Archive for category Epilepsy

[Abstract] Epilepsy under the scope of ultra-high field MRI

Highlights

Ultra-high field magnetic resonance imaging can resolve sub-millimeter anatomy and quantify constitutive brain molecules.

Structural and susceptibility imaging can probe the brain for changes in the course of epilepsy.

Ex vivo high-resolution imaging can identify specific histological patterns related to demyelination and cell death.

Multimodal histological-MRI studies can help to confront preoperative diagnosis and postoperative outcome.

UHF-MRI offer potential biomarkers in epilepsy diagnosis and monitoring

Abstract

Ultra-high field magnetic resonance imaging (UHF-MRI) is capable of unraveling anatomical structures in a submillimeter range. In addition, its high resonance regime allows the quantification of constitutive molecules in a spatially sensitive manner, a crucial capability for determining the extent and localization of a probable epileptogenic region or the severity of the epilepsy. The main technical challenges for data acquisition under UHF are to produce a strong, homogeneous transverse field, while keeping the tissue power deposition within the safe regulatory guidelines. The nonuniformities caused by destructive and constructive interferences at UHFs required new technologies to accelerate and increase yield regarding time spent and quality achieved. Image quality is the paramount contribution of UHF high-resolution imaging, which is capable to disclose fine details of the hippocampal formation and its surroundings and their changes in the course of epilepsy. Other sequences like diffusion tensor imaging (DTI) and multiecho susceptibility imaging at 7 T in vivo can assist the creation of normative atlases of the hippocampal subfields or the reconstruction of the highly arborized cerebral blood vessels. In our review, we specify the impact of these advanced relevant techniques onto the study of epilepsy. In this context, we focused onto high field high-resolution scanners and clinically-enriched decision-making. Studies on focal dysplasias correlating ex vivo high-resolution imaging with specific histological and ultrastructural patterns showed that white matter hyperintensities were related to a demyelination process and other alterations. Preliminary results correlating thick serial sections through bioptic epileptogenic tissue could extend the strategy to localize degenerated tissue sectors, correlate nature and extent of tissue loss with preoperative diagnosis and postoperative outcome. Finally, this protocol will provide the neurosurgeon with a detailed depiction of the removed pathologic tissue and possible adverse effects by the pathologic tissue left in situ.

This article is part of the special issue “NEWroscience 2018”

via Epilepsy under the scope of ultra-high field MRI – ScienceDirect

, , , ,

Leave a comment

[Abstract] The Role of EEG in the Erroneous Diagnosis of Epilepsy

Summary

Errors in diagnosis are relatively common in medicine and occur in all specialties. The consequences can be serious for both patients and physicians. Errors in neurology are often because of the overemphasis on “tests” over the clinical picture. The diagnosis of epilepsy in general is a clinical one and is typically based on history. Epilepsy is more commonly overdiagnosed than underdiagnosed. An erroneous diagnosis of epilepsy is often the result of weak history and an “abnormal” EEG. Twenty-five to 30% of patients previously diagnosed with epilepsy who did not respond to initial antiepileptic drug treatment do not have epilepsy. Most patients misdiagnosed with epilepsy turn out to have either psychogenic nonepileptic attacks or syncope. Reasons for reading a normal EEG as an abnormal one include over-reading normal variants or simple fluctuations of background rhythms. Reversing the diagnosis of epilepsy is challenging and requires reviewing the “abnormal” EEG, which can be difficult. The lack of mandatory training in neurology residency programs is one of the main reasons for normal EEGs being over-read as abnormal. Tests (including EEG) should not be overemphasized over clinical judgment. The diagnosis of epilepsy can be challenging, and some seizure types may be underdiagnosed. Frontal lobe hypermotor seizures may be misdiagnosed as psychogenic events. Focal unaware cognitive seizures in elderly maybe be blamed on dementia, and ictal or interictal psychosis in frontal and temporal lobe epilepsies may be mistaken for a primary psychiatric disorder.

via The Role of EEG in the Erroneous Diagnosis of Epilepsy : Journal of Clinical Neurophysiology

, , ,

Leave a comment

[ARTICLE] Predicting seizures in pregnant women with epilepsy: Development and external validation of a prognostic model – Full Text

Abstract

Background

Seizures are the main cause of maternal death in women with epilepsy, but there are no tools for predicting seizures in pregnancy. We set out to develop and validate a prognostic model, using information collected during the antenatal booking visit, to predict seizure risk at any time in pregnancy and until 6 weeks postpartum in women with epilepsy on antiepileptic drugs.

Methods and findings

We used datasets of a prospective cohort study (EMPiRE) of 527 pregnant women with epilepsy on medication recruited from 50 hospitals in the UK (4 November 2011–17 August 2014). The model development cohort comprised 399 women whose antiepileptic drug doses were adjusted based on clinical features only; the validation cohort comprised 128 women whose drug dose adjustments were informed by serum drug levels. The outcome was epileptic (non-eclamptic) seizure captured using diary records. We fitted the model using LASSO (least absolute shrinkage and selection operator) regression, and reported the performance using C-statistic (scale 0–1, values > 0.5 show discrimination) and calibration slope (scale 0–1, values near 1 show accuracy) with 95% confidence intervals (CIs). We determined the net benefit (a weighted sum of true positive and false positive classifications) of using the model, with various probability thresholds, to aid clinicians in making individualised decisions regarding, for example, referral to tertiary care, frequency and intensity of monitoring, and changes in antiepileptic medication. Seizures occurred in 183 women (46%, 183/399) in the model development cohort and in 57 women (45%, 57/128) in the validation cohort. The model included age at first seizure, baseline seizure classification, history of mental health disorder or learning difficulty, occurrence of tonic-clonic and non-tonic-clonic seizures in the 3 months before pregnancy, previous admission to hospital for seizures during pregnancy, and baseline dose of lamotrigine and levetiracetam. The C-statistic was 0.79 (95% CI 0.75, 0.84). On external validation, the model showed good performance (C-statistic 0.76, 95% CI 0.66, 0.85; calibration slope 0.93, 95% CI 0.44, 1.41) but with imprecise estimates. The EMPiRE model showed the highest net proportional benefit for predicted probability thresholds between 12% and 99%. Limitations of this study include the varied gestational ages of women at recruitment, retrospective patient recall of seizure history, potential variations in seizure classification, the small number of events in the validation cohort, and the clinical utility restricted to decision-making thresholds above 12%. The model findings may not be generalisable to low- and middle-income countries, or when information on all predictors is not available.

Conclusions

The EMPiRE model showed good performance in predicting the risk of seizures in pregnant women with epilepsy who are prescribed antiepileptic drugs. Integration of the tool within the antenatal booking visit, deployed as a simple nomogram, can help to optimise care in women with epilepsy.

Author summary

Why was this study done?

  • Pregnant women with epilepsy are at increased risk of death and complications from seizures; their high-risk status during pregnancy and after childbirth is often not recognised.
  • Knowledge of an individual’s risk of seizures could help healthcare professionals and pregnant women make decisions regarding management.
  • To our knowledge, there are currently no models to predict risk of seizures in pregnant women with epilepsy on medication.

What did the researchers do and find?

  • We developed the EMPiRE model to predict the risk of seizures in pregnancy and up to 6 weeks after delivery in women with epilepsy on medication whose drug doses were managed based on clinical findings; we validated the model in a separate group of women whose dose management was based on drug levels in the blood.
  • The model discriminated well between those with and without seizures, with good agreement between predicted and observed risks across both low- and high-risk women.
  • The model is clinically useful for decision-making where the threshold of choice for seizure risk is between 12% and 99%.
  • The model showed promising transportability to the validation cohort.

What do these findings mean?

  • The EMPiRE prediction model can be used by healthcare professionals to identify pregnant women at high risk of seizures and to plan early referral for specialist input; determine the need for close monitoring in pregnancy, labour, and after childbirth; and assess antiepileptic drug management.
  • The performance of the model is unlikely to vary with the antiepileptic drug dose management strategy.

 

Continue —> Predicting seizures in pregnant women with epilepsy: Development and external validation of a prognostic model

, , ,

Leave a comment

[Abstract + References] Epilepsy and Anticonvulsant Therapy in Brain Tumor Patients – Book Chapter

Book Chapter

Authors: Sylvia C. Kurz, David Schiff, Patrick Y. Wen

Abstract

Seizures are common in patients with brain tumors and may have a significant impact on quality of life. The actual seizure risk varies based on tumor histology and tumor location. Seizures are most common in patients with glioneuronal tumors and temporal, insular, or frontal lobe tumor location. Antiepileptic drug therapy is indicated in patients with a history of seizure, and the choice of symptomatic treatment should follow the principles of treatment for focal symptomatic epilepsy. In general, antiepileptic drugs that interact with the hepatic CYP450 co-enzymes should be avoided in brain tumor patients if possible due to potential drug-chemotherapy interactions. Levetiracetam represents the antiepileptic drug of choice in patients with brain tumors and has been demonstrated to be efficacious and is well tolerated in brain tumor patients. Lacosamide is an alternative anticonvulsant agent with increasing experience supporting its efficacy and favorable side effect profile.

References

  1. 1.
    Lote K, Stenwig AE, Skullerud K, Hirschberg H (1998) Prevalence and prognostic significance of epilepsy in patients with gliomas. Eur J Cancer 34:98–102PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Herman ST (2002) Epilepsy after brain insult: targeting epileptogenesis. Neurology 59:S21–S26PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    De Santis A, Villani R, Sinisi M, Stocchetti N, Perucca E (2002) Add-on phenytoin fails to prevent early seizures after surgery for supratentorial brain tumors: a randomized controlled study. Epilepsia 43:175–182PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Southwell DG, Garcia PA, Berger MS, Barbaro NM, Chang EF (2012) Long-term seizure control outcomes after resection of gangliogliomas. Neurosurgery 70:1406–1413; discussion 1413–1404PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Chang EF, Christie C, Sullivan JE et al (2010) Seizure control outcomes after resection of dysembryoplastic neuroepithelial tumor in 50 patients. J Neurosurg Pediatr 5:123–130PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Tomita T, Volk JM, Shen W, Pundy T (2016) Glioneuronal tumors of cerebral hemisphere in children: correlation of surgical resection with seizure outcomes and tumor recurrences. Childs Nerv Syst 32:1839–1848PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Pallud J, Audureau E, Blonski M et al (2014) Epileptic seizures in diffuse low-grade gliomas in adults. Brain 137:449–462PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Chang EF, Potts MB, Keles GE et al (2008) Seizure characteristics and control following resection in 332 patients with low-grade gliomas. J Neurosurg 108:227–235PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Moots PL, Maciunas RJ, Eisert DR, Parker RA, Laporte K, Abou-Khalil B (1995) The course of seizure disorders in patients with malignant gliomas. Arch Neurol 52:717–724PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Flanigan PM, Jahangiri A, Kuang R et al (2017) Improved survival with decreased wait time to surgery in glioblastoma patients presenting with seizure. Neurosurgery 81(5):824–833PubMedPubMedCentralGoogle Scholar
  11. 11.
    Toledo M, Sarria-Estrada S, Quintana M et al (2017) Epileptic features and survival in glioblastomas presenting with seizures. Epilepsy Res 130:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Englot DJ, Magill ST, Han SJ, Chang EF, Berger MS, McDermott MW (2016) Seizures in supratentorial meningioma: a systematic review and meta-analysis. J Neurosurg 124:1552–1561PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Lieu AS, Howng SL (2000) Intracranial meningiomas and epilepsy: incidence, prognosis and influencing factors. Epilepsy Res 38:45–52PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Oberndorfer S, Schmal T, Lahrmann H, Urbanits S, Lindner K, Grisold W (2002) [The frequency of seizures in patients with primary brain tumors or cerebral metastases. An evaluation from the Ludwig Boltzmann Institute of Neuro-Oncology and the Department of Neurology, Kaiser Franz Josef Hospital, Vienna]. Wien Klin Wochenschr 114:911–916Google Scholar
  15. 15.
    Wu A, Weingart JD, Gallia GL et al (2017) Risk factors for preoperative seizures and loss of seizure control in patients undergoing surgery for metastatic brain tumors. World Neurosurg 104:120–128PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lynam LM, Lyons MK, Drazkowski JF et al (2007) Frequency of seizures in patients with newly diagnosed brain tumors: a retrospective review. Clin Neurol Neurosurg 109:634–638PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    You G, Sha ZY, Yan W et al (2012) Seizure characteristics and outcomes in 508 Chinese adult patients undergoing primary resection of low-grade gliomas: a clinicopathological study. Neuro Oncol 14:230–241PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Lee JW, Wen PY, Hurwitz S et al (2010) Morphological characteristics of brain tumors causing seizures. Arch Neurol 67:336–342PubMedPubMedCentralGoogle Scholar
  19. 19.
    Englot DJ, Chang EF, Vecht CJ (2016) Epilepsy and brain tumors. Handb Clin Neurol 134:267–285PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Fish DR, Spencer SS (1995) Clinical correlations: MRI and EEG. Magn Reson Imaging 13:1113–1117PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Spencer S, Huh L (2008) Outcomes of epilepsy surgery in adults and children. Lancet Neurol 7:525–537PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Schaller B (2005) Influences of brain tumor-associated pH changes and hypoxia on epileptogenesis. Acta Neurol Scand 111:75–83PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Wolf HK, Roos D, Blumcke I, Pietsch T, Wiestler OD (1996) Perilesional neurochemical changes in focal epilepsies. Acta Neuropathol 91:376–384PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Beaumont A, Whittle IR (2000) The pathogenesis of tumour associated epilepsy. Acta Neurochir (Wien) 142:1–15CrossRefGoogle Scholar
  25. 25.
    Yuen TI, Morokoff AP, Bjorksten A et al (2012) Glutamate is associated with a higher risk of seizures in patients with gliomas. Neurology 79:883–889PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Rosati A, Poliani PL, Todeschini A et al (2013) Glutamine synthetase expression as a valuable marker of epilepsy and longer survival in newly diagnosed glioblastoma multiforme. Neuro Oncol 15:618–625PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Pallud J, Capelle L, Huberfeld G (2013) Tumoral epileptogenicity: how does it happen? Epilepsia 54(Suppl 9):30–34PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Aronica E, Yankaya B, Jansen GH et al (2001) Ionotropic and metabotropic glutamate receptor protein expression in glioneuronal tumours from patients with intractable epilepsy. Neuropathol Appl Neurobiol 27:223–237PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Bateman DE, Hardy JA, McDermott JR, Parker DS, Edwardson JA (1988) Amino acid neurotransmitter levels in gliomas and their relationship to the incidence of epilepsy. Neurol Res 10:112–114PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Chen H, Judkins J, Thomas C et al (2017) Mutant IDH1 and seizures in patients with glioma. Neurology 88:1805–1813PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Blumcke I, Luyken C, Urbach H, Schramm J, Wiestler OD (2004) An isomorphic subtype of long-term epilepsy-associated astrocytomas associated with benign prognosis. Acta Neuropathol 107:381–388PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Danfors T, Ribom D, Berntsson SG, Smits A (2009) Epileptic seizures and survival in early disease of grade 2 gliomas. Eur J Neurol 16:823–831PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Berendsen S, Varkila M, Kroonen J et al (2016) Prognostic relevance of epilepsy at presentation in glioblastoma patients. Neuro Oncol 18:700–706PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hartmann C, Hentschel B, Wick W et al (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120:707–718PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Buckner JC, Shaw EG, Pugh SL et al (2016) Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 374:1344–1355PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cairncross JG, Wang M, Jenkins RB et al (2014) Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol 32:783–790PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Stockhammer F, Misch M, Helms HJ et al (2012) IDH1/2 mutations in WHO grade II astrocytomas associated with localization and seizure as the initial symptom. Seizure 21:194–197PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Liubinas SV, D’Abaco GM, Moffat BM et al (2014) IDH1 mutation is associated with seizures and protoplasmic subtype in patients with low-grade gliomas. Epilepsia 55:1438–1443PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Neal A, Kwan P, O’Brien TJ, Buckland ME, Gonzales M, Morokoff A (2017) IDH1 and IDH2 mutations in postoperative diffuse glioma-associated epilepsy. Epilepsy Behav 78:30–36PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Chaichana KL, Parker SL, Olivi A, Quinones-Hinojosa A (2009) Long-term seizure outcomes in adult patients undergoing primary resection of malignant brain astrocytomas. Clinical article. J Neurosurg 111:282–292PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Sheth RD (2002) Adolescent issues in epilepsy. J Child Neurol 17(Suppl 2):2S23–22S27PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Klein M, Engelberts NH, van der Ploeg HM et al (2003) Epilepsy in low-grade gliomas: the impact on cognitive function and quality of life. Ann Neurol 54:514–520PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Taphoorn MJ, Klein M (2004) Cognitive deficits in adult patients with brain tumours. Lancet Neurol 3:159–168PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Batchelor TT, Byrne TN (2006) Supportive care of brain tumor patients. Hematol Oncol Clin North Am 20:1337–1361PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Auriel E, Landov H, Blatt I et al (2009) Quality of life in seizure-free patients with epilepsy on monotherapy. Epilepsy Behav 14:130–133PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Giulioni M, Galassi E, Zucchelli M, Volpi L (2005) Seizure outcome of lesionectomy in glioneuronal tumors associated with epilepsy in children. J Neurosurg 102:288–293PubMedGoogle Scholar
  48. 48.
    Giulioni M, Gardella E, Rubboli G et al (2006) Lesionectomy in epileptogenic gangliogliomas: seizure outcome and surgical results. J Clin Neurosci 13:529–535PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Giulioni M, Rubboli G, Marucci G et al (2009) Seizure outcome of epilepsy surgery in focal epilepsies associated with temporomesial glioneuronal tumors: lesionectomy compared with tailored resection. J Neurosurg 111:1275–1282PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bonney PA, Glenn CA, Ebeling PA et al (2015) Seizure freedom rates and prognostic indicators after resection of gangliogliomas: a review. World Neurosurg 84:1988–1996PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Bonney PA, Boettcher LB, Conner AK et al (2016) Review of seizure outcomes after surgical resection of dysembryoplastic neuroepithelial tumors. J Neurooncol 126:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Englot DJ, Han SJ, Berger MS, Barbaro NM, Chang EF (2012) Extent of surgical resection predicts seizure freedom in low-grade temporal lobe brain tumors. Neurosurgery 70:921–928; discussion 928PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Bonney PA, Boettcher LB, Burks JD et al (2017) Rates of seizure freedom after surgical resection of diffuse low-grade gliomas. World Neurosurg 106:750–756PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Chaichana KL, Pendleton C, Zaidi H et al (2013) Seizure control for patients undergoing meningioma surgery. World Neurosurg 79:515–524PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Chen WC, Magill ST, Englot DJ et al (2017) Factors associated with pre- and postoperative seizures in 1033 patients undergoing supratentorial meningioma resection. Neurosurgery 81(2):297–306PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ruda R, Magliola U, Bertero L et al (2013) Seizure control following radiotherapy in patients with diffuse gliomas: a retrospective study. Neuro Oncol 15:1739–1749PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Rogers LR, Morris HH, Lupica K (1993) Effect of cranial irradiation on seizure frequency in adults with low-grade astrocytoma and medically intractable epilepsy. Neurology 43:1599–1601PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Chalifoux R, Elisevich K (1996) Effect of ionizing radiation on partial seizures attributable to malignant cerebral tumors. Stereotact Funct Neurosurg 67:169–182PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Taphoorn MJ, Stupp R, Coens C et al (2005) Health-related quality of life in patients with glioblastoma: a randomised controlled trial. Lancet Oncol 6:937–944PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Koekkoek JA, Kerkhof M, Dirven L, Heimans JJ, Reijneveld JC, Taphoorn MJ (2015) Seizure outcome after radiotherapy and chemotherapy in low-grade glioma patients: a systematic review. Neuro Oncol 17:924–934PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kaloshi G, Benouaich-Amiel A, Diakite F et al (2007) Temozolomide for low-grade gliomas: predictive impact of 1p/19q loss on response and outcome. Neurology 68:1831–1836PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Pace A, Vidiri A, Galie E et al (2003) Temozolomide chemotherapy for progressive low-grade glioma: clinical benefits and radiological response. Ann Oncol 14:1722–1726PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Koekkoek JA, Dirven L, Heimans JJ et al (2015) Seizure reduction in a low-grade glioma: more than a beneficial side effect of temozolomide. J Neurol Neurosurg Psychiatry 86:366–373PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Soffietti R, Ruda R, Bradac GB, Schiffer D (1998) PCV chemotherapy for recurrent oligodendrogliomas and oligoastrocytomas. Neurosurgery 43:1066–1073PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Lebrun C, Fontaine D, Bourg V et al (2007) Treatment of newly diagnosed symptomatic pure low-grade oligodendrogliomas with PCV chemotherapy. Eur J Neurol 14:391–398PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Frenay MP, Fontaine D, Vandenbos F, Lebrun C (2005) First-line nitrosourea-based chemotherapy in symptomatic non-resectable supratentorial pure low-grade astrocytomas. Eur J Neurol 12:685–690PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Wu AS, Trinh VT, Suki D et al (2013) A prospective randomized trial of perioperative seizure prophylaxis in patients with intraparenchymal brain tumors. J Neurosurg 118:873–883PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Franceschetti S, Binelli S, Casazza M et al (1990) Influence of surgery and antiepileptic drugs on seizures symptomatic of cerebral tumours. Acta Neurochir (Wein) 103:47–51CrossRefGoogle Scholar
  69. 69.
    Forsyth PA, Weaver S, Fulton D et al (2003) Prophylactic anticonvulsants in patients with brain tumour. Can J Neurol Sci 30:106–112PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Dewan MC, White-Dzuro GA, Brinson PR et al (2017) The influence of perioperative seizure prophylaxis on seizure rate and hospital quality metrics following glioma resection. Neurosurgery 80:563–570PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    North JB, Penhall RK, Hanieh A, Frewin DB, Taylor WB (1983) Phenytoin and postoperative epilepsy. A double-blind study. J Neurosurg 58:672–677PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Chang SM, Parney IF, Huang W et al (2005) Patterns of care for adults with newly diagnosed malignant glioma. JAMA 293:557–564PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Dewan MC, Thompson RC, Kalkanis SN, Barker FG II, Hadjipanayis CG (2017) Prophylactic antiepileptic drug administration following brain tumor resection: results of a recent AANS/CNS section on tumors survey. J Neurosurg 126:1772–1778PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Sirven JI, Wingerchuk DM, Drazkowski JF, Lyons MK, Zimmerman RS (2004) Seizure prophylaxis in patients with brain tumors: a meta-analysis. Mayo Clin Proc 79:1489–1494PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Pulman J, Greenhalgh J, Marson AG (2013) Antiepileptic drugs as prophylaxis for post-craniotomy seizures. Cochrane Database Syst Rev 2:CD007286Google Scholar
  76. 76.
    Kuijlen JM, Teernstra OP, Kessels AG, Herpers MJ, Beuls EA (1996) Effectiveness of antiepileptic prophylaxis used with supratentorial craniotomies: a meta-analysis. Seizure 5:291–298PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Weston J, Greenhalgh J, Marson AG (2015) Antiepileptic drugs as prophylaxis for post-craniotomy seizures. Cochrane Database Syst Rev 3:CD007286Google Scholar
  78. 78.
    Glantz MJ, Cole BF, Forsyth PA et al (2000) Practice parameter: anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 54:1886–1893PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Soffietti R, Baumert BG, Bello L et al (2010) Guidelines on management of low-grade gliomas: report of an EFNS-EANO task force. Eur J Neurol 17:1124–1133PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Glauser T, Ben-Menachem E, Bourgeois B et al (2013) Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia 54:551–563PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Crepeau AZ, Sirven JI (2017) Management of adult onset seizures. Mayo Clin Proc 92:306–318PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Gilbert MR, Supko JG, Batchelor T et al (2003) Phase I clinical and pharmacokinetic study of irinotecan in adults with recurrent malignant glioma. Clin Cancer Res 9:2940–2949PubMedPubMedCentralGoogle Scholar
  83. 83.
    Maschio M, Albani F, Baruzzi A et al (2006) Levetiracetam therapy in patients with brain tumour and epilepsy. J Neurooncol 80:97–100PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Vecht CJ, Wagner GL, Wilms EB (2003) Interactions between antiepileptic and chemotherapeutic drugs. Lancet Neurol 2:404–409PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Oberndorfer S, Piribauer M, Marosi C, Lahrmann H, Hitzenberger P, Grisold W (2005) P450 enzyme inducing and non-enzyme inducing antiepileptics in glioblastoma patients treated with standard chemotherapy. J Neurooncol 72:255–260PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Neef C, de Voogd-van der Straaten I (1988) An interaction between cytostatic and anticonvulsant drugs. Clin Pharmacol Ther 43:372–375PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Ruegg S (2002) Dexamethasone/phenytoin interactions: neurooncological concerns. Swiss Med Wkly 132:425–426PubMedPubMedCentralGoogle Scholar
  88. 88.
    Lackner TE (1991) Interaction of dexamethasone with phenytoin. Pharmacotherapy 11:344–347PubMedPubMedCentralGoogle Scholar
  89. 89.
    Pursche S, Schleyer E, von Bonin M et al (2008) Influence of enzyme-inducing antiepileptic drugs on trough level of imatinib in glioblastoma patients. Curr Clin Pharmacol 3:198–203PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Raymond E, Brandes AA, Dittrich C et al (2008) Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J Clin Oncol 26:4659–4665PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wen PY, Yung WK, Lamborn KR et al (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin Cancer Res 12:4899–4907PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Maschio M, Dinapoli L, Sperati F et al (2011) Levetiracetam monotherapy in patients with brain tumor-related epilepsy: seizure control, safety, and quality of life. J Neurooncol 104:205–214PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Usery JB, Michael LM II, Sills AK, Finch CK (2010) A prospective evaluation and literature review of levetiracetam use in patients with brain tumors and seizures. J Neurooncol 99:251–260PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Kerkhof M, Dielemans JC, van Breemen MS et al (2013) Effect of valproic acid on seizure control and on survival in patients with glioblastoma multiforme. Neuro Oncol 15:961–967PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Maschio M, Zarabla A, Maialetti A et al (2017) Quality of life, mood and seizure control in patients with brain tumor related epilepsy treated with lacosamide as add-on therapy: a prospective explorative study with a historical control group. Epilepsy Behav 73:83–89PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Maschio M, Dinapoli L, Mingoia M et al (2011) Lacosamide as add-on in brain tumor-related epilepsy: preliminary report on efficacy and tolerability. J Neurol 258:2100–2104PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Brodie MJ, Whitesides J, Schiemann J, D’Souza J, Johnson ME (2016) Tolerability, safety, and efficacy of adjunctive brivaracetam for focal seizures in older patients: a pooled analysis from three phase III studies. Epilepsy Res 127:114–118PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Moseley BD, Sperling MR, Asadi-Pooya AA et al (2016) Efficacy, safety, and tolerability of adjunctive brivaracetam for secondarily generalized tonic-clonic seizures: pooled results from three phase III studies. Epilepsy Res 127:179–185PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Elger C, Koepp M, Trinka E et al (2017) Pooled efficacy and safety of eslicarbazepine acetate as add-on treatment in patients with focal-onset seizures: data from four double-blind placebo-controlled pivotal phase III clinical studies. CNS Neurosci Ther 23:961–972PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Plosker GL (2012) Perampanel: as adjunctive therapy in patients with partial-onset seizures. CNS Drugs 26:1085–1096PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    French JA, Krauss GL, Biton V et al (2012) Adjunctive perampanel for refractory partial-onset seizures: randomized phase III study 304. Neurology 79:589–596PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    French JA, Krauss GL, Steinhoff BJ et al (2013) Evaluation of adjunctive perampanel in patients with refractory partial-onset seizures: results of randomized global phase III study 305. Epilepsia 54:117–125PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Krauss GL, Serratosa JM, Villanueva V et al (2012) Randomized phase III study 306: adjunctive perampanel for refractory partial-onset seizures. Neurology 78:1408–1415PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Van Nifterik KA, Van den Berg J, Slotman BJ, Lafleur MV, Sminia P, Stalpers LJ (2012) Valproic acid sensitizes human glioma cells for temozolomide and gamma-radiation. J Neurooncol 107:61–67PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Hosein AN, Lim YC, Day B et al (2015) The effect of valproic acid in combination with irradiation and temozolomide on primary human glioblastoma cells. J Neurooncol 122:263–271PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Chie EK, Shin JH, Kim JH, Kim HJ, Kim IA, Kim IH (2015) In vitro and in vivo radiosensitizing effect of valproic acid on fractionated irradiation. Cancer Res Treat 47:527–533PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Weller M, Gorlia T, Cairncross JG et al (2011) Prolonged survival with valproic acid use in the EORTC/NCIC temozolomide trial for glioblastoma. Neurology 77:1156–1164PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Barker CA, Bishop AJ, Chang M, Beal K, Chan TA (2013) Valproic acid use during radiation therapy for glioblastoma associated with improved survival. Int J Radiat Oncol Biol Phys 86:504–509PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Happold C, Gorlia T, Chinot O et al (2016) Does valproic acid or levetiracetam improve survival in glioblastoma? A pooled analysis of prospective clinical trials in newly diagnosed glioblastoma. J Clin Oncol 34:731–739PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bobustuc GC, Baker CH, Limaye A et al (2010) Levetiracetam enhances p53-mediated MGMT inhibition and sensitizes glioblastoma cells to temozolomide. Neuro Oncol 12:917–927PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Kim YH, Kim T, Joo JD et al (2015) Survival benefit of levetiracetam in patients treated with concomitant chemoradiotherapy and adjuvant chemotherapy with temozolomide for glioblastoma multiforme. Cancer 121:2926–2932PubMedCrossRefPubMedCentralGoogle Scholar

via Epilepsy and Anticonvulsant Therapy in Brain Tumor Patients | SpringerLink

, , , , , , , ,

Leave a comment

[NEWS] Predicting seizures before they happen

Date: June 10, 2019

Source: RCSI

Summary: A new study has found a pattern of molecules that appear in the blood before a seizure happens. This discovery may lead to the development of an early warning system, which would enable people with epilepsy to know when they are at risk of having a seizure.

FULL STORY

A new study has found a pattern of molecules that appear in the blood before a seizure happens. This discovery may lead to the development of an early warning system, which would enable people with epilepsy to know when they are at risk of having a seizure.

Researchers at FutureNeuro, the SFI Research Centre for Chronic and Rare Neurological Diseases, hosted at RCSI (Royal College of Surgeons in Ireland) led the study, which is published in the current edition of the Journal of Clinical Investigation (JCI).

FutureNeuro and RCSI researchers have discovered molecules in the blood that are higher in people with epilepsy before a seizure happens. These molecules are fragments of transfer RNAs (tRNAs), a chemical closely related to DNA that performs an important role in building proteins within the cell. When cells are stressed, tRNAs are cut into fragments. Higher levels of the fragments in the blood could reflect that brain cells are under stress in the build up to a seizure event.

Using blood samples from people with epilepsy at the Epilepsy Monitoring Unit in Beaumont Hospital, Dublin and in a similar specialist centre in Marburg, Germany, the group found that fragment levels of three tRNAs “spike” in the blood many hours before a seizure.

“People with epilepsy often report that one of the most difficult aspects of living with the disease is never knowing when a seizure will occur,” said Dr Marion Hogg, FutureNeuro investigator, Honorary Lecturer at RCSI, and the study’s lead author.

“The results of this study are very promising. We hope that our tRNA research will be a key first step toward developing an early warning system.”

Approximately 40,000 people in Ireland have epilepsy and one third of those do not respond to current treatments, meaning they continue to experience seizures. The World Health Organisation estimates that more than 50 million people worldwide have epilepsy.

“New technologies to remove the unpredictability of uncontrolled seizures for people with epilepsy are a very real possibility,” said Professor David Henshall, Director of FutureNeuro and Professor of Molecular Physiology and Neuroscience at RCSI who was a co-author on the paper.

“Building on this research we in FutureNeuro hope to develop a test prototype, similar to a blood sugar monitor that can potentially predict when a seizure might occur.”

Story Source:

Materials provided by RCSINote: Content may be edited for style and length.


Journal Reference:

  1. Marion C. Hogg, Rana Raoof, Hany El Naggar, Naser Monsefi, Norman Delanty, Donncha F. O’Brien, Sebastian Bauer, Felix Rosenow, David C. Henshall, Jochen H.M. Prehn. Elevation of plasma tRNA fragments precedes seizures in human epilepsyJournal of Clinical Investigation, 2019; DOI: 10.1172/JCI126346

via Predicting seizures before they happen — ScienceDaily

, , , , , ,

Leave a comment

[Book Chapter] Pregnancy and Epilepsy

VD Kapadia – Medical Disorders in Pregnancy

Epilepsy is the most common neurological disorder, with 50 million people affected by it worldwide. Nearly 50% of these affected individuals are women. The burden of  epilepsy in women in India is to the tune of 2.73 million, with 52% of them being in …

Continue —> Pregnancy and Epilepsy [PDF]

 

,

Leave a comment

[ARTICLE] EFFICACY OF SHORT TERM VIDEO EEG IN DETECTING PSYCHOGENIC NON-EPILEPTIC SEIZURES – Full Text PDF

Abstract

Background: Short term video Electroencephalography (SVEEG) is a non-invasive diagnostic procedure typically last for about 1-5 hours. SVEEG can be utilize to differentiate epileptic from Psychogenic Non-epileptic Seizures (PNES).

Objective: To assess the yield of short term video EEG in detecting PNES.

Methods:Retrospective analysis of short term video EEG in a tertiary level hospital. Patient history, provisional diagnosis, previous EEG and imaging reports were tabulated. Various short term video EEG findings like epileptiform abnormalities, PNES and other non-epileptic events were analyzed in detail. According to the provisional diagnosis formed two groups; Suspecting NEE and suspecting seizure disorders. Change in the provisional diagnosis after SVEEGs were also studied.

Results: A total of 417 SVEEGs analyzed: 34(8.2%) patients developed events to suggest PNES, 16(3.8%) patients had other non-epileptic events; 96(23%) showed interictal epileptiform discharges, 15 (3.6%) showed seizures and 90(21.6%) patients showed non-specific EEG abnormalities. Around 60% SVEEGs were conclusive.

Conclusion: A diagnostic event was recorded during SVEEG in majority of patients in the PNES group. SVEEG is a cost effective and useful diagnostic procedure; especially to identify non-epileptic events.

Download Full Text PDF

, , , ,

Leave a comment

[Abstract] Pharmacology and epilepsy : update on the new antiepileptic drugs

New antiepileptic drugs are regularly approved for treatment and offer large therapeutic opportunities. Efficacy of these drugs is relatively similar on-label with different mechanisms to be combined for a synergic effect. Treatments such as cannabidiol have benefitted from large media coverage despite limited clinical evidence so far. The objective of antiepileptic drugs is to stop the recurrence of epileptic seizures with as few adverse events as possible. When confronted to a difficult-to-treat epilepsy, referral to a specialised centre is strongly advised. The aim is to confirm that the diagnosis is correct, that the treatment is well adapted (indication, pharmacokinetic and compliance) and to evaluate the indication for non-pharmacological treatments such as epilepsy surgery.

 

via [Pharmacology and epilepsy : update on the new antiepileptic drugs]. – Abstract – Europe PMC

, , ,

Leave a comment

[Abstract] Driving rules : first seizure and epilepsy.

For patients with epilepsy, the occurrence of a traffic accident due to an epileptic seizure is a major problem. In order to reduce the risk of an accident, the Road Traffic Commission of the Swiss League against Epilepsy has issued guidelines concerning the driving ability of a vehicle in case of epilepsy. These directives were last modified in 2015. According to these directives, the waiting period differs according to the category of the vehicle concerned and the origin of the event (first crisis provoked or not provoked). At the occurrence of the first episode, an exhaustive evaluation is mandatory in order to avoid unnecessarily prolonged restrictions. These directives are available on : http://www.epi.ch/wp-content/uploads/flyer-Epilepsie_fuehrerschein-licence-conduire-2016.pdf

 

via [Driving rules : first seizure and epilepsy]. – Abstract – Europe PMC

, , , ,

Leave a comment

[BOOK] The Comorbidities of Epilepsy – Google Books

The Comorbidities of Epilepsy

Front Cover
Marco Mula
Academic PressApr 20, 2019 – Medical – 413 pages

Epilepsy is one of most frequent neurological disorders affecting about 50 million people worldwide and 50% of them have at least another medical problem in comorbidity; sometimes this is a the cause of the epilepsy itself or it is due to shared neurobiological links between epilepsy and other medical conditions; other times it is a long-term consequence of the antiepileptic drug treatment.

The Comorbidities of Epilepsy offers an up-to-date, comprehensive overview of all comorbidities of epilepsy (somatic, neurological and behavioral), by international authorities in the field of clinical epileptology, with an emphasis on epidemiology, pathophysiology, diagnosis and management. This book includes also a critical appraisal of the methodological aspects and limitations of current research on this field. Pharmacological issues in the management of comorbidities are discussed, providing information on drug dosages, side effects and interactions, in order to enable the reader to manage these patients safely.

The Comorbidities of Epilepsy is aimed at all health professionals dealing with people with epilepsy including neurologists, epileptologists, psychiatrists, clinical psychologists, epilepsy specialist nurses and clinical researchers.

  • Provides a comprehensive overview of somatic, neurological and behavioral co-morbidities of epilepsy
  • Discusses up-to-date management of comorbidities of epilepsy
  • Written by a group of international experts in the field

 

via The Comorbidities of Epilepsy – Google Books

, , , , ,

Leave a comment

%d bloggers like this: