Posts Tagged Bimanual coordination

[ARTICLE] Bimanual motor skill learning with robotics in chronic stroke: comparison between minimally impaired and moderately impaired patients, and healthy individuals – Full Text

Abstract

Background

Most activities of daily life (ADL) require cooperative bimanual movements. A unilateral stroke may severely impair bimanual ADL. How patients with stroke (re)learn to coordinate their upper limbs (ULs) is largely unknown. The objectives are to determine whether patients with chronic supratentorial stroke could achieve bimanual motor skill learning (bim-MSkL) and to compare bim-MSkL between patients and healthy individuals (HIs).

Methods

Twenty-four patients and ten HIs trained over 3 consecutive days on an asymmetrical bimanual coordination task (CIRCUIT) implemented as a serious game in the REAplan® robot. With a common cursor controlled by coordinated movements of the ULs through robotic handles, they performed as many laps as possible (speed constraint) on the CIRCUIT while keeping the cursor within the track (accuracy constraint). The primary outcome was a bimanual speed/accuracy trade-off (biSAT), we used a bimanual coordination factor (biCO) and bimanual forces (biFOP) for the secondary outcomes. Several clinical scales were used to evaluate motor and cognitive functions.

Results

Overall, the patients showed improvements on biSAT and biCO. Based on biSAT progression, the HI achieved a larger bim-MSkL than the patients with mild to moderate impairment (Fugl-Meyer Assessment Upper Extremity (FMA-UE): 28–55, n = 15) but not significantly different from those with minimal motor impairment (FMA-UE: 66, n = 9). There was a significant positive correlation between biSAT evolution and the FMA-UE and Stroke Impact Scale.

Conclusions

Both HI and patients with chronic stroke training on a robotic device achieved bim-MSkL, although the more impaired patients were less efficient. Bim-MSkL with REAplan® may be interesting for neurorehabilitation after stroke.

Background

Stroke is a major cause of long-term disability worldwide [12], and one of the most frequent impairments is hemiparesis, which is characterized by weakness, lack of control, increased muscle tone on the contralesional upper limb (UL) and lower limb or hemibody, and deteriorating independence in activities of daily life (ADL), especially walking, dressing or eating [3]. Critically, other impairments (e.g., somatosensory, visual, and cognitive), whether isolated or combined, also significantly deteriorate ADL. Most ADL require skilled bimanual coordination that can be impaired by a stroke, thus leading to a loss of independence that may in turn lead to a 50% reduction in quality of life [4]. Despite rehabilitative care provided during the acute phase of stroke, 30% of patients still suffer from participation restrictions after four years [5]. It has been suggested that neurorehabilitation should not focus exclusively on impairments of the paretic arm or hand and should instead consider more bimanual actions and activities [6,7,8]. After a unilateral stroke, impairments of the contralesional UL can deteriorate bimanual actions [9], thus supporting the importance of training both ULs to achieve better functional recovery in (bimanual) ADL [810]. Interestingly, during bilateral cooperative movements (e.g., opening a bottle), neural coupling from the ipsilesional to the contralesional (impaired) UL is preserved in most patients with stroke, suggesting the relevance of bilateral training that supports cooperative hand movements for ADL [11]. During bimanual training, various tasks can be utilized to promote intensive and repetitive coordinated movement of the ULs. A classification of bimanual tasks has been proposed for different bimanual actions. Grossly, two types of tasks can be distinguished: those with symmetrical movements that engage homologous muscles (e.g., picking up a box simultaneously with both hands) and those with asymmetrical movements that engage nonhomologous muscles nonsimultaneously (e.g., cutting a piece of steak). Similarly, two types of task goals can be distinguished: independent goals (e.g., one hand lifting a cup and the other hand lifting a glass simultaneously) versus common goals (e.g., both hands working together to accomplish a common task) [8]. Many bilateral actions, such as arms swinging during bipedal locomotion, seem to depend on “default-mode” neural coupling. However, in most skilled ADL, bimanual actions are accomplished through asymmetrical movements that cooperate to achieve a common goal, e.g., buttoning a skirt or changing the gear while steering a car. Such complex bimanual, cooperative, asymmetrical skills have to be learned.

