Posts Tagged real-time systems

[ARTICLE] Adaptive Treadmill-Assisted Virtual Reality-Based Gait Rehabilitation for Post-Stroke Physical Reconditioning—a Feasibility Study in Low-Resource Settings – Full Text

Abstract

Objectives: Individuals with chronic stroke suffer from heterogeneous functional limitations, including cardiovascular dysfunction and gait disorders (associated with increased energy expenditure) besides psychological factors, e.g., motivation. To recondition their cardiovascular endurance and gait, rehabilitation exercises with gradually increasing exercise intensity suiting their individualized capabilities need to be offered. In principal accordance, here we (i) implemented an adaptive Virtual Reality (VR)-based treadmill-assisted platform sensitive to energy expenditure, (ii) investigated its safety and feasibility of use and (iii) examined the implications of gait exercise with this platform on cardiac and gait performance along with energy expenditure, clinical measures (to estimate physical reconditioning of subjects with stroke) and their views on community ambulation capabilities. Methods: Ten able-bodied subjects volunteered in a study to ensure its safety and feasibility of use. Nine subjects with chronic stroke underwent physical reconditioning over multiple exposures using our platform. We investigated the patients’ cardiac and gait performance prior and post exposure to our platform along with studying the clinical relevance of gait parameters in estimating their physical reconditioning. We collected the patients’ feedback. Results: We found statistical improvement in the gait parameters and reduction in energy expenditure during overground walk following ~1 month of gait exercise with our platform. They reported that the VR-based tasks were motivating. Conclusion: Results show that this platform can pave the way towards implementing home-based individualized exercise platform that can monitor one’s cardiac and gait performance capabilities while offering an adaptive and progressive gait exercise environment within safety thresholds suiting one’s exercise capabilities.
Physiological Cost Index sensitive Adaptive Response Technology (PCI-ART) for post-stroke physical reconditioning. Note: PCI- Physiological Cost Index; SST-Single Support Time; AL- Affected limb; UAL- Unaffected limb.

Physiological Cost Index sensitive Adaptive Response Technology (PCI-ART) for post-stroke physical reconditioning. Note: PCI- Physiological Cost Index; SST-Single Support Time; AL- Affected limb; UAL- Unaffected limb. 

SECTION I.

Introduction

Neurological disorders, such as stroke is a leading cause of disability with a prevalence rate of 424 in 100,000 individuals in India [1]. Often, these patients suffer from functional disabilities, heterogeneous physical deconditioning along with deteriorated cardiac functioning [2], [3] and a sedentary lifestyle immediately following stroke [4]. A deconditioned patient requires reconditioning of his/her cardiac capacity and ambulation capabilities that can be achieved through individualized rehabilitation [5]. This needs to be done under the supervision of a clinician who can monitor one’s functional capability, cardiac capacity and gait performance thereby recommending an appropriate dosage of the gait rehabilitation exercise intensity to the patient along with feedback. Such gait rehabilitation is crucial since about 80% of these patients have been reported to suffer from gait-related disorders [6] along with more energy expenditure than able-bodied individuals [7] often accompanied with reduced cardiac capacity [2], [4]. However, given the low doctor-to-patient ratio [8], lack of rehabilitation facilities and patients being released early from rehabilitation clinics followed by home-based exercise [9], particularly in developing countries like India, availing individualized rehabilitation services becomes difficult. Again, undergoing home-based exercises under clinician’s one-on-one supervision becomes difficult given the restricted healthcare resources, thereby limiting the rehabilitation outcomes [10]. Again, given the restricted healthcare resources, getting a clinician visiting the homes for delivering therapy sessions to patients is often costly causing the patients to miss the expert inputs on the exercise intensity suiting his/her exercise capability along with motivational feedback from the clinician [11]. This necessitates the use of a complementary technology-assisted rehabilitation platform that can be availed by the patient at his/her home [12] following a short stay at the rehabilitation clinic [13]. Again, it is preferred that this platform be capable of offering individualized gait exercise while varying the dosage of exercise intensity (based on the patient’s exercise capability) along with motivational feedback [14]. Additionally, exercise administered by this platform can be complemented with intermediate clinician-mediated assessments of rehabilitation outcomes, thereby reducing continuous demands on the restricted clinical resources. Thus, it is important to investigate the use of such technology-assisted gait exercise platforms that are capable of offering exercise based on one’s individualized capability along with motivational feedback.

Researchers have explored the use of technology-assisted solutions to offer rehabilitative gait exercises to these patients, along with presenting motivational feedback [15]–[16][17][18][19][20][21][22][23][24]. Specifically, investigators have used Virtual Reality (VR) coupled with a treadmill (having a limited footprint and making it suitable for home-based settings) while delivering individualized feedback [15] to the patient during exercise. Again, VR can help to project scenarios that can make the exercise engaging and interactive for a user [16]–[17][18][19]. In fact, Finley et al. have shown that the visual feedback offered by VR provides an optical flow that can induce changes in the gait performance (quantified in terms of gait parameters, e.g., Step Length, Step Symmetry, etc.) of such patients during treadmill-assisted walk [20]. Further, Jaffe et al. have reported positive implications of VR-based treadmill-assisted walking exercise on the gait performance of individuals with stroke [23], leading to improvement in their community ambulation [24]. These studies have shown the efficacy of the VR-based treadmill-assisted gait exercise platform to contribute towards gait rehabilitation of individuals suffering from stroke. Though promising, none of these platforms are sensitive to one’s individualized exercise capability and thus, in turn, could not decide an optimum dosage of exercise intensity suiting one’s capability, e.g., cardiac capacity and ambulation capability. This is particularly critical for individuals with stroke since they possess diminished exercise ability along with deteriorated cardiac functioning [2], [4].

From literature review, we find that after stroke, treadmill-assisted cardiac exercise programs can lead to one’s improved fitness and exercise capability [25]. For example, researchers have presented studies on Moderate-Intensity Continuous Exercise and High-Intensity Interval Training in which exercise protocols are individualized by a clinician based on one’s cardiac capacity while contributing to effective gait rehabilitation [26]–[27][28][29]. Though promising, these have not offered a progressive and adaptive exercise environment in which the dosage of exercise intensity is varied based on one’s cardiac capacity in real-time. Thus, the choice of optimum dosage of exercise intensity that can be individualized in real-time for a patient, still remains as inadequately explored [4]. For deciding the optimal dosage of rehabilitative exercise intensity, clinicians often refer to the guidelines recommended by the American College of Sports Medicine (ACSM) [30]. These guidelines suggest thresholds to decide the intensity of the exercise based on one’s metabolic energy consumption in terms of oxygen intake, heart rate, etc. Deciding the dosage of exercise intensity is crucial, particularly for individuals with stroke since their energy requirements have been reported to be 55-100% higher than that of their able-bodied counterparts [7]. Specifically, higher energy requirement often limits the capabilities of these patients and challenges their rehabilitation outcomes. This can be addressed if the technology-assisted gait exercise platform can offer individualized exercise (maintaining the safe exercise thresholds) based on the energy expenditure of the patients acquired in real-time during the exercise.

The energy expenditure can be defined as the cost of physical activity [4] and it is often expressed in terms of oxygen consumption or heart rate [31]. Thus, investigators have monitored the oxygen consumption and heart rate to estimate the energy expenditure of individuals with stroke during their walk [31], [32]. However, monitoring oxygen consumption during exercise requires a cumbersome setup [31], making it unsuitable for home-based rehabilitation. On the other hand, one’s heart rate (HR) can be monitored using portable solutions [33] that can be integrated with a treadmill in home-based settings. Researchers have explored treadmill-assisted gait exercise platforms that are sensitive to the user’s heart rate. For example, researchers have offered treadmill training to subjects with stroke in which some of them varied treadmill speed to achieve 45%-50% [34], while others varied speed to achieve 85% to 95% [35], [36] of one’s age-related maximum heart rate. Again, Pohl et al. have offered treadmill-assisted exercise to subjects with stroke while ensuring that the user’s heart rate settled to the respective resting-state heart rate [37]. Again of late, there had been advanced treadmills, available off-the-shelf, that can monitor one’s heart rate and vary the treadmill speed to maintain the user’s heart rate at a predefined level [38], [39]. Though one’s heart rate is an important indicator that needs to be considered during treadmill-assisted exercise, one’s walking speed while using the treadmill also offers important information on one’s exercise capability. This is because gait rehabilitation aims to improve one’s community ambulation that is related to one’s walking speed [40]. Thus, it would be interesting to explore the composite effect of one’s walking speed along with working and resting-state heart rates during treadmill-assisted gait exercise to study one’s energy expenditure, quantified in terms of a proxy index, namely Physiological Cost Index (PCI) [31].

Given that there are no existing studies that have used a treadmill-assisted gait exercise platform deciding the dosage of exercise intensity based on one’s PCI estimated in real-time during exercise, it might be interesting to explore the use of such an individualized gait exercise platform for individuals with stroke. Thus, we wanted to extend a treadmill-assisted gait exercise platform by making it adaptive to one’s individualized PCI. Additionally, we wanted to augment this platform with VR-based user interface to offer visual feedback to the user undergoing gait exercise. We hypothesized that such a gait exercise platform can recondition a patient’s exercise capability in terms of cardiac and gait performance to achieve improved community ambulation. The objectives of our research were three-fold, namely to (i) implement a novel PCI-sensitive Adaptive Response Technology (PCI-ART) offering VR-based treadmill-assisted gait exercise, (ii) investigate the safety and feasibility of use of this platform among able-bodied individuals before applying it to subjects with stroke and (iii) examine implications of undergoing gait exercise with this platform on the patients’ (a) cardiac and gait performance along with energy expenditure, (b) clinical measures estimating the physical reconditioning and (c) views on their community ambulation capabilities.

The rest of the paper is organized as follows: Section II presents our system design. Section III explains the experiments and procedures of this study. Section IV discusses the results. In Section V, we summarize our findings, limitations, and scope of future research.[…]

Continue —-> Adaptive Treadmill-Assisted Virtual Reality-Based Gait Rehabilitation for Post-Stroke Physical Reconditioning—a Feasibility Study in Low-Resource Settings – IEEE Journals & Magazine

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Portable Motion-Analysis Device for Upper-Limb Research, Assessment, and Rehabilitation in Non-Laboratory Settings – Full Text

Abstract

This study presents the design and feasibility testing of an interactive portable motion-analysis device for the assessment of upper-limb motor functions in clinical and home settings. The device engages subjects to perform tasks that imitate activities of daily living, e.g. drinking from a cup and moving other complex objects. Sitting at a magnetic table subjects hold a 3D printed cup with an adjustable magnet and move this cup on the table to targets that can be drawn on the table surface. A ball rolling inside the cup can enhance the task challenge by introducing additional dynamics. A single video camera with a portable computer tracks real-time kinematics of the cup and the rolling ball using a custom-developed, color-based computer-vision algorithm. Preliminary verification with marker-based 3D-motion capture demonstrated that the device produces accurate kinematic measurements. Based on the real-time 2D cup coordinates, audio-visual feedback about performance can be delivered to increase motivation. The feasibility of using this device in clinical diagnostics is demonstrated on 2 neurotypical children and also 3 children with upper-extremity impairments in the hospital, where conventional motion-analysis systems are difficult to use. The device meets key needs for clinical practice: 1) a portable solution for quantitative motor assessment for upper-limb movement disorders at non-laboratory clinical settings, 2) a low-cost rehabilitation device that can increase the volume of in-home physical therapy, and 3) the device affords testing and training a variety of motor tasks inspired by daily challenges to enhance self-confidence to participate in day-to-day activities.

SECTION I.

Introduction

An integral part of clinical care for individuals with motor disorders is to assess motor function to guide and evaluate medical treatment, surgical intervention or physical therapy. One of the challenges for assessing motor function is to define sensitive and quantitative measures that can be readily obtained in clinical practice. The objective of this study was to develop a device that affords quantitative assessment of motor impairments in non-laboratory settings. The specific focus is on individuals with upper-limb movement disorders. One central goal was to ground the task in scientific research to relate clinical measures to research and capitalize on insights from fundamental research.

This paper first lays out the need for such a device particularly for children with motor disorders and post-stroke rehabilitation. We then motivate the specific motor task that was originally conceived for basic research on motor control. We then detail the design of the prototype with all hardware and software components so that it can be replicated. One design goal was to make the device low-cost, so that it can be used in many clinical environments including at home for therapeutic exercises. We conclude with first results from pilot experiments acquired both in a traditional laboratory setting and in an Epilepsy Monitoring Unit. These first data were obtained from children with dystonia. However, the device is not limited to this population and is currently further modified for the assessment of stroke patients.

A. Clinical Assessments of Motor Disorders

A motor disorder manifests as an impaired ability to execute a movement with the intended spatial and temporal pattern. This includes abnormal posturing, presence of unintended excessive movement, and normal movements occurring at unintended or inappropriate times [1]. Patients with upper-limb impairments require special assistance to perform common motor tasks associated with self-care, such as feeding and dressing. Challenges in their movement control result in frustration, which leads to less engagement and practice, and thereby fewer opportunities to attenuate their motor disabilities and improve their movement control.

Motor disorder are observed also among children. Cerebral Palsy (CP) is a common cause of movement disorders among children, affecting 3 to 4 individuals per 1000 births in the US. The dyskinetic form of CP occurs in 15% of all cases [2]. Due to inflexible postures, caused by muscle spasms and contractures together with involuntary jerky movements, children with dyskinetic CP are often prevented from participation in many daily activities. This also prevents them from acquiring age-appropriate motor skills during critical periods of skill development [3], [4]. This is particularly aggravated when the condition affects the upper limbs.

For clinical motor assessments, the current standard tools are clinical scales. For cerebral palsy, typical tests are the gross motor function classification system (GMFCS) [5], the manual ability classification system (MACS) [6], the House Scale [7], the Melbourne Assessment [8], the Assisting Hand Assessment [9], the Hypertonia Assessment Tool (HAT) [10], the Barry-Albright Dystonia (BAD) scale [11], and the Shriners Hospital for Children Upper Extremity Evaluation [12]. These outcome measures were devised to satisfy the typical criteria for effective outcome measures, including reliability, validity, specificity, and responsiveness [13]. Although useful, these rating scales rely on subjective assessment and questionnaires that are vulnerable to inter-rater and test-retest reliability, nonlinearity, multi-dimensionality, and ceiling or floor effects [14]. These shortcomings need to be overcome by more quantitative outcome measures to provide a better evaluation of the individual’s motor functions and abilities, and potentially utilize such measures to objectvely assess and titrate interventions.

B. Quantitative Assessment of Motor Function

Motion tracking technologies have provided quantitative means of recording movements through a variety of sensing technology that tracks and stores movement. Camera-based motion capture, such as Vicon (Vicon Motion Systems, Oxford, UK) and Optitrak (Northern Digital Inc, Ontario, CA) requires external markers or sensors placed on key anatomical landmarks to reconstruct the skeletal model of human body parts. These state-of-the-art technologies track motion to very high precision with high sampling rates and they have been used for pre- and post-treatment assessment of upper- or lower-extremity pathologies. However, such data acquisition is limited to traditional laboratory settings because the multi-camera systems are expensive and not portable.

On the other hand, there are low-cost inertial measurement units (IMUs) that directly measure acceleration, rotational change and magnetic orientation. While these sensors have the advantage that they are self-contained and wearable, drawbacks are degraded accuracy due to drift, calibration errors and noise inherent to inertial sensors and the need to frequently recharge batteries for real-time data streaming [15]. Moreover, attaching sensors to body parts can be inconvenient or even impossible for certain clinical populations, and many children will not tolerate them.

In view of the above arguments, there is a strong need for less invasive devices that can provide quantitative measurements in tasks related to upper-extremeity motor function. Preferably, such a device should allow for portability and be low-cost to reach large populations.

C. Low-Cost Rehabilitation at Home

Rehabilitation follows standard practice and frequently requires one-on-one interaction with a therapist for extended periods of time. For these reasons, robotic devices have emerged to deliver higher-dosage and higher-intensity training for patients with movement disorders such as cerebral palsy and stroke [16]–[17][18][19]. However, while effective, robotic therapy is expensive and to date can only be used in clinical settings. To increase the volume in therapy, lower-cost devices that can be used at home are urgently needed.

Performance improvements with predominant home training are indeed possible. This was demonstrated by pediatric constraint-induced movement therapy (CIMT) for children with hemiparetic CP [20], [21]. Further, it was shown that even children with severe dystonia can improve their performance if they use an interface or device that enables and facilitates their severely handicapped movements [22].

A portable low-cost device for home use that is able to provide reliable quantitative measurements would help address the above shortcomings. Measurements could also be streamed to careproviders on a secure cloud protocol, for diagnosis of interventions, analysis of therapeutic outcomes, and further follow up.

D. Theoretically-Grounded Rehabilitation

Motor tasks for home therapy should be engaging to avoid boredom and attrition and should also have functional relevance. With this goal in mind, we developed a motor task that was motivated by the daily self-feeding activity of leading a cup of coffee or a spoon filled with soup to the mouth. The core challenge of actions of this kind is that moving such an object with sloshing liquid presents complex interaction forces: any force applied to the cup also applies a force to the liquid that then acts back on the hand. When such internal dynamics is present, interaction forces become quite complex, and the human performing the task needs to predict and preempt the internal dynamics of the moving liquid. Clearly, better understanding task is like guiding a cup of coffee to one’s mouth or a spoonful of soup has high functional relevance. While many such functional tasks have been developed for rehabiltation (e.g., the box-and-block and the pegboard task), the quantitative assessment should allow for more than descriptive outcome measures such as error or success rate. Monitoring the ‘process’ continuously should provide more detailed insight into coordinative challenges. This is indeed possible in the task of guiding a cup of coffee as we explain next.

In previous research, we abstracted a relevant, yet simplified model task, inspired by guiding a cup of coffee [23]–[24][25][26]. To reduce the complexity and afford theoretical analyses, the “cup of coffee” was simplified to a rigid object with a rolling ball inside. The rolling ball represents the moving liquid; this is also similar to the children’s game of transporting an egg in a spoon [27]. Fig.1A-C shows the transition from the real object to the simplified physical model. Importantly, the original task (Fig.1A) was reduced to a two-dimensional model, where the subject interacts with the object via a robotic manipulandum. The virtual model consists of a cart with a suspended pendulum, a well-known benchmark problem in control theory.

FIGURE 1.Model for the task of carrying a cup of coffee. A: The real object. B: The simplified physical model. C: The equivalent cart-and pendulum model implemented in the virtual task.

[…]

Continue —->  Portable Motion-Analysis Device for Upper-Limb Research, Assessment, and Rehabilitation in Non-Laboratory Settings – IEEE Journals & Magazine

, , , , , , , , , , , , , , ,

Leave a comment

[Abstract] Kinematic analysis and control for upper limb robotic rehabilitation system – IEEE Conference Publication

Abstract

Present physical rehabilitation practice implies one-to-one therapist — patient interactions. This leads to shortage of therapists and high costs for patient or healthcare insurance systems. Along with Prokinetic Rehabilitation Clinic, we proposed a new intelligent, adaptive robotic system (RAPMES), which can provide the rehabilitation protocols, defined by a therapist, for the wrist and elbow of upper limb, considering the patient reactions and based on real-time feedback. RAPMES is a passive rehabilitation robotic system (RRS) with 3 degrees of freedom, and assists the rehabilitation process for elbow, forearm and wrist movements. Computation of the kinematic model for the RAPMES robotic device is required in order to determine the parameters associated with the mechanical joints, so that the experimental model executes certain trajectories in space. In this paper, we will present both forward and inverse kinematics determined for the experimental model. The kinematic model was implemented in Matlab environment, and we present a series of simulations, conducted in order to validate the proposed kinematic model. Then, we impose the functional movements (determined using the real-time video motion analysis system, as polynomial movement functions) as input to the kinematic model, and we present a series of simulations and results. The RAPMES control algorithm includes the kinematic model, and uses the polynomial movement functions as control input.
Date of Conference: 28-31 May 2018

 

I. Introduction

Statistics shows that, at European Union level, the upper limb is second common body part injured, as a result of unintentional physical injury [1]. Also, one can note the shortage of therapists and high costs for patient or healthcare insurance systems. Current development in robotics may offer a solution for this problem [2], allowing the creation of robotic devices to support the rehabilitation process, in a supervised or unsupervised way, in physiotherapy clinics or at home. In this context, we proposed RAPMES, a new intelligent, adaptive robotic system, which can provide the rehabilitation protocols, defined by a therapist, for the wrist and elbow of upper limb, considering the patient reactions and based on real-time feedback. RAPMES robotic system is designed on an ongoing research project, which implies several stages of development. In a first stage, we conducted a study involving therapists, the personnel and devices existent in a physiotherapy clinic. The role of this study was to determine the requirements for the robotic device, and to reveal the specific therapeutic needs of patients with rehabilitation indications at wrist and elbow level. On a second stage, we used a real-time video motion analysis system, to determine and understand specific functional movements frequently made with the dominant upper limb, by healthy persons. One of our research objectives is to include these movements as a part of RAPMES control algorithm, as they may offer a better rehabilitation of the upper limb, for specific moves. Next, we designed the robotic device, based on findings described above, and realized an experimental model of the robotic device.

via Kinematic analysis and control for upper limb robotic rehabilitation system – IEEE Conference Publication

, , , , , , , , ,

Leave a comment

[Abstract] Development of a Minimal-Intervention-Based Admittance Control Strategy for Upper Extremity Rehabilitation Exoskeleton

Abstract:

The applications of robotics to the rehabilitation training of neuromuscular impairments have received increasing attention due to their promising prospects. The effectiveness of robot-assisted training directly depends on the control strategy applied in the therapy program. This paper presents an upper extremity exoskeleton for the functional recovery training of disabled patients. A minimal-intervention-based admittance control strategy is developed to induce the active participation of patients and maximize the use of recovered motor functions during training. The proposed control strategy can transit among three control modes, including human-conduct mode, robot-assist mode, and motion-restricted mode, based on the real-time position tracking errors of the end-effector. The human-robot interaction in different working areas can be modulated according to the motion intention of patient. Graphical guidance developed in Unity-3-D environment is introduced to provide visual training instructions. Furthermore, to improve training performance, the controller parameters should be adjusted in accordance with the hemiplegia degree of patients. For the patients with severe paralysis, robotic assistance should be increased to guarantee the accomplishment of training. For the patients recovering parts of motor functions, robotic assistance should be reduced to enhance the training intensity of effected limb and improve therapeutic effectiveness. The feasibility and effectiveness of the proposed control scheme are validated via training experiments with two healthy subjects and six stroke patients with different degrees of hemiplegia.

via Development of a Minimal-Intervention-Based Admittance Control Strategy for Upper Extremity Rehabilitation Exoskeleton – IEEE Journals & Magazine

, , , , , , , , ,

Leave a comment

[ARTICLE] Agent-based systems for telerehabilitation: strengths, limitations and future challenges (PDF Download Available) – Full Text

Abstract
Telerehabilitation in older adults is most needed in the patient environments, rather than in formal ambulatories or hospitals. Supporting such practices brings significant advantages to patients, their family, formal and informal caregivers, clinicians, and researchers. Several techniques and technologies have been developed aiming at facilitating and enhancing the effectiveness of telerehabilitation. This paper gives a quick overview of the state of the art, investigating video-based, wear-able, robotic, distributed, and gamified telerehabilitation solutions. In particular, agent-based solutions are analyzed and discussed addressing strength, limitations, and future challenges. Elaborating on functional requirements expressed by professional physiotherapists and researchers, the need for extending multi-agent systems (MAS) peculiarities at the sensing level in wearable solutions establishes new research challenges. Employed in cyber-physical scenarios with users-sensors and sensors-sensors interactions, MAS are requested to handle timing constraints, scarcity of resources and new communication means, which are crucial for providing real-time feedback and coaching.
1 Introduction
Healthcare institutions are facing the strain of a significantly larger elderly population [1]. Lengthening life expectancy is met by an increasing demand for medical and technological contributions to extend the ”good-health”, and disability free period.
The major factor catalyzing the elderly’s impairing process is the progres-
sive reduction of mobility, due to the natural aging process, inactivity, dis-
eases such as osteoarthritis, stroke or other neurological conditions, falls with its consequences, such as fear of falls (leading to inactivity), or fractures (needing surgery).Despite the emergence of less-invasive surgical techniques, post-intervention rehabilitation still requires extended periods and tailored therapies, which usually involve complications. Performing traditional rehabilitative practices is leading to a significant increase in public-health costs and, in some cases a lack of resources, thus worsening the services’ quality. Rehabilitation is often a long process and needs to be sustained long after the end of the acute care. Simplifying the access to health services [2] can raise the number of patients, maintaining (or even increasing) the quality of care. For example, patients requiring support, such as continuous or selective monitoring, can benefit from systems that automatically transmit the information gathered in their domestic environment to the health clinics, thus enabling telemonitoring on their health conditions [3].
Although in traditional solutions telemonitoring is a self-contained practice
limited to passively observing the patients, the need for remote sensing is crucially coupled with the need for coaching older adults in their daily living [4,5].
For example, a critical activity such as telerehabilitation cannot be limited
to observing the patients’ behaviors. Indeed, patient adherence and acceptability of rehabilitative practices need to be actively enhanced, overcoming pitfalls due to motor (e.g., endurance), non-motor (e.g., fatigue, pain, dysautonomic symptoms, and motivational), and cognitive deficits. According to Rodriguez et al. [6], telerehabilitation can be formally defined as:
“the application of telecommunication, remote sensing and operation tech-
nologies, and computing technologies to assist with the provision of med-
ical rehabilitation services at a distance.”
Patients, physiotherapists, and health institutes can gain several benefits
from an extensive adoption of telerehabilitation systems [7]. Considering the
economical point of view, Mozaffarian et al. [8] figured out that the total cost
of stroke in the US was estimable to be 34.3 billion dollars in 2008, rising up to 69.1 billion dollars in 2016.
Even though to date they are not precisely quantifiable due to insufficient evidence [9], Mutingi et al. [10] presented as “inevitable advantages”
(i) a substantial cost saving primarily due to the reduction of specialized human resources,
(ii) an enhancement of patient comfort and lifestyle, and (iii) improvements of therapy and decision making processes. Moreover, Morreale et al. [11] mentioned one of the most appreciated benefits: the increase of adherence to rehabilitation protocols.
The multitude of scientific contributions fostering telerehabilitation exploits
new technologies and various architectures to better understand and serve user requirements. However, due to technological or technical limitations, physiotherapists’ needs have not yet been completely satisfied. To fill this gap, a system evolution is required. For example, telerehabilitation systems cannot offer the same behavior to users with diverse conditions. Viceversa, according to the environment condition, they must rather be able to adapt themselves to the user needs [6].
Telerehabilitation is characterized by a very delicate equilibrium between
environment, devices, and users. Thus, the capabilities such as self adaptation, flexibility, and ubiquity are crucial to facilitate and promote the usability and then the actual practices.
Agent-based systems for telerehabilitation: strengths, limitations and future challenges (PDF Download Available). Available from: https://www.researchgate.net/publication/316790326_Agent-based_systems_for_telerehabilitation_strengths_limitations_and_future_challenges [accessed May 26, 2017].

Continue —> Agent-based systems for telerehabilitation: strengths, limitations and future challenges (PDF Download Available)

Fig. 2. Agent-based sensing: future challenge for telerehabilitation MAS. 

, , , , , ,

Leave a comment

%d bloggers like this: