[Abstract + References] Preliminary Design of Soft Exo-Suit for Arm Rehabilitation – Conference paper

Abstract

Every year, millions of people experience a stroke but only a few of them fully recover. Recovery requires a working staff, which is time consuming and inefficient. Therefore, over the past few years rehabilitation robots like Exoskeletons have been used in the recuperation process for patients. In this paper we have designed an Exosuit which takes into considerations of the rigid Exo-Skeleton and its limitations for patients suffering from loss of function of the arm. This paper concentrates on enabling a stroke affected person to perform flexion-extension at elbow joint. Validation of the developed model on general population is still needed.

References

  1. 1.
    Mathers, C., Fat, D.M., Boerma, J.T., World Health Organization: The global burden of disease: 2004 update. World Health Organization (2008)Google Scholar
  2. 2.
    McPhee, S.J., Hammer, G.D.: Nervous system disorders. Pathophysiol. Dis. Introd. Clin. Med. 59, 177–180 (2010)Google Scholar
  3. 3.
    Committee on Nervous System Disorders in Developing Countries the Board on Global Health and the Institute of Medicine. Neurological, Psychiatric, and Develop-Mental Disorders. National Academies Press, Washington, DC (2001)Google Scholar
  4. 4.
    Zhang, Y., Arakalian, V.: Design of a passive robotic ExoSuit for carrying heavy loads. In: Proceedings of the IEEE-RAS, 18th Annual International Conference on Humanoid Robots, Lyon, France (2018)Google Scholar
  5. 5.
    Gross, R., et al.: Modulation of lower limb muscle activity induced by curved walking in typically developing children. Gait Posture 50, 34–41 (2016)CrossRefGoogle Scholar
  6. 6.
    Viteckova, S., Kutilek, P., Jirina, M.: Wearable lower limb robotics: a review. Biocybern. Biomed. Eng. 33(2), 96–105 (2013)CrossRefGoogle Scholar
  7. 7.
    Rupala, B.S., Singla, A., Virk, G.S.: Lower limb exoskeletons: a brief review. In: Proceedings of the Conference on Mechanical Engineering and Technology COMET, Varanasi, Utter Pradesh, pp. 18–24 (2016)Google Scholar
  8. 8.
    Collo, A., Bonnet, V., Venture, G.: A quasi-passive lower limb exoskeleton for partial body weight support. In: Proceedings of the 6th IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), UTown, Singapore, pp. 643–648 (2016)Google Scholar
  9. 9.
    Stewart, A.M., Pretty, C.G., Adams, M., Chen, X.: Review of upper limb hybrid exoskeletons. IFAC 50(1), 15169–15178 (2017)Google Scholar
  10. 10.
    Serea, F., Poboroniuc, M., Hartopanu, S., Olaru, R.: Exoskeleton for upper arm rehabilitation for disabled patients. In: International Conference and Exposition on Electrical and Power Engineering, (EPE 2014), pp. 153–157 (2014)Google Scholar
  11. 11.
    Perry, J.C., Rosen, J., Burns, S.: Upper-limb powered exoskeleton design. IEEE/ASM Trans. Mechatron. 12(4), 408–417 (2007)CrossRefGoogle Scholar
  12. 12.
    Li, B., Yuan, B., Chen, J., Zuo, Y., Yang, Y.: Mechanical design and human-machine coupling dynamic analysis of a lower extremity exoskeleton. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10462, pp. 593–604. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65289-4_56CrossRefGoogle Scholar
  13. 13.
    Jarrasé, N.: Contributions à l’explotation d’exosquelettes actifs pour la rééducation neuromotrice. Ph.D. thesis of Pierre et Marie Curie University (UPMC) (2010)Google Scholar
  14. 14.
    Gunn, M., Shank, T.M., Epps, M., Hossain, J., Rahman, T.: User evaluation of a dynamic arm orthosis for people with neuromuscular disorders. IEEE Trans. Neural Syst. Rehabil. Eng. 24(12), 1277–1283 (2016)CrossRefGoogle Scholar
  15. 15.
    Seth, D., Chablat, D., Bennis, F., Sakka, S., Jubeau, M., Nordez, A.: New dynamic muscle fatigue model to limit musculo-skeletal disorder. In: Virtual Reality International Conference 2016, Article no. 26 (2016)Google Scholar
  16. 16.
    Seth, D., Chablat, D., Sakka, S., Bennis, F.: Experimental validation of a new dynamic muscle fatigue model. In: Duffy, V.G.G. (ed.) DHM 2016. LNCS, vol. 9745, pp. 54–65. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40247-5_6CrossRefGoogle Scholar
  17. 17.
    Seth, D., Chablat, D., Bennis, F., Sakka, S., Jubeau, M., Nordez, A.: Validation of a new dynamic muscle fatigue model and DMET analysis. Int. J. Virtual Real. 2016(16), 2016 (2016)Google Scholar
  18. 18.
    Talaty, M., Esquenazi, A., Briceno, J.E.: Differentiating ability in users of the ReWalk(TM) powered exoskeleton: an analysis of walking kinematics. In: Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), Seattle, USA, pp. 1–5 (2013).  https://doi.org/10.1109/icorr.2013.6650469
  19. 19.
    Aoustin, Y.: Walking gait of a biped with a wearable walking assist device. Int. J. of Humanoid Robotics 12(2), 1 550 018-1–11 550 018-20 (2015).  https://doi.org/10.1142/s0219843615500188CrossRefGoogle Scholar
  20. 20.
    Ktistakis, I.P., Bourbakis, N.G.: A survey on robotic wheelchairs mounted with robotic arms. In: National Aerospace and Electronics Conference (NAECON), pp. 258–262 (2015)Google Scholar
  21. 21.
    Aoustin, Y., Formalskii, A.: Walking of biped with passive exoskeleton: evaluation of energy consumption. Multibody Syst. Dyn. 43, 71–96 (2017).  https://doi.org/10.1007/s11044-017-9602-7MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Park, W., Jeong, W., Kwon, G., Kim, Y.H., Kim, L.: A rehabilitation device to improve the hand grasp function of stroke patients using a patient-driven approach. In: IEEE International Conference on Rehabilitation Robotics, Seattle Washington, USA (2013)Google Scholar
  23. 23.
    Akhmadeev, K., Rampone, E., Yu, T., Aoustin, Y., Le Carpentier, E.: A testing system for a real-time gesture classification using surface EMG. In: Proceedings of the 20th IFAC World Congress, Toulouse France (2017)Google Scholar
  24. 24.
    Schwartz, C., Lempereur, M., Burdin, V., Jacq, J.J., Rémy-Néris, O.: Shoulder motion analysis using simultaneous skin shape registration. In: Proceedings of the 29th Annual International Conference of the IEEE EMBS, Lyon, France (2007)Google Scholar
  25. 25.
    National Stroke Association Brochure (2017)Google Scholar
  26. 26.
    Nef, T., Guidali, M., Riener, R.: ARMin III – arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bionics Biomech. 6(2), 127–142 (2009)CrossRefGoogle Scholar
  27. 27.
    Krebs, H.I., Hogan, N., Volpe, B.T., Aisen, M.L., Edelstein, L., Diels, C.: Overview of clinical trials with MITMANUS: a robot-aided neuro-rehabilitation facility. Technol. Health Care 7(6), 419–423 (1999)Google Scholar
  28. 28.
    Ali, H.: Bionic exoskeleton: history, development and the future. IOSR J. Mechan. Civ. Eng. 58–62 (2014)Google Scholar
  29. 29.
    Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. In: IEEE 2007 Rehabilitation Robotics, pp. 401–407 (2007)Google Scholar
  30. 30.
    Fitle, K.D., Pehlivan, A.U., O’Malley, M.K.: A robotic exoskeleton for re-habilitation and assessment of the upper limb following incomplete spinal cord in-jury. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4960–4966 (2015)Google Scholar
  31. 31.
  32. 32.
  33. 33.
    Plagenhoef, S., et al.: Anatomical data for analyzing human motion (1983)Google Scholar

via Preliminary Design of Soft Exo-Suit for Arm Rehabilitation | SpringerLink

, , , , , , , , ,

  1. Leave a comment

Leave a comment