After a stroke, motor skill learning (MSkL) plays a key role in recovery by compensating for activity limitations and participation restrictions. MSkL is a fundamental ability that allows for the acquisition of unimanual or bimanual skills (i.e., writing, playing the piano) and adaptation of these skills to changing environments. It has been suggested that procedural learning, including MSkL, proceeds over three phases [12]: (i) an early “strategic/cognitive” phase, which presents rapid performance improvement, especially in the dorsolateral prefrontal cortex and posterior parietal cortex (PPC); (ii) a consolidation phase, which involves the stabilization of the learned skill based principally through a corticostriatal loop (striatum and supplementary motor area); and (iii) a retention phase, which is also called the “automatization phase”, during which the performance of the skill is optimized due to the increased activity in the primary motor cortex (M1), the premotor cortex and PPC [13]. Improvement of a skill is linked to practice-dependent training: the more we practice a skill, the better we perform it, with smoother movements and reduced variability [1415]. Sensorimotor skill acquisition (or MSkL) represents the ability to select and refine the movements needed to attain a goal in which the sensory stimuli for selecting and correcting our actions are considered and then the skill is executed consistently with both speed and accuracy (i.e., with motor acuity). Once learned, a motor skill can be retained for long periods of time, thus leading to lasting performance improvements, which is the aim of neurorehabilitation [16].

Robotic devices have long been expected to enhance recovery after a brain injury, such as a stroke [17,18,19,20], because they offer the possibility of providing intensive task-specific training to regulate task parameters, quantify and monitor improvements, and continuously adapt the task’s difficulty [2122]. E.g., Keeling and al. [20] showed that the use of the bimanual robotic tasks for rehabilitation in subacute stroke is feasible and suggested that the use of robotic devices added to standard of care therapy could augment recovery. Moreover, the proprioceptive feedback during active movements, delivered through a robotic therapy improved sensorimotor function in chronic stroke patients [23]. In fact, the proprioceptive training could enhance somatosensory and motor functions and induce cortical reorganization [24]. Interestingly, robotics has the potential to formally implement the principles of motor learning in neurorehabilitation. Cuppone et al. [25] found that somatosensory learning is linked to motor learning because these processes similar features of memory formation. Robotic devices can provide four main training modalities: (i) active mode (where the subject fully performs the task), (ii) active-assisted mode (where the robot provides assistance either at a fixed rate or “as needed”), (iii) passive mode (where the robot fully performs the task), and (iv) resistive mode (where the robot perturbs the subject’s attempts); these modalities allow for valuable interactions with patients [26]. In a meta-analysis, Kwakkel et al. showed significant improvement in UL impairment (but not in ADL) with robot-assisted training (RAT) [27]. However, a recent Cochrane review showed that RAT enhances both UL impairments and ADL in stroke survivors [18], and another team showed that RAT improved motor coordination compared to unilateral training in patients with stroke with severe impairments [28].

More recently, we used a custom system with computer mice and showed that patients with stroke were able to learn, retain and generalize a complex bimanual skill after a single session of real and sham transcranial direct current stimulation (tDCS) [29]. Determining whether patients with stroke could achieve bimanual MSkL (bim-MSkL) and identifying the underlying mechanisms and extent of learning are crucial for the development of efficient neurorehabilitation approaches targeting independence in (bimanual) ADL.

To explore how patients (re)learn to coordinate their hands after a stroke, we developed a complex asymmetrical bimanual coordination task (CIRCUIT) that was implemented as a serious game in the bimanual version of the REAplan® robot (AXINESIS, Wavre, Belgium). With a common cursor controlled by coordinated movements of the ULs interacting with robotic handles, one hand exclusively controlled lateral displacements of the common cursor while the other hand exclusively controlled the sagittal displacements. It has been suggested that stroke recovery studies should include quantitative measures, such as speed, accuracy, path length metrics and smoothness of movement [26]. By analyzing kinematic parameters and providing such real-time quantitative measures of movement, REAplan® can be used for training UL movements [3031]. Our hypotheses were that (i) patients in the chronic phase of stroke would show improvements in a new complex bimanual coordination skill and be able to retain and generalize this skill, i.e., they would be able to achieve complex bim-MSkL and/or improve on other bimanual or unimanual performances; (ii) patients would show similar improvements in bim-MSkL as healthy individuals; and (iii) poorer baseline clinical scales in patients would correlate with poorer bim-MSkL indices. […]

Continue

Bimanual tasks on the REAplan®. A General setup of the bimanual version of the REAplan® robot. Note that each hand slid exclusively along one axis and thus controlled a different direction of the common cursor (small arrowhead) displayed on the REAplan® screen. The forearms rested in gutters and were strapped in, and handles were adapted if needed. B Different circuit of identical length and difficulty for the generalization. C Cursor displacement with regard to the ideal trajectory defined as the center of the circuit track (surface = error), D REACHING task: four eccentric targets designated in a pseudorandomized order (16 trials/target)

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Bimanual Motor Skill Learning With Robotics in Chronic Stroke – Full Text

Abstract

Background. Most activities of daily life (ADL) require cooperative bimanual movements. A unilateral stroke may severely impair bimanual ADL. How patients with stroke (re)learn to coordinate their upper limbs (ULs) is largely unknown.

The objectives are to determine whether patients with chronic supratentorial stroke could achieve bimanual motor skill learning (bim-MSkL). To compare bim-MSkL between patients and healthy individuals (HIs).

Methods. Twenty-four patients and ten HIs trained over 3 consecutive days on an asymmetrical bimanual coordination task (CIRCUIT) implemented as a serious game in the REAplan® robot. With a common cursor controlled by coordinated movements of the ULs through robotic handles, they performed as many laps as possible (speed constraint) on the CIRCUIT while keeping the cursor within the track (accuracy constraint). The primary outcome was a bimanual speed/accuracy trade-off (biSAT), we used a bimanual coordination factor (biCO) and bimanual forces (biFOP) for the secondary outcomes. Several clinical scales were used to evaluate motor and cognitive functions.

Results. Overall, the patients showed improvements on biSAT and biCO. Based on biSAT progression, the HI achieved a larger bim-MSkL than the patients with mild to moderate impairment (Fugl-Meyer Assessment Upper Extremity (FMA-UE): 28-55, n=15) but not significantly different from those with minimal motor impairment (FMA-UE: 66, n=9). There was a significant positive correlation between biSAT evolution and the FMA-UE and Stroke Impact Scale.

Conclusions. Both HI and patients with chronic stroke training on a robotic device achieved bim-MSkL, although the more impaired patients were less efficient. Bim-MSkL with REAplan® may be interesting for neurorehabilitation after stroke.

Background

Stroke is a major cause of long-term disability worldwide (1, 2), and one of the most frequent impairments is hemiparesis, which is characterized by weakness, lack of control, increased muscle tone on the contralesional upper limb (UL) and lower limb or hemibody, and deteriorating independence in activities of daily life (ADL), especially walking, dressing or eating (3). Critically, other impairments (e.g., somatosensory, visual, and cognitive), whether isolated or combined, also significantly deteriorate ADL. Most ADL require skilled bimanual coordination that can be impaired by a stroke, thus leading to a loss of independence that may in turn lead to a 50% reduction in quality of life (4). Despite rehabilitative care provided during the acute phase of stroke, 30% of patients still suffer from participation restrictions after four years (5). It has been suggested that neurorehabilitation should not focus exclusively on impairments of the paretic arm or hand and should instead consider more bimanual actions and activities (6-8). After a unilateral stroke, impairments of the contralesional UL can deteriorate bimanual actions (9), thus supporting the importance of training both ULs to achieve better functional recovery in (bimanual) ADL (8, 10). Interestingly, during bilateral cooperative movements (e.g., opening a bottle), neural coupling from the ipsilesional to the contralesional (impaired) UL is preserved in most patients with stroke, suggesting the relevance of bilateral training that supports cooperative hand movements for ADL (11). During bimanual training, various tasks can be utilized to promote intensive and repetitive coordinated movement of the ULs. A classification of bimanual tasks has been proposed for different bimanual actions. Grossly, two types of tasks can be distinguished: those with symmetrical movements that engage homologous muscles (e.g., picking up a box simultaneously with both hands) and those with asymmetrical movements that engage nonhomologous muscles nonsimultaneously (e.g., cutting a piece of steak). Similarly, two types of task goals can be distinguished: independent goals (e.g., one hand lifting a cup and the other hand lifting a glass simultaneously) versus common goals (e.g., both hands working together to accomplish a common task) (8). Many bilateral actions, such as arms swinging during bipedal locomotion, seem to depend on “default-mode” neural coupling. However, in most skilled ADL, bimanual actions are accomplished through asymmetrical movements that cooperate to achieve a common goal, e.g., buttoning a skirt or changing the gear while steering a car. Such complex bimanual, cooperative, asymmetrical skills have to be learned.

After a stroke, motor skill learning (MSkL) plays a key role in recovery by compensating for activity limitations and participation restrictions. MSkL is a fundamental ability that allows for the acquisition of unimanual or bimanual skills (i.e., writing, playing the piano) and adaptation of these skills to changing environments. It has been suggested that procedural learning, including MSkL, proceeds over three phases (12): (i) an early “strategic/cognitive” phase, which presents rapid performance improvement, especially in the dorsolateral prefrontal cortex and posterior parietal cortex (PPC); (ii) a consolidation phase, which involves the stabilization of the learned skill based principally through a corticostriatal loop (striatum and supplementary motor area); and (iii) a retention phase, which is also called the “automatization phase”, during which the performance of the skill is optimized due to the increased activity in the primary motor cortex (M1), the premotor cortex and PPC (13). Improvement of a skill is linked to practice-dependent training: the more we practice a skill, the better we perform it, with smoother movements and reduced variability (14, 15). Sensorimotor skill acquisition (or MSkL) represents the ability to select and refine the movements needed to attain a goal in which the sensory stimuli for selecting and correcting our actions are considered and then the skill is executed consistently with both speed and accuracy (i.e., with motor acuity). Once learned, a motor skill can be retained for long periods of time, thus leading to lasting performance improvements, which is the aim of neurorehabilitation (16).

Robotic devices have long been expected to enhance recovery after a brain injury, such as a stroke (17-19), because they offer the possibility of providing intensive task-specific training to regulate task parameters, quantify and monitor improvements, and continuously adapt the task’s difficulty (20, 21). Interestingly, robotics has the potential to implement the principles of motor learning in neurorehabilitation. Robotic devices can provide four main training modalities: (i) active mode (where the subject fully performs the task), (ii) active-assisted mode (where the robot provides assistance either at a fixed rate or “as needed”), (iii) passive mode (where the robot fully performs the task), and (iv) resistive mode (where the robot perturbs the subject’s attempts); these modalities allow for valuable interactions with patients (22). In a meta-analysis, Kwakkel et al. showed significant improvement in UL impairment (but not in ADL) with robot-assisted training (RAT) (23). However, a recent Cochrane review showed that RAT enhances both UL impairments and ADL in stroke survivors (18), and another team showed that RAT improved motor coordination compared to unilateral training in patients with stroke with severe impairments (24).

More recently, we used a custom system with computer mice and showed that patients with stroke were able to learn, retain and generalize a complex bimanual skill after a single session of real and sham transcranial direct current stimulation (tDCS) (25). Determining whether patients with stroke could achieve bimanual MSkL (bim-MSkL) and identifying the underlying mechanisms and extent of learning are crucial for the development of efficient neurorehabilitation approaches targeting independence in (bimanual) ADL.

To explore how patients (re)learn to coordinate their hands after a stroke, we developed a complex asymmetrical bimanual coordination task (CIRCUIT) that was implemented as a serious game in the bimanual version of the REAplan® robot (AXINESIS, Wavre, Belgium). With a common cursor controlled by coordinated movements of the ULs interacting with robotic handles, one hand exclusively controlled lateral displacements of the common cursor while the other hand exclusively controlled the sagittal displacements. It has been suggested that stroke recovery studies should include quantitative measures, such as speed, accuracy, path length metrics and smoothness of movement (Carpinella et al., 2020). By analyzing kinematic parameters and providing such real-time quantitative measures of movement, REAplan® can be used for training UL movements (26, 27). Our hypotheses were that (i) patients in the chronic phase of stroke would show improvements in a new complex bimanual coordination skill and be able to retain and generalize this skill, i.e., they would be able to achieve complex bim-MSkL; (ii) patients would show similar improvements in bim-MSkL as healthy individuals; and (iii) poorer baseline clinical scales in patients would correlate with poorer bim-MSkL indices.[…]

Continue

Figure 1
Figure 1. Bimanual tasks on the REAplan®. A. General setup of the bimanual version of the REAplan® robot. Note that each hand slid exclusively along one axis and thus controlled a different direction of the common cursor (small arrowhead) displayed on the REAplan® screen. The forearms rested in gutters and were strapped in, and handles were adapted if needed. B. Different circuit of identical length and difficulty for the generalization. C. Cursor displacement with regard to the ideal trajectory defined as the center of the circuit track (surface= error), D. REACHING task: four eccentric targets designated in a pseudorandomized order (16 trials/target).

, , , , , , , , , , ,

Leave a comment

[Abstract] Learning a Bimanual Cooperative Skill in Chronic Stroke Under Noninvasive Brain Stimulation: A Randomized Controlled Trial

Abstract

Background. Transcranial direct current stimulation (tDCS) has been suggested to improve poststroke recovery. However, its effects on bimanual motor learning after stroke have not previously been explored.

Objective. We investigated whether dual-tDCS of the primary motor cortex (M1), with cathodal and anodal tDCS applied over undamaged and damaged hemispheres, respectively, improves learning and retention of a new bimanual cooperative motor skill in stroke patients.

Method. Twenty-one chronic hemiparetic patients were recruited for a randomized, double-blinded, cross-over, sham-controlled trial. While receiving real or sham dual-tDCS, they trained on a bimanual cooperative task called CIRCUIT. Changes in performance were quantified via bimanual speed/accuracy trade-off (Bi-SAT) and bimanual coordination factor (Bi-Co) before, during, and 0, 30, and 60 minutes after dual-tDCS, as well as one week later to measure retention. A generalization test then followed, where patients were asked to complete a new CIRCUIT layout.

Results. The patients were able to learn and retain the bimanual cooperative skill. However, a general linear mixed model did not detect a significant difference in retention between the real and sham dual-tDCS conditions for either Bi-SAT or Bi-Co. Similarly, no difference in generalization was detected for Bi-SAT or Bi-Co.

Conclusion. The chronic hemiparetic stroke patients learned and retained the complex bimanual cooperative task and generalized the newly acquired skills to other tasks, indicating that bimanual CIRCUIT training is promising as a neurorehabilitation approach. However, bimanual motor skill learning was not enhanced by dual-tDCS in these patients.

via Learning a Bimanual Cooperative Skill in Chronic Stroke Under Noninvasive Brain Stimulation: A Randomized Controlled Trial – Maral Yeganeh Doost, Jean-Jacques Orban de Xivry, Benoît Herman, Léna Vanthournhout, Audrey Riga, Benoît Bihin, Jacques Jamart, Patrice Laloux, Jean-Marc Raymackers, Yves Vandermeeren, 2019

, , , , , , ,

Leave a comment

[Abstract] Error-augmented bimanual therapy for stroke survivors

via Error-augmented bimanual therapy for stroke survivors – IOS Press

, , , , , , , , , ,

Leave a comment

[ARTICLE] Force control in chronic stroke

Highlights

  • Post stroke motor impairments involving force control capabilities are devastating.
  • Bimanual motor synergies provide robust data on coordinating forces between hands.
  • Low-force frequency patterns reveal fine motor control strategies in paretic hands.
  • Analyzing both novel approaches advance understanding of post stroke force control.

Abstract

Force control deficits are common dysfunctions after a stroke. This review concentrates on various force control variables associated with motor impairments and suggests new approaches to quantifying force control production and modulation. Moreover, related neurophysiological mechanisms were addressed to determine variables that affect force control capabilities. Typically, post stroke force control impairments include:

(a) decreased force magnitude and asymmetrical forces between hands,

(b) higher task error,

(c) greater force variability,

(d) increased force regularity, and

(e) greater time-lag between muscular forces.

Recent advances in force control analyses post stroke indicated less bimanual motor synergies and impaired low-force frequency structure.Brain imaging studies demonstrate possible neurophysiological mechanisms underlying force control impairments:

(a) decreased activation in motor areas of the ipsilesional hemisphere,

(b) increased activation in secondary motor areas between hemispheres,

(c) cerebellum involvement absence, and

(d) relatively greater interhemispheric inhibition from the contralesional hemisphere.

Consistent with identifying neurophysiological mechanisms, analyzing bimanual motor synergies as well as low-force frequency structure will advance our understanding of post stroke force control.

via Force control in chronic stroke.

, , , , , , , , , , , ,

Leave a comment