Posts Tagged motor rehabilitation

[ARTICLE] Acceptability of a Mobile Phone–Based Augmented Reality Game for Rehabilitation of Patients With Upper Limb Deficits from Stroke: Case Study – Full Text

ABSTRACT

Background: Upper limb functional deficits are common after stroke and result from motor weakness, ataxia, spasticity, spatial neglect, and poor stamina. Past studies employing a range of commercial gaming systems to deliver rehabilitation to stroke patients provided short-term efficacy but have not yet demonstrated whether or not those games are acceptable, that is, motivational, comfortable, and engaging, which are all necessary for potential adoption and use by patients.

Objective: The goal of the study was to assess the acceptability of a smartphone-based augmented reality game as a means of delivering stroke rehabilitation for patients with upper limb motor function loss.

Methods: Patients aged 50 to 70 years, all of whom experienced motor deficits after acute ischemic stroke, participated in 3 optional therapy sessions using augmented reality therapeutic gaming over the course of 1 week, targeting deficits in upper extremity strength and range of motion. After completion of the game, we administered a 16-item questionnaire to the patients to assess the game’s acceptability; 8 questions were answered by rating on a scale from 1 (very negative experience) to 5 (very positive experience); 8 questions were qualitative.

Results: Patients (n=5) completed a total of 23 out of 45 scheduled augmented reality game sessions, with patient fatigue as the primary factor for uncompleted sessions. Each patient consented to 9 potential game sessions and completed a mean of 4.6 (SE 1.3) games. Of the 5 patients, 4 (80%) completed the questionnaire at the end of their final gaming session. Of note, patients were motivated to continue to the end of a given gaming session (mean 4.25, 95% CI 3.31-5.19), to try other game-based therapies (mean 3.75, 95% CI 2.81-4.69), to do another session (mean 3.50, 95% CI 2.93-4.07), and to perform other daily rehabilitation exercises (mean 3.25, 95% CI 2.76-3.74). In addition, participants gave mean scores of 4.00 (95% CI 2.87-5.13) for overall experience; 4.25 (95% CI 3.31-5.19) for comfort; 3.25 (95% CI 2.31-4.19) for finding the study fun, enjoyable, and engaging; and 3.50 (95% CI 2.52-4.48) for believing the technology could help them reach their rehabilitation goals. For each of the 4 patients, their reported scores were statistically significantly higher than those generated by a random sampling of values (patient 1: P=.04; patient 2: P=.04; patient 4: P=.004; patient 5: P=.04).

Conclusions: Based on the questionnaire scores, the patients with upper limb motor deficits following stroke who participated in our case study found our augmented reality game motivating, comfortable, engaging, and tolerable. Improvements in augmented reality technology motivated by this case study may one day allow patients to work with improved versions of this therapy independently in their own home. We therefore anticipate that smartphone-based augmented reality gaming systems may eventually provide useful postdischarge self-treatment as a supplement to professional therapy for patients with upper limb deficiencies from stroke.

Introduction

Background

Stroke induces a variety of functional impairments, as well as pain and other ailments, depending on its type and location [1]. Common deficits associated with ischemic stroke include motor function, spatial neglect, and psychological changes [1]. Motor function deficits after stroke often include partial or total loss of function of the upper or lower limbs on a given side, with associated muscle weakness, poor stamina, lack of muscle control, and even paralysis [2]. These deficits impact the patient’s independent lifestyle and decrease their performance of activities of daily living [1]. According to the National Institute of Neurological Disorders and Stroke, the most important part of rehabilitation programs is “carefully directed, well-focused, repetitive practice [3].”

Prior Work

Patients who engage in rigorous, time-intensive, and challenging therapeutic exercises after ischemic stroke tend to experience greater functional recovery, while if ignored or insufficiently treated, impairments may remain [4,5]. The dosage of motor skill practice correlates to the extent of motor recovery following a stroke [4]. In addition, the type of therapy delivered relative to patient’s impairment determines outcomes after therapy. For example, for those who have upper limb motor impairment, best therapeutic practice modifies the prescribed exercises as the patient’s symptoms evolve [5,6]. Regrettably, patients report their experiences of conventional repetitive stroke rehabilitation therapies as tedious and difficult to hold their interest, which conflicts with the fact that patient motivation is often required to obtain good clinical outcomes [710].

Rehabilitation doctors and medical staff, therefore, face a significant problem: how can they provide high intensity therapy in large quantities for upper limb impairments with this seemingly intrinsic motivational deficit? Especially problematic are patient’s therapeutic needs after their discharge from the hospital—their therapeutic needs still exist, but medical staff have substantially reduced access to the patient to provide targeted care. Given the difficulty of this problem, an insufficient percentage of patients regain the full functional potential of their upper limb after ischemic stroke [11]. This regrettable outcome motivates an ongoing search for new therapeutic approaches that provide acceptable (motivational, comfortable, and engaging) experiences, hence, effective therapy, especially at the patient’s home. 

Use of commercial augmented reality devices has found recent application in stroke rehabilitation using existing expensive commercial headsets [4,617]. However, there are few studies that assay the acceptability of augmented reality gaming system–based patient rehabilitation after stroke [10,12,1719], and then, only in a cursory fashion. For example, 30 patients recovering from stroke were surveyed for their opinions on game-based rehabilitation, and the researchers concluded that though games for patients recovering from stroke existed, they were primarily designed for efficacy, not entertainment [10]; they suggest investing in a single, affordable gaming platform for patient rehabilitation after stroke that also focuses on entertainment and provides diverse gaming content [10]. Augmented reality technology and an upper-limb assistive device were tested on 3 individuals recovering from stroke for 6 weeks, and the study reported that both the user and therapist believed that their augmented reality environment was user friendly due to the lightness of the assistive devices and the simplicity of set-up [18]. Finally, a study of 4 patients recovering from stroke who were exposed to several gaming platforms reported that manually adjusting the difficulty of games to provide a challenge and creating games with deeper story lines helped the patients stay motivated to perform their gaming exercises [17]. To the best of our knowledge, our case study is the first of its kind that analyzes the opinions of patients recovering from stroke regarding the problems of current augmented reality–specific game-based rehabilitation systems to provides insight into future designs of augmented reality game-based stroke rehabilitation systems. Augmented reality, provided by one of a variety of device designs, represents one such approach. Augmented reality projects a live camera view of a user’s environment and computer-generated objects with a variety of properties—movement and sound, typically. As an example, Pokémon Go, a smartphone-based augmented reality game, has had documented success sustaining the interest of users for extended periods of time while consistently increasing their physical activity [13], making augmented reality a prime candidate for facilitating otherwise tedious therapy.

Hypothesis

Since patient motivation often drives a larger dosage of rehabilitation therapy, hence, improved clinical outcomes [20,21], we hypothesized that augmented reality deployed on a relatively inexpensive and readily available platform—a smartphone—could provide a motivational, comfortable, and engaging rehabilitation experience. To test this hypothesis, we first developed a candidate rehabilitation game on a smartphone that could encourage a patient’s hand motions through use of simple visual cues with a custom-made app. We then asked patients with acute upper-motor stroke to use this system and report their experiences via a questionnaire that assayed the acceptability of the game in terms of motivation to continue to play, comfort, and engagement.

Methods

Overview

This acceptability study was conducted at Harborview Medical Center in Seattle, Washington from November 2018 to March 2019. Inpatients who were recovering from an acute ischemic stroke participated and provided consent. These patients had impaired strength as determined by physical and occupational therapists. To be included in the study, they had to have at least antigravity strength in deltoid or biceps muscles as well as the ability to perform internal and external shoulder rotations. All patients in this study had a Medical Research Council manual muscle score of 3 or 4 in the affected limb.

Intervention

We designed and built an augmented reality game using Unity (Unity Technologies) that is deployable on any modern smartphone with a camera (Table 1 and Figure 1). The game presents users with a view of an augmented reality dolphin swimming under the ocean with the task of capturing fish and feeding turtles, worn on the hand associated with the upper-limb deficit (Multimedia Appendix 1). To experience the game, patients wore an augmented reality headset, which did not obscure the camera mounted on the phone, and a custom device on their hand. We used two headsets—the Google Daydream headset, which required us to remove the front panel that held the phone in place, and the Merge augmented reality/virtual reality headset, which did not require any modification (Figure 1). The game also required users to place the hand associated with their motor deficits within a padded box that replaced their hand as seen in augmented reality with a dolphin (Figure 1). Finally, we required the user to look at a complex landscape through their headset while wearing the padded box and while playing the game. Instead of holding the phone, the headset supported the phone for the user. We built customized controllers with different interior sizes that changed the effective grip strength of the controller; this was important because our patients’ ability to hold the controllers varied. Viewing the complex landscape through the augmented reality system caused our software to create a seascape that contained a turtle, fish, and other underwater flora and fauna (Multimedia Appendix 1). Successful placement of the dolphin over a fish allowed the dolphin to capture the fish. Placement of the dolphin plus fish over the turtle allowed the user to feed the turtle, thereby winning points.

Notably, we used the TeamViewer (TeamViewer AG) app to project the screen view of the patient from the phone to a laptop, so we could see the patient’s view with, however, the complex landscape was also projected in the background, so we could check the viewer’s alignment with the landscape while they played (Figure 1).

Set-up of the game, to ensure that system function was verified, occurred prior to patients using the system. Patients followed verbal directions and instructions from study staff on how to use the system, facilitated by demonstration of the game using the TeamViewer app. Examples of directions included how to start the game, the actions required to pick up the fish, and how to colocate the dolphin plus fish with the turtle for point accumulation. Some patients required physical assistance to adjust the view of the environment. Examples of physical assistance included moving the patient’s chair or wheelchair closer or farther away from the images recognized by the camera (Figure 1).

Table 1. Vuforia compatible mobile devices.
Figure 1. (A) phone: Asus Zenfone 2, phone operating system: Android 7 Nougat, Unity version: 2018.2.10, developer operating system: Windows 10; (B) headsets: Google Daydream (left) Merge augmented reality/virtual reality goggles (right); (C) controllers with various grip sizes consisting of soft foam inserts; (D) virtual dolphin avatar; (E) image target; (F) study staff during game play with (1) smartphone (2) headset (3) controller (4) image target; (G) user experience.

[…]

Source: https://rehab.jmir.org/2020/2/e17822/

, , , , , , , , , , ,

Leave a comment

[WEB PAGE] All in the Wrist: Wearables Help Treat Disease, Disability

Suffering a stroke can change how your body works in odd ways. Maybe you suddenly can’t lift your leg the way you did a few weeks before, or your arm doesn’t seem to extend properly. It’s different for every case.

Recovering from these disabilities can be an arduous process. A patient must not only struggle with his or her impairments, but also the conviction to overcome them. At the hospital, therapists coach rehabbing patients through intense exercise schedules, but after being sent home, patients won’t be monitored as closely and often stop using disabled limbs, favoring healthier body parts instead. This often results in more lost functionality.

Doctors have long been perplexed about how to effectively help patients who aren’t in the exam room or rehab clinic. Researchers and programmers are now developing a new generation of wearables that can monitor, encourage, and even treat people suffering from chronic neurological disorders like stroke, cerebral palsy, and epilepsy, as well as the essential tremors that come with Parkinson’s Disease.

Practice makes perfect

Around 2015, Belén Rubio Ballester, a researcher at Spain’s IBEC Institute for Bioengineering of Catalonia (IBEC), fixated on a specific challenge faced by patients recovering from stroke: Use it or lose it.

“You practice, you learn — if you quit practicing, you lose your skills,” says Ballester. “We see this everywhere, whether you’re playing an instrument or in sports. Stroke patients may similarly lose some motor function.”

It’s common for rehab patients to favor their stronger muscles, usually to the detriment of debilitated fingers, hands, and legs. To remedy this, Ballester launched a pilot experiment to see if a watch-like wearable connected to a smartphone could influence patient behavior. Subjects were fitted with a bracelet-like prototype that buzzed once an hour to remind stroke sufferers to use their arms, and an app installed on a paired phone checked for movement that confirmed the patient actually followed the advice. It was a small study, monitoring just four trainees over five days, but the results were consistent: The techno nudge helped.

rehab session
BSIP / Getty

In March, the same team launched a follow-up study that promises to be one of the largest experiments of its kind, training and tracking 100 recovering stroke patients with a combination of smartphones and Android Wear watches.

Similar to the original homegrown bracelets, the Android watches will buzz once an hour to remind patients not to forget they need to exercise their impaired limbs. Study participants will also be able to see their usage quantified on paired smartphones. The Android Wear gyroscope makes it easier for the researchers to track the type of movements. Each patient will be asked to regularly draw circles to check the fluidity of the gesture.

Employing Android Wear is more of a practical choice than tech preference. Android watches tend to be cheaper than Apple ones or other comparable gear, and since the researchers aren’t providing phones, they’re banking on patients owning compatible gear.

Ballester projects initial data for the study will be available by December 2020. The IBEC team also plans to track the patients after they’ve stopped wearing the watches to check if the habits developed by the recurring buzzes will stick. The full results should be completed by the middle of 2021.

Wearables to monitor neurological disorders

On the other side of the Atlantic, Rutgers University professor Jean-Francois Daneault is using wearables, phones, and robotics to monitor and treat patients with a range of neurological disorders, including stroke, cerebral palsy and essential tremor. In 2019, he won a $400,000 grant from the National Institutes of Health to develop a platform that will track patients over long periods to help diagnose those impairments.

“A lot of those ailments have overlapping symptoms,” said Daneault. “Doctors who aren’t specialists can have a hard time identifying the differences between the diseases.” A well-attuned wearable, in combination with a smartphone app, can capture those often imperceptible symptoms that give a doctor the necessary stats to make an informed diagnosis.

The platform will also potentially be used to measure how symptoms may change over months and years. “People may only see their neurologists or doctors once or twice a year, for a limited amount of time, so it can be difficult to know how they’re doing,” says Daneault. A well-done app can tell a doctor if a medication is working or if the treatment needs to be adjusted.

AliveCor

“There are very few specialists, and they’re always booked,” he says, underscoring the need for more monitoring of patient ailments.

Though Denault is attempting to build a platform that can work with Android Wear, Apple watches, and Fitbits, the wrist-worn tech can measure more than just arm and hand actions. Gait can also be tracked with a wearable or a smartphone placed in a pocket.

One of the big challenges of making a platform that works with multiple wearables is understanding the slight differences between the gyroscopes and accelerometers embedded into each. Daneault realizes the practical challenges such a platform must overcome: The app will need to pick through a wealth of data and parse out the most relevant information, and also find ways to integrate what is learned into numerous digital health systems.

Researchers are developing parallel tech and functionality at numerous schools, hospitals, and institutions. Doctors at the Cleveland Clinic are using iPads to measure the balance of multiple sclerosis (MS) patients. An A.I. expert at the Massachusetts Institute of Technology developed a smartwatch that can look for the signs of epilepsy seizures and predict their onset before they occur. There’s even a Google X project that uses Fitbits to help track the progression of MS symptoms.

Not all of these projects are ready for prime time, but the U.S. Food and Drug Administration (FDA) has already approved a few wearables that can monitor and treat neurological issues, and they are now commercially available. The Embrace wearable, for example, is a bracelet that monitors wearers for stress and potential seizures. A device called Trio, on the other hand, delivers peripheral nerve stimulation to ameliorate the symptoms of essential tremor. A clinical study of the device showed that using it decreases the amount of hand shaking, often caused by Parkinson’s disease, within three months.

Such products are just the early signs of how the treatment of neurological disorders is about to radically change.

“The future of motor rehab is not at the hospital,” says IBEC researcher Ballester. “You want patients to go home as soon as they feel safe and want to, and things are prepared at home. But you don’t want to lose track of them. You want rehab embedded in life. If it isn’t, it won’t be maintained … That’s why I see rehab in the life of the patient. Not at the hospital.”

Editors’ Recommendations

via All in the Wrist: Wearables Help Treat Disease, Disability | Digital Trends

, , , , , , , , , ,

Leave a comment

[Chapter 10] UPPER EXTREMITY MOTOR REHABILITATION INTERVENTIONS – EBRSR PDF File.

Chapter 10: Upper Extremity Motor Rehabilitation Interventions Table of contents
Key points ……………………………………………………………………………………………………………….. 4
Modified Sackett Scale ……………………………………………………………………………………………… 8
New to the 19th edition of the Evidence-based Review of Stroke Rehabilitation…………….. 9
Outcome measures definitions………………………………………………………………………………….11
Motor Function……………………………………………………………………………………………… 11
Dexterity ……………………………………………………………………………………………………… 15
Activities of daily living…………………………………………………………………………………… 17
Spasticity …………………………………………………………………………………………………….. 21
Range of motion …………………………………………………………………………………………… 23
Proprioception ……………………………………………………………………………………………… 24
Stroke severity……………………………………………………………………………………………… 25
Muscle strength ……………………………………………………………………………………………. 26
Therapy based interventions …………………………………………………………………………………….27
Neurodevelopmental techniques …………………………………………………………………….. 27
Bilateral arm training……………………………………………………………………………………… 32
Strength training …………………………………………………………………………………………… 41
Task-specific training…………………………………………………………………………………….. 47
Constraint-Induced Movement Therapy (CIMT) ………………………………………………… 53
Trunk restraint ……………………………………………………………………………………………… 69
Stretching programs ……………………………………………………………………………………… 72
Orthotics ……………………………………………………………………………………………………… 75
Mirror Therapy……………………………………………………………………………………………… 79
Mental practice …………………………………………………………………………………………….. 86
Action observation ………………………………………………………………………………………… 91
Music therapy ………………………………………………………………………………………………. 95
Technology based interventions ……………………………………………………………………………….98
Telerehabilitation ………………………………………………………………………………………….. 98
Robotics…………………………………………………………………………………………………….. 100
Virtual reality………………………………………………………………………………………………. 114
Brain computer interfaces…………………………………………………………………………….. 123
EMG biofeedback ……………………………………………………………………………………….. 127
Sensorimotor stimulation………………………………………………………………………………………..132
Neuromuscular electrical stimulation (NMES) …………………………………………………. 132
Transcutaneous electrical nerve stimulation (TENS)………………………………………… 148
Thermal stimulation …………………………………………………………………………………….. 152
Muscle vibration………………………………………………………………………………………….. 155
Additional afferent and peripheral stimulation methods …………………………………….. 158
Invasive central nervous system stimulation ……………………………………………………………163
Invasive cortical and nerve electrode implant stimulation………………………………….. 163
Non-invasive brain stimulation ………………………………………………………………………………..166
Repetitive Transcranial Magnetic Stimulation (rTMS)……………………………………….. 166
Theta burst stimulation (TBS)……………………………………………………………………….. 177
http://www.ebrsr.com Page 3
Transcranial Direct Current Stimulation (tDCS)……………………………………………….. 182
Pharmaceuticals …………………………………………………………………………………………………….197
Botulinum toxin…………………………………………………………………………………………… 197
Steroids …………………………………………………………………………………………………….. 207
Cerebrolysin ………………………………………………………………………………………………. 209
Levodopa…………………………………………………………………………………………………… 211
Atorvastatin………………………………………………………………………………………………… 213
Antidepressants………………………………………………………………………………………….. 215
Central nervous system stimulants………………………………………………………………… 218
Complementary and alternative medicine…………………………………………………………………221
Acupuncture ………………………………………………………………………………………………. 221
Electroacupuncture and transcutaneous electrical acupoint stimulation………………. 227
Meridian acupressure and massage therapy…………………………………………………… 232
References …………………………………………………………………………………………………………….235

Download PDF file

, , , ,

Leave a comment

[WEB PAGE] Upper arm rehabilitation after severe stroke: where are we? – Physics World

10 Sep 2019 Andrea Rampin 
EEG cap

Stroke is the second leading cause of death worldwide and the third cause of induced disability, according to estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study. Treatments based on constraint-induced movement therapy, occupational practice, virtual reality and brain stimulation can work well for patients with mild impairment of upper limb movement, but they are not as effective for those burdened by severe disability. Therefore, novel individualized approaches are needed for this patient group.

Martina Coscia from the Wyss Center for Bio and Neuroengineering in Geneva, and colleagues from several other Swiss institutes, have published a review paper summarizing the most advanced techniques in use today for treatment of severe, chronic stroke patients. The researchers describe techniques being developed for upper limb motor rehabilitation: from robotics and muscular electrical stimulation, to brain stimulation and brain–computer/machine interfaces (Brain 10.1093/brain/awz181).

Robot-aided rehabilitation approaches include movement-assisting exoskeletons and end-effector devices, which enable upper arm movement by stimulating the peripheral nervous system. These techniques can also trigger reorganization of the impaired peripheral nervous system and encourage rehabilitation of the damaged somatosensory system. Several studies have reported the efficiency of robot-aided rehabilitation, alone or in combination with other techniques, in the treatment of upper limb motor impairment. One study that included severely impaired individuals also demonstrated encouraging results.

Muscular electrical stimulation can help improve the connection of motor neurons to the spinal cord and the motor cortex. Researchers have also demonstrated that application of electrical stimuli to the muscles provides positive effects on the neurons responsible for sensory signal transduction to the brain, thereby improving the motion control loop function. By modulating motor neurons’ sensitivity, muscular electrical stimulation inhibits the muscle spasms observed in other treatments.

More recently, therapies have moved on from the simple use of currents to harnessing coordinated stimuli to orchestrate more complex, task-related movements. Although this particular set of techniques didn’t show a particular advantage over physiotherapy in long-term studies of patients with mild upper limb impairment, it did seem to have a stronger effect for chronic severe patients.

Stimulating the brain

Brain stimulation, meanwhile, stimulates cortical neurons in order to improve their ability to form new connections within the affected neural network. Brain stimulation techniques can be divided into two branches – electrical and magnetic – both of which can activate or inhibit neural activity, depending on the polarity and intensity of the stimulus.

Transcranial magnetic stimulation

Researchers have achieved encouraging results using both techniques. In particular, magnetic field-triggered inhibition of the contralesional hemisphere (the hemisphere that was not affected by the stroke) activity yielded positive results. Magnetic, low-frequency stimulation of the contralesional hemisphere also proved encouraging – improving the reach to grasp ability of patients, although only for small objects. Excitingly, some studies suggest that coupling contralesional cortex inhibition with magnetic stimulation of the chronically affected area could achieve effective results.

Within these techniques, one promising approach is invasive brain stimulation, in which a device is surgically implanted in a superficial region of the brain. Such techniques allow for more sustained and spatially-oriented stimulation of the desired brain regions. The Everest trial used such methods and showed significant improvement for a larger percentage of patients after 24 weeks, compared with standard rehabilitation protocols.

Another promising recent development is non-invasive deep-brain stimulation, achieved by temporally interfering electric fields. The authors envision that a deeper understanding of the complex mechanisms involved in the brain’s reactions to magnetic and electrical stimulation will provide an important assistance in clinical application of these techniques.

The final category, brain–computer or brain–machine interfaces (BCIs or BMIs), exploit electroencephalogram (EEG) patterns to trigger feedback or an action output from an external device. Devices that produce feedback are used to train the patient to recruit the correct zone of the brain and help reorganize its interconnections. These techniques have only recently transitioned to the clinic; however, early results and observations are promising. For example, a BCI technique coupled with muscular electrical stimulation restored patients’ ability to extend their fingers.

In recent years, researchers have also tested combinations of the techniques described above. For example, combinations of robotics and muscular electrical stimulation have shown encouraging results, especially when more than one articulation was targeted by the treatment. Combining brain stimulation with muscular electrical stimulation and robotics has proved more effective in severe than in moderate cases. Also, coupling of muscular electrical stimulation with magnetic inhibitory brain stimulation provided better results than either individual technique. Interestingly, addition of electrical brain stimulation to a BCI system coupled with a robotic motor feedback enhanced the outcome, helping to achieve adaptive brain remodelling at the expense of inappropriate reorganization.

Coscia and co-authors highlight that all the techniques studied share a range of limitations that should be addressed, such as small sample size, limited understanding of the underlying mechanisms, lack of treatment personalization and minimal attention to the training task, which they note is often of limited importance for daily life. Addressing these limitations might be key to improving the clinical outcome for patients with severe stroke-induced upper limb paralysis treated with neurotechnology-aided interventions. Moreover, the authors plan to begin a clinical trial to test the use of a novel personalized therapy approach that will include a combination of the described techniques.

 

via Upper arm rehabilitation after severe stroke: where are we? – Physics World

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Searching for the optimal tDCS target for motor rehabilitation – Full Text

Abstract

Background

Transcranial direct current stimulation (tDCS) has been investigated over the years due to its short and also long-term effects on cortical excitability and neuroplasticity. Although its mechanisms to improve motor function are not fully understood, this technique has been suggested as an alternative therapeutic method for motor rehabilitation, especially those with motor function deficits. When applied to the primary motor cortex, tDCS has shown to improve motor function in healthy individuals, as well as in patients with neurological disorders. Based on its potential effects on motor recovery, identifying optimal targets for tDCS stimulation is essential to improve knowledge regarding neuromodulation as well as to advance the use of tDCS in clinical motor rehabilitation.

Methods and results

Therefore, this review discusses the existing evidence on the application of four different tDCS montages to promote and enhance motor rehabilitation: (1) anodal ipsilesional and cathodal contralesional primary motor cortex tDCS, (2) combination of central tDCS and peripheral electrical stimulation, (3) prefrontal tDCS montage and (4) cerebellar tDCS stimulation. Although there is a significant amount of data testing primary motor cortex tDCS for motor recovery, other targets and strategies have not been sufficiently tested. This review then presents the potential mechanisms and available evidence of these other tDCS strategies to promote motor recovery.

Conclusions

In spite of the large amount of data showing that tDCS is a promising adjuvant tool for motor rehabilitation, the diversity of parameters, associated with different characteristics of the clinical populations, has generated studies with heterogeneous methodologies and controversial results. The ideal montage for motor rehabilitation should be based on a patient-tailored approach that takes into account aspects related to the safety of the technique and the quality of the available evidence.

Introduction

Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation technique which delivers a constant electric current over the scalp to modulate cortical excitability [1,2,3]. Different montages of tDCS may induce diverse effects on brain networks, which are directly dependent on the electrodes positioning and polarity. While anodal tDCS is believed to enhance cortical excitability, cathodal tDCS diminishes the excitation of stimulated areas, and these electrodes montages define the polarity-specific effects of the stimulation [4,5,6]. Due to the effects of tDCS on modulating cortical excitability, especially when applied to the primary motor cortex [2], this method of brain stimulation has been intensively investigated for motor function improvement both in healthy subjects [78] and in various neurological pathologies [910]. Neurological conditions that may obtain benefits from the use of tDCS include Stroke [11,12,13,14], Parkinson’s disease [15], Multiple Sclerosis [1617], among others.

The mechanisms of action underlying the modulation of neuronal activity induced by tDCS are still not completely understood. However, studies have demonstrated that the electric current generated by tDCS interferes in the resting membrane potential of neuronal cells, which modulates spontaneous brain circuits activity [1,2,3]. Some studies have suggested that tDCS could have an effect on neuronal synapsis’ strength, altering the activity of NMDA and GABA receptors, thus triggering plasticity process, such as long-term potentiation (LTP) and long-term depression (LTD) [1819]. The long-term effects of tDCS are also thought to be associated to changes in protein synthesis and gene expression [2021]. Additionally, neuroimaging study showed blood flow changes following stimulation, which may be related to a direct effect of tDCS over blood flow, with an increase in oxygen supply on cortical areas and subsequent enhancement of neuronal excitability [22]. Given these mechanisms, tDCS seems to be a potential valuable tool to stimulate brain activity and plasticity following a brain damage.

The advantages of using tDCS include its low cost, ease of application, and safety. To date, there is no evidence of severe adverse events following tDCS in healthy individuals, as well as in patients with neurological conditions, such as stroke [2324]. Among the potential side effects presented after this type of stimulation, the most common ones consist of burn sensation, itching, transient skin irritation, tingling under the electrode, headache, and low intensity discomfort [25]. As serious and irreversible side effects have not been reported, tDCS is considered a relatively safe and tolerable strategy of non-invasive brain stimulation.

The modifications of physiological and clinical responses induced by tDCS are extremely variable, as this type of stimulation can induce both adaptive or maladaptive plastic changes, and a wide spectrum of tDCS parameters influence the effects of this technique. Electrodes combination, montage and shape can easily interfere in the enhancement or inhibition of cortical excitability [626]. Other parameters that may influence these outcomes include current intensity, current flow direction, skin preparation, and stimulation intervals [32728] . In addition, in clinical populations, the heterogeneity of the brain lesions can also influence the inconsistency in tDCS effects [29]. Despite the goal of tDCS of modulating cortical areas by using different parameters, some studies have showed that, by altering cortical excitability, the electrical field could reach subcortical structures, such as basal ganglia, due to brain connections between cortical and subcortical areas [30,31,32,33]. This potential effect on deeper brain structure has supported the broad investigation of tDCS in various disorders, even if the cortical region under stimulating electrode is not directly linked to the neurological condition being investigated. Indeed, the current variable and moderate effect sizes from clinical tDCS studies in stroke encourage researchers to test alternative targets to promote motor recovery in this condition.

In this review, we discuss evidence on the application of four different tDCS montages to promote and enhance motor rehabilitation: [1] anodal tDCS ipsilateral and cathodal tDCS bilateral, [2] combination of central and peripheral stimulation, [3] prefrontal montage and [4] cerebellar stimulation.[…]

 

Continue —> Searching for the optimal tDCS target for motor rehabilitation | Journal of NeuroEngineering and Rehabilitation | Full Text

figure1

Fig. 1 Motor cortex stimulation in a scenario where the left hemisphere was lesioned. Figure a Anodal stimulation of left primary motor cortex: anode over the left M1 and cathode over the right supraorbital region. Figure b Cathodal stimulation of right primary motor cortex: cathode over the right M1 and anode over the left supraorbital region. Figure c Bilateral stimulation: anode over the affected hemisphere (left) and cathode over the non-affected hemisphere (right)

 

, , , , , , ,

Leave a comment

[Editorial] Introducing the thematic series on transcranial direct current stimulation (tDCS) for motor rehabilitation: on the way to optimal clinical use

Introduction

Transcranial direct current stimulation (tDCS) is a method of noninvasive brain stimulation that directs a constant low amplitude electric current through scalp electrodes. tDCS has been shown to modulate excitability in both cortical and subcortical brain areas [], with anodal tDCS leading to increased neuronal excitability and cathodal tDCS inversely leading to reduced neuronal excitability. tDCS can also modulate blood flow (i.e. oxygen supply to cortical and subcortical areas []) and neuronal synapsis strength [], triggering plasticity processes (i.e. long-term potentiation and long-term depression). There is growing interest in using tDCS as a low-cost, non-invasive brain stimulation option for a wide range of potential clinical applications. Advantages of tDCS over other methods of non-invasive brain stimulation include favorable safety and tolerability profiles and its portability and applicability.

The use of tDCS in motor rehabilitation for neurological diseases as well as in healthy ageing is a growing area of therapeutic use. Although the results of tDCS interventions for motor rehabilitation are still preliminary, they encourage further research to better understand its therapeutic utility and to inform optimal clinical use. Therefore, The Journal of NeuroEngineering and Rehabilitation (JNER. https://jneuroengrehab.biomedcentral.com/) is pleased to present the thematic series entitled “tDCS application for motor rehabilitation”.

The goal of this thematic series is to increase the awareness of academic and clinical communities to different potential applications of tDCS for motor rehabilitation. Experts in the field were invited to submit experimental or review studies. A call for papers was also announced to reach those interested in contributing to this thematic series. This collection of articles was thought to present the most recent advances in tDCS for motor rehabilitation, addressing topics such as theoretical, methodological, and practical approaches to be considered when designing tDCS-based rehabilitation. The targeted disorders include but are not limited to: stroke, Parkinson’s disease, Cerebral Palsy, cerebellar ataxia, trauma, Multiple Sclerosis.

tDCS – A promising clinical tool for motor rehabilitation

tDCS has been used in experimental and clinical neuroscience for the study of brain functions and treatment in a range of disorders of the central nervous system. Of particular interest to this thematic series, a growing body of evidence suggest that tDCS has potential to become a clinical tool for motor rehabilitation.

The existing tDCS protocols using well-defined montages, stimulus durations and intensities are safe and well tolerated by both healthy individuals and clinical populations. There are no reported indications of any serious adverse effects, such as damage of brain tissue or seizure induction, with the use of 1–2 mA protocols []. The most commonly reported adverse effects included redness, tingling and itching sensations under the electrodes, as well as headache []. Moreover, the overall adverse effect rates are similar between active and sham tDCS [], which suggests that the mild adverse effects are related to electrode positioning on the skin and not the stimulation itself.

As tDCS is portable, devices can easily be transported, which circumvents accessibility barriers to health care (i.e. tDCS can easily be moved into clinics or wards). It can be implemented in combination with other kinds of interventions, such as cognitive or physical training or exercise, with this pairing possibly leading to synergistic benefit []. Although accumulating evidence highlights potential benefits offered by tDCS for motor rehabilitation, further research is required for tDCS to become an approved clinical tool. The majority of existing clinical trials has involved a limited number of participants, which may imply underpowered analysis. Thus, large-scale studies are needed to overcome this major flaw.

Due to the potential for self- or caregiver-application, remotely supervised protocols have been developed and recently found feasible for those with motor impairment []. However, these studies employ highly structured protocols and rigorous criteria with real time supervision via teleconference, and do not support a “do-it-yourself” tDCS practice. Instead, the remotely supervised protocols can be used to facilitate the clinical trial designs that are necessary in order to advance tDCS towards therapeutic use.

Data on optimal protocols and predictors of response to tDCS are currently lacking in the literature. Future studies in this field should focus on determining the optimal stimulation parameters and predictors of response to tDCS in different clinical populations. It seems that one size does not fit all in tDCS. However, previous studies may be limited, as standard clinical assessments may miss subtle motor improvements. Future outcomes for determining the effectiveness of tDCS for motor rehabilitation need to be robust. Therefore, combining tDCS protocols with other validated mobile technologies to monitor motor performance, such as wearable inertial sensors or innovative Internet of Things devices, may provide important insight into effectiveness within clinic and beyond.

Despite the positive progression of research to clinical practice, there are still questions to be answered before tDCS can be extensively recommended for motor rehabilitation.

• What is the ideal intensity and duration of the session?

• How many sessions are required?

• What is the ideal interval between sessions?

• What about patients’ characteristics?

• Who will benefit from tDCS?

• Do specific demographic characteristics lead to greater benefits?

Final considerations

We hope the accepted papers will contribute meaningfully to the body of knowledge in the field of tDCS for motor rehabilitation and that they will motivate the development of further research. Additionally, we hope this thematic series will assist both researchers and clinical professionals in making decisions for the achievement of optimal benefits throughout tDCS.

References

  1. 1.
    Bolzoni F, Pettersson L-G, Jankowska E. Evidence for long-lasting subcortical facilitation by transcranial direct current stimulation in the cat. J Physiol [Internet]. 2013 [cited 2018 Nov 10];591:3381–3399. Available from: http://doi.wiley.com/10.1113/jphysiol.2012.244764.
  2. 2.
    Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol [Internet]. 2000 [cited 2018 Nov 10];527 Pt 3:633–639. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10990547.
  3. 3.
    Zheng X, Alsop DC, Schlaug G. Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. Neuroimage [Internet]. 2011 [cited 2019 Feb 14];58:26–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21703350.
  4. 4.
    Polanía R, Paulus W, Antal A, Nitsche MA. Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study. Neuroimage [Internet]. 2011 [cited 2019 Feb 14];54:2287–2296. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1053811910012875.
  5. 5.
    Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol [Internet] 2016 [cited 2018 Nov 10];127:1031–1048. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26652115.
  6. 6.
    Moffa AH, Brunoni AR, Fregni F, Palm U, Padberg F, Blumberger DM, et al. Safety and acceptability of transcranial direct current stimulation for the acute treatment of major depressive episodes: Analysis of individual patient data. J Affect Disord [Internet]. 2017 [cited 2018 Nov 10];221:1–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28623732.
  7. 7.
    Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul [Internet] 2016 [cited 2018 Nov 10];9:641–661. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27372845.
  8. 8.
    Fertonani A, Ferrari C, Miniussi C. What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clin Neurophysiol [Internet]. 2015 [cited 2018 Nov 10];126:2181–2188. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25922128.
  9. 9.
    Kaski D, Dominguez R, Allum J, Islam A, Bronstein A. Combining physical training with transcranial direct current stimulation to improve gait in Parkinson’s disease: a pilot randomized controlled study. Clin Rehabil [Internet]. 2014 [cited 2018 Nov 10];28:1115–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24849794.
  10. 10.
    Agarwal S, Pawlak N, Cucca A, Sharma K, Dobbs B, Shaw M, et al. Remotely-supervised transcranial direct current stimulation paired with cognitive training in Parkinson’s disease: An open-label study. J Clin Neurosci [Internet]. 2018 [cited 2018 Nov 10];57:51–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30193898.

via Introducing the thematic series on transcranial direct current stimulation (tDCS) for motor rehabilitation: on the way to optimal clinical use | SpringerLink

, , ,

Leave a comment

[Abstract] Vision-Based Serious Games and Virtual Reality Systems for Motor Rehabilitation: A Review Geared Toward a Research Methodology

ABSTRACT

Background

Nowadays, information technologies are being widely adopted to promote healthcare and rehabilitation. Owing to their affordability and use of hand-free controllers, vision-based systems have gradually been integrated into motor rehabilitation programs and have greatly drawn the interest of healthcare practitioners and the research community. Many studies have illustrated the effectiveness of these systems in rehabilitation. However, the report and design aspects of the reported clinical trials were disregarded.

Objective

In this paper, we present a systematic literature review of the use of vision-based serious games and virtual reality systems in motor rehabilitation programs. We aim to propose a research methodology that engineers can use to improve the designing and reporting processes of their clinical trials.

Methods

We conducted a review of published studies that entail clinical experiments. Searches were performed using Web of Science and Medline (PubMed) electronic databases, and selected studies were assessed using the Downs and Black Checklist and then analyzed according to specific research questions.

Results

We identified 86 studies and our findings indicate that the number of studies in this field is increasing, with Korea and USA in the lead. We found that Kinect, EyeToy system, and GestureTek IREX are the most commonly used technologies in studying the effects of vision-based serious games and virtual reality systems on rehabilitation. Findings also suggest that cerebral palsy and stroke patients are the main target groups, with a particular interest on the elderly patients in this target population. The findings indicate that most of the studies focused on postural control and upper extremity exercises and used different measurements during assessment.

Conclusions

Although the research community’s interest in this area is growing, many clinical trials lack sufficient clarity in many aspects and are not standardized. Some recommendations have been made throughout the article.

via Vision-Based Serious Games and Virtual Reality Systems for Motor Rehabilitation: A Review Geared Toward a Research Methodology – ScienceDirect

, , , , , , , , ,

Leave a comment

[WEB SITE] tDCS application for motor rehabilitation

Neuer Inhalt

An increasing number of studies highlight the potential application of transcranial direct current stimulation (tDCS) for motor rehabilitation in neurological diseases as well as in healthy aging. tDCS is a technique where a constant weak electric current is passed through scalp electrodes and has been shown to modulate excitability in both cortical and subcortical brain areas. Although the results of tDCS interventions for motor rehabilitation are still preliminary, they encourage further research to better understand its therapeutic potential and to inform optimal clinical use.

This collection of articles aims to present the most recent advances in tDCS for motor rehabilitation, addressing topics such as theoretical, methodological, and practical approaches to be considered when designing tDCS-based rehabilitation. Submissions of both experimental and review studies is encouraged.

This collection of articles has not been sponsored and articles have undergone the journal’s standard peer-review process overseen by the Editor-in-Chief and Associate Editors. The Editor-in-Chief and Associate Editors declare no competing interests.

  1. Content Type:Review

    Transcranial direct current stimulation for the treatment of motor impairment following traumatic brain injury

    After traumatic brain injury (TBI), motor impairment is less common than neurocognitive or behavioral problems. However, about 30% of TBI survivors have reported motor deficits limiting the activities of daily…

    Authors:Won-Seok Kim, Kiwon Lee, Seonghoon Kim, Sungmin Cho and Nam-Jong Paik

    Citation:Journal of NeuroEngineering and Rehabilitation 2019 16:14

    Published on: 25 January 2019

  2. Content Type:Review

    Transcranial direct current stimulation for promoting motor function in cerebral palsy: a review

    Transcranial direct current stimulation (tDCS) has the potential to improve motor function in a range of neurological conditions, including Cerebral Palsy (CP). Although there have been many studies assessing …

    Authors:Melanie K. Fleming, Tim Theologis, Rachel Buckingham and Heidi Johansen-Berg

    Citation:Journal of NeuroEngineering and Rehabilitation 2018 15:121

    Published on: 20 December 2018

  3. Content Type:Commentary

    Transcranial direct current stimulation (tDCS) for upper limb rehabilitation after stroke: future directions.

    Transcranial Direct Current Stimulation (tDCS) is a potentially useful tool to improve upper limb rehabilitation outcomes after stroke, although its effects in this regard have shown to be limited so far. Addi…

    Authors:Bernhard Elsner, Joachim Kugler and Jan Mehrholz

    Citation:Journal of NeuroEngineering and Rehabilitation 2018 15:106

    Published on: 15 November 2018

  4. Content Type:Research

    Home-based transcranial direct current stimulation plus tracking training therapy in people with stroke: an open-label feasibility study

    Transcranial direct current stimulation (tDCS) is an effective neuromodulation adjunct to repetitive motor training in promoting motor recovery post-stroke. Finger tracking training is motor training whereby p…

    Authors:Ann Van de Winckel, James R. Carey, Teresa A. Bisson, Elsa C. Hauschildt, Christopher D. Streib and William K. Durfee

    Citation:Journal of NeuroEngineering and Rehabilitation 2018 15:83

    Published on: 18 September 2018

via tDCS application for motor rehabilitation

, , ,

Leave a comment

[Conference Proceedings] Rhythmic Entrainment for Hand Rehabilitation Using the Leap Motion Controller – Full Text PDF

Abstract

Millions of individuals around the world suffer from motor impairment or disability, yet effective, engaging, and cost-effective therapeutic solutions are still lacking. In this work, we propose a game for hand rehabilitation that leverages the therapeutic aspects of music for motor rehabilitation, incorporates the power of gamification to improve adherence to medical treatment, and uses the versatility of devices such as the Leap Motion Controller to track users’ movements. The main characteristics of the game as well as future research directions are outlined.

Full Text PDF

via Rhythmic Entrainment for Hand Rehabilitation Using the Leap Motion Controller | Kat Agres

, , , , , , , , , ,

Leave a comment

[ARTICLE] Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke – A Pilot Study – Full Text

Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients’ capability to live independently. Virtual Reality (VR) based methods for stroke rehabilitation have mainly focused on motor rehabilitation but there is increasing interest toward the integration of cognitive training for providing more effective solutions. Here we investigate the feasibility for stroke recovery of a virtual cognitive-motor task, the Reh@Task, which combines adapted arm reaching, and attention and memory training. 24 participants in the chronic stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control). Both groups were enrolled in conventional occupational therapy, which mostly involves motor training. Additionally, the VR group underwent training with the Reh@Task and the control group performed time-matched conventional occupational therapy. Motor and cognitive competences were assessed at baseline, end of treatment (1 month) and at a 1-month follow-up through the Montreal Cognitive Assessment, Single Letter Cancelation, Digit Cancelation, Bells Test, Fugl-Meyer Assessment Test, Chedoke Arm and Hand Activity Inventory, Modified Ashworth Scale, and Barthel Index. Our results show that both groups improved in motor function over time, but the Reh@Task group displayed significantly higher between-group outcomes in the arm subpart of the Fugl-Meyer Assessment Test. Improvements in cognitive function were significant and similar in both groups. Overall, these results are supportive of the viability of VR tools that combine motor and cognitive training, such as the Reh@Task. Trial Registration:This trial was not registered because it is a small clinical study that addresses the feasibility of a prototype device.

Introduction

Stroke is one of the most common causes of adult disability and its prevalence is likely to increase with an aging population (WHO, 2015). It is estimated that 33–42% of stroke survivors require assistance for daily living activities 3–6 months post-stroke and 36% continue to be disabled 5 years later (Teasell et al., 2012). Loss of motor control and muscle strength of the upper extremity are the most prevalent deficits and are those that have a greater impact on functional capacity (Saposnik, 2016). Hence, its recovery is fundamental for minimizing long-term disability and improving quality of life. In fact, most rehabilitation interventions focus on facilitating recovery through motor learning principles (Kleim and Jones, 2008). However, learning engages also cognitive processes such as attention, memory and executive functioning, all of which may be affected by stroke (Cumming et al., 2013). Still, conventional rehabilitation methodologies are mostly motor focused, although 70% of patients experience some degree of cognitive decline (Gottesman and Hillis, 2010), which also affects their capability to live independently (Langhorne et al., 2011).[…]

 

Continue —> Frontiers | Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke – A Pilot Study | Psychology

FIGURE 1. Experimental setup and VR task. (A) The user works on a tabletop and arm movements are captured by augmented reality pattern tracking. These movements are mapped onto the movements of a virtual arm on the screen for the execution of the cancelation task. (B) The target stimuli can be letters, numbers, and symbols in black or different colors. The target stimuli in this picture are ordered by increasing complexity.

, , , , , , ,

Leave a comment

%d bloggers like this: