed in different ways. Future studies are necessary to fundamentally explore the nature of this VR information and its effect on motor outcome.

Background

Virtual reality (VR) in neurorehabilitation has emerged as a fairly recent approach that shows great promise to enhance the integration of virtual limbs in one`s body scheme [1] and motor learning in general [2]. Virtual Rehabilitation is a “group [of] all forms of clinical intervention (physical, occupational, cognitive, or psychological) that are based on, or augmented by, the use of Virtual Reality, augmented reality and computing technology. The term applies equally to interventions done locally, or at a distance (tele-rehabilitation)” [3]. The main objectives of intervention for facilitating motor learning within this definition are to (1) provide repetitive and customized high intensity training, (2) relay back information on patients’ performance via multimodal feedback, and (3) improve motivation [24]. VR therapies or interventions are based on real-time motion tracking and computer graphic technologies displaying the patients’ behaviour during a task in a virtual environment.

The interaction of the user and Virtual environment can be described as a perception and action loop [5]. This motor performance is displayed in the virtual environment and subsequently, the system provides multimodal feedback related to movement execution. Through external (e.g. vision) and internal (proprioception) senses the on-line sensory feedback is integrated into the patient’s mental representation. If necessary, the motor plan is corrected in order to achieve the given goal [5].

A previous Cochrane Review from Laver, George, Thomas, Deutsch, and Crotty [2] on Virtual Reality for stroke rehabilitation showed positive effects of VR intervention for motor rehabilitation in people post-stroke. However, grouped analysis from this review on recommendation for VR intervention provides inconclusive evidence. The author further comments that “[…] virtual reality interventions may vary greatly […], it is unclear what characteristics of the intervention are most important” ([2], p. 14).

Virtual rehabilitation system provides three different types of information to the patient: movement visualisation, performance feedback and context information [6]. During a motor task the patient’s movements are captured and represented in the virtual environment (movement visualisation). According to the task success, information about the accomplished goal or a required movement alteration is transmitted through one or several sensory modalities (performance feedback). Finally, these two VR features are embedded in a virtual world (context information) that can vary from a very realistic to an abstract, unrealistic or reduced, technical environment.

Performance feedback often relies on theories of motor learning and is probably the most studied information type within VR-based motor rehabilitation. Moreover, context information is primarily not designed with a therapeutic purpose. Movement observation, however, plays an important role for central sensory stimulation therapies, such as mirror therapy or mental training. The observation or imagination of body movements facilitates motor recovery [79] and provides new possibilities for cortical reorganization and enhancement of functional mobility. Thus, it appears that movement visualisation may also play an important role in motor rehabilitation [1012], although this aspect is yet to be systematically investigated [13].

The main goal of the present review is to identify various movement visualisation groups in VR-based motor interventions for lower extremities, by means of a systematic literature search. Secondarily, the included studies are further analysed for their effect on motor learning. This will help guide future research in rehabilitation using VR.

An interim analysis of the review published in 2013 showed six MV groups for upper and lower extremity training and additional two MV groups directed only towards lower extremity training. In this paper, we analysed only studies involving lower limb training, leading to a revision and expansion of the previously published MV groups findings [1315].[…]

 

Continue —> Movement visualisation in virtual reality rehabilitation of the lower limb: a systematic review

, , , , , ,

Leave a comment

[Abstract] Combining tDCS and computerized mirror therapy in upper limb rehabilitation in stroke patients. A feasibility study

Introduction/Background

Mirror therapy (MT) relies on a mirror and movements of the healthy limb to generate visual illusions of movement of the paralyzed limb. MT has proven to be effective for the motor rehabilitation of the upper limb of stroke patients, but suffers several limitations for patients. To overcome these difficulties, a computerized mirror therapy device was developed (IVS3™, Dessintey). MT effects could also be enhanced by applying simultaneous neuromodulation with tDCS. This small sample trial was conducted to evaluate the feasibility and tolerance of an IVS3 motor training combined with simultaneous bi-hemispheric tDCS.

Material and method

Four patients with right or left hemiparesis following stroke were included in this trial. They received 20 sessions of computerized MT (IVS3 ™, Dessintey; 5 sessions/week; 1 hour and 200 movements/session) combined with bi-hemispheric tDCS over the hand motor cortex (2 mA, 20 minutes). The primary endpoint was adherence to the therapeutic program. The secondary judgment criteria were the safety assessmentand the evolution of the tolerance of repeated tDCS stimulation coupled with IVS3.

Results

The synergy of these two therapies is well tolerated by patients with a compliance rate of 99% ± 0.025. There have been no serious adverse reactions or unknown side effects. The upper limb motor function of the 4 patients improved, but this small sample non-controlled trial do not allow to conclude on a significant effect.

Conclusion

In this feasibility small sample study, the 4 patients well tolerated and perfectly complied with the computerized mirror therapy associated with bi-hemispheric tDCS. This finding calls for clinical controlled study to evaluate the efficacy of this combined IVS3-tDCS program in stroke patients.

via Combining tDCS and computerized mirror therapy in upper limb rehabilitation in stroke patients. A feasibility study – ScienceDirect

, , , , , , ,

Leave a comment

%d bloggers like this